Knowledge (XXG)

Primitive mantle

Source đź“ť

20: 169:
formed under similar conditions, giving them comparable chemical compositions. The more direct methodology is to observe trends in the chemical makeup of upper mantle peridotites and interpret the hypothetical composition of the primitive mantle based on these trends. This is done by matching the
174:
compositional trends to the distribution of refractory lithophile elements (which are not affected by core-mantle differentiation) in chondritic meteorites. Both methods have limitations based on the assumptions made about inner-earth, as well as statistical uncertainties in the models used to
195:
O, and CaO, and significantly lower concentrations of MgO. More importantly, both approaches show that the primitive mantle has much greater concentrations of refractory lithophile elements (e.g Al, Ba, Be, Ca, Hf, Nb, Sc, Sr, Ta, Th, Ti, U, Y, Zr, and
164:
that represent early Earth chemical composition and creating models using the analyzed chemical characteristics and assumptions describing inner-Earth dynamics. This approach is based on the assumption that early planetary bodies in the
159:
Although the chemical composition of the primitive mantle cannot be directly measured at its source, researchers have been able to estimate primitive mantle characteristics using a few methods. One methodology involves the analysis of
200:. The exact concentrations of these compounds and refractory lithophile elements depends on the estimation method used. Methods using peridotite analysis yield a much smaller primitive mantle weight percentage for SiO 178:
The two approaches detailed above yield weight percentages that follow the same general trends when compared to the depleted (or homogeneous) mantle: the primitive mantle has significantly higher concentrations of
95:
elements accumulated, from the surrounding undifferentiated primitive mantle. Further differentiation would take place later, creating the different chemical reservoirs of crust and mantle material, with
212:
than those estimated using direct chondritic meteorite analysis. The estimated concentrations of refractory lithophile elements obtained from the two methods vary as well, usually 0.1-5 ppm.
758: 253: 674:"Variable refractory lithophile element compositions of planetary building blocks: Insights from components of enstatite chondrites" 60: 24: 139:, geochemists assume there must be a relatively closed and very undifferentiated primitive reservoir somewhere in the 108: 84: 148: 76: 391:"Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust" 67:. The chemical composition of the primitive mantle contains characteristics of both the crust and the mantle. 221: 495:"Chemical composition of Earth's primitive mantle and its variance: 2. Implications for global geodynamics" 19: 166: 88: 241: 784: 672:
Yoshizaki, Takashi; Ash, Richard D.; Lipella, Marc D.; Yokoyama, Tetsuya; McDonough, William F. (2021).
673: 446:"Grain size variations in the Earth's mantle and the evolution of primordial chemical heterogeneities" 695: 618: 555: 506: 457: 402: 339: 290: 161: 140: 97: 135:
at hotspots is supposed to have been taken to the surface from the deepest regions of the mantle by
92: 719: 685: 587: 426: 371: 197: 83:
composition through impacts with differentiated planetesimals. During this accretionary phase,
754: 711: 654: 636: 579: 571: 524: 475: 418: 363: 355: 308: 249: 128: 64: 56: 746: 703: 644: 626: 563: 514: 465: 410: 406: 347: 298: 50: 279:"Chemical composition of Earth's primitive mantle and its variance: 1. Method and results" 544:"First-principles constraints on diffusion in lower-mantle minerals and a weak D′′ layer" 699: 622: 559: 510: 461: 343: 294: 28: 649: 606: 390: 778: 723: 414: 124: 591: 430: 375: 136: 104: 40: 745:, Lecture Notes in Earth Sciences, vol. 136, Tokyo: Springer, pp. 9–17, 750: 738: 707: 543: 327: 171: 715: 640: 575: 528: 479: 422: 359: 312: 631: 80: 658: 583: 367: 204:
