Knowledge (XXG)

Priestley space

Source 📝

1404: 531: 501: 337: 307: 277: 153: 1445: 1409: 43: 1335: 1694: 1315:
The correspondence between Priestley spaces and pairwise Stone spaces is functorial and yields an isomorphism between the category
961: 1718: 1474:
Cignoli, R.; Lafalce, S.; Petrovich, A. (September 1991). "Remarks on Priestley duality for distributive lattices".
1678: 506: 476: 312: 282: 252: 128: 1574: 1109: 51: 1654: 1552:
Priestley, H. A. (1970). "Representation of distributive lattices by means of ordered Stone spaces".
1435: 1430: 1413: 1232: 1117: 39: 1087: 1324: 1194: 1610: 38:
who introduced and investigated them. Priestley spaces play a fundamental role in the study of
1713: 1690: 419: 95: 31: 1682: 1639: 1597: 1589: 1561: 1485: 965: 415: 35: 1476: 210: 1096:; that is, the topology generated by the subbasis consisting of compact open subsets of 1425: 1182: 984: 1644: 1627: 1707: 1440: 119: 88: 28: 1412:
is that each of these categories is dually equivalent to the category of bounded
1170: 634: 571:
is compact, there exists a finite intersection of these clopen neighborhoods of
20: 1593: 1601: 1166: 533:. By the Priestley separation axiom, there exists a clopen up-set or a clopen 156: 1165:
In fact, this correspondence between Priestley spaces and spectral spaces is
1575:"Ordered topological spaces and the representation of distributive lattices" 1399:{\displaystyle \mathbf {Spec} \cong \mathbf {Pries} \cong \mathbf {PStone} } 1565: 1686: 1611:"On H. Priestley's dual of the category of bounded distributive lattices" 833: 534: 1489: 54:
of Priestley spaces and the category of bounded distributive lattices.
1655:"Bitopological duality for distributive lattices and Heyting algebras" 640:
Some further useful properties of Priestley spaces are listed below.
159: 