and significantly larger primitive mantle weight percentages for MgO and Al
519: 494: 470: 445: 303: 278: 567: 351: 240:
Rubie, D. C.; Nimmo, F.; Melosh, H. J. (2015), Schubert, Gerald (ed.),
743:
Arc Volcano of Japan: Generation of Continental Crust from the Mantle
143:. One hypothesis to describe this assumption is the existence of the 32: 739:"Chemical Composition of Continental Crust and the Primitive Mantle" 690: 144: 75:
One accepted scientific hypothesis is that the Earth was formed by
542:
Ammann, M. W.; Brodholt, J. P.; Wookey, J.; Dobson, D. P. (2010).
132: 107:, resulting in two types of mantle reservoirs: those depleted in 115:
and those composed of "fresh" undifferentiated mantle material (
326:
Wood, Bernard J.; Walter, Michael J.; Wade, Jonathan (2006).
23:
Illustration depicting three proposed processes that drive
35:), thus separating the core from the primitive mantle. 328:"Accretion of the Earth and segregation of its core" 131:
often have a primitive composition, and because the
607:"Chemical composition of Earth, Venus, and Mercury" 611:Proceedings of the National Academy of Sciences 103:Today, differentiation still continues in the 737:Yanagi, Takeru (2011), Yanagi, Takeru (ed.), 8: 499:Journal of Geophysical Research: Solid Earth 450:Journal of Geophysical Research: Solid Earth 283:Journal of Geophysical Research: Solid Earth 493:Lyubetskaya, Tanya; Korenaga, Jun (2007). 277:Lyubetskaya, Tanya; Korenaga, Jun (2007). 689: 648: 630: 518: 469: 302: 605:Morgan, John W.; Anders, Edward (1980). 18: 444:Solomatov, V. S.; Reese, C. C. (2008). 246:Treatise on Geophysics (Second Edition) 232: 59:during the developmental stage between 242:"9.03 - Formation of the Earth's Core" 55:) is the chemical composition of the 7: 272: 270: 248:, Oxford: Elsevier, pp. 43–79, 395:Earth and Planetary Science Letters 14: 678:Geochimica et Cosmochimica Acta 16:Layer in a newly formed planet 1: 389:Hofmann, Albrecht W. (1988). 415:10.1016/0012-821X(88)90132-X 751:10.1007/978-4-431-53996-4_2 100:accumulating in the crust. 63:and the formation of early 61:core-mantle differentiation 25:core–mantle differentiation 801: 708:10.1016/j.gca.2021.05.057 85:planetary differentiation 31:, percolation, and iron 632:10.1073/pnas.77.12.6973 407:1988E&PSL..90..297H 222:Giant impact hypothesis 91:, where heavy metallic 36: 162:chondritic meteorites 121:primitive reservoirs) 113:depleted reservoirs), 98:incompatible elements 22: 520:10.1029/2005JB004224 471:10.1029/2007JB005319 304:10.1029/2005JB004223 198:rare earth elements) 155:Chemical composition 149:core-mantle boundary 700:2021GeCoA.308..173Y 623:1980PNAS...77.6973M 568:10.1038/nature09052 560:2010Natur.465..462A 511:2007JGRB..112.3212L 462:2008JGRB..113.7408S 352:10.1038/nature04763 344:2006Natur.441..825W 295:2007JGRB..112.3211L 175:quantify the data. 79:of material with a 47:(also known as the 37: 760:978-4-431-53996-4 617:(12): 6973–6977. 554:(7297): 462–465. 338:(7095): 825–833. 255:978-0-444-53803-1 65:continental crust 792: 770: 769: 768: 767: 734: 728: 727: 693: 669: 663: 662: 652: 634: 602: 596: 595: 539: 533: 532: 522: 490: 484: 483: 473: 441: 435: 434: 386: 380: 379: 323: 317: 316: 306: 274: 265: 264: 263: 262: 237: 45:primitive mantle 800: 799: 795: 794: 793: 791: 790: 789: 775: 774: 773: 765: 763: 761: 736: 735: 731: 671: 670: 666: 604: 603: 599: 541: 540: 536: 492: 491: 487: 443: 442: 438: 388: 387: 383: 325: 324: 320: 276: 275: 268: 260: 258: 256: 239: 238: 234: 230: 218: 211: 207: 203: 194: 190: 186: 182: 157: 73: 17: 12: 11: 5: 798: 796: 788: 787: 777: 776: 772: 771: 759: 729: 664: 597: 534: 485: 436: 401:(3): 297–314. 381: 318: 266: 254: 231: 229: 226: 225: 224: 217: 214: 209: 205: 201: 192: 188: 184: 180: 156: 153: 125:Volcanic rocks 87:separated the 72: 69: 57:Earth's mantle 15: 13: 10: 9: 6: 4: 3: 2: 797: 786: 783: 782: 780: 762: 756: 752: 748: 744: 740: 733: 730: 725: 721: 717: 713: 709: 705: 701: 697: 692: 687: 683: 679: 675: 668: 665: 660: 656: 651: 646: 642: 638: 633: 628: 624: 620: 616: 612: 608: 601: 598: 593: 589: 585: 581: 577: 573: 569: 565: 561: 557: 553: 549: 545: 538: 535: 530: 526: 521: 516: 512: 508: 504: 500: 496: 489: 486: 481: 477: 472: 467: 463: 459: 455: 451: 447: 440: 437: 432: 428: 424: 420: 416: 412: 408: 404: 400: 396: 392: 385: 382: 377: 373: 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 322: 319: 314: 310: 305: 300: 296: 292: 288: 284: 280: 273: 271: 267: 257: 251: 247: 243: 236: 233: 227: 223: 220: 219: 215: 213: 199: 176: 173: 168: 163: 154: 152: 150: 146: 142: 138: 137:mantle plumes 134: 130: 129:hotspot areas 126: 122: 118: 114: 110: 106: 101: 99: 94: 90: 86: 82: 78: 70: 68: 66: 62: 58: 54: 52: 46: 42: 34: 30: 26: 21: 785:Geochemistry 764:, retrieved 742: 732: 681: 677: 667: 614: 610: 600: 551: 547: 537: 502: 498: 488: 453: 449: 439: 398: 394: 384: 335: 331: 321: 286: 282: 259:, retrieved 245: 235: 177: 167:solar system 158: 141:lower mantle 120: 116: 112: 105:upper mantle 102: 89:Earth's core 74: 48: 44: 41:geochemistry 38: 684:: 173–187. 93:siderophile 71:Development 766:2021-11-09 691:2011.13134 261:2021-09-30 228:References 172:peridotite 111:elements ( 109:lithophile 81:chondritic 724:227209726 716:0016-7037 641:0027-8424 576:1476-4687 529:2156-2202 480:2156-2202 423:0012-821X 360:1476-4687 313:2156-2202 77:accretion 33:diapirism 779:Category 659:16592930 584:20505725 368:16778882 216:See also 145:D"-layer 117:enriched 51:silicate 696:Bibcode 619:Bibcode 592:4414617 556:Bibcode 507:Bibcode 458:Bibcode 431:3211879 403:Bibcode 376:8942975 340:Bibcode 291:Bibcode 147:at the 757:  722:  714:  657:  650:350422 647:  639:  590:  582:  574:  548:Nature 527:  505:(B3). 478:  456:(B7). 429:  421:  374:  366:  358:  332:Nature 311:  289:(B3). 252:  43:, the 720:S2CID 686:arXiv 588:S2CID 427:S2CID 372:S2CID 133:magma 127:from 53:Earth 49:bulk 29:dikes 755:ISBN 712:ISSN 655:PMID 637:ISSN 580:PMID 572:ISSN 525:ISSN 476:ISSN 419:ISSN 364:PMID 356:ISSN 309:ISSN 250:ISBN 191:, Na 747:doi 704:doi 682:308 645:PMC 627:doi 564:doi 552:465 515:doi 503:112 466:doi 454:113 411:doi 348:doi 336:441 299:doi 287:112 179:SiO 119:or 39:In 781:: 753:, 741:, 718:. 710:. 702:. 694:. 680:. 676:. 653:. 643:. 635:. 625:. 615:77 613:. 609:. 586:. 578:. 570:. 562:. 550:. 546:. 523:. 513:. 501:. 497:. 474:. 464:. 452:. 448:. 425:. 417:. 409:. 399:90 397:. 393:. 370:. 362:. 354:. 346:. 334:. 330:. 307:. 297:. 285:. 281:. 269:^ 244:, 183:Al 181:2, 151:. 123:. 749:: 726:. 706:: 698:: 688:: 661:. 629:: 621:: 594:. 566:: 558:: 531:. 517:: 509:: 482:. 468:: 460:: 433:. 413:: 405:: 378:. 350:: 342:: 315:. 301:: 293:: 210:3 208:O 206:2 202:2 193:2 189:3 187:O 185:2 27:(

Index


core–mantle differentiation
dikes
diapirism
geochemistry
silicate
Earth's mantle
core-mantle differentiation
continental crust
accretion
chondritic
planetary differentiation
Earth's core
siderophile
incompatible elements
upper mantle
lithophile
Volcanic rocks
hotspot areas
magma
mantle plumes
lower mantle
D"-layer
core-mantle boundary
chondritic meteorites
solar system
peridotite
rare earth elements)
Giant impact hypothesis
"9.03 - Formation of the Earth's Core"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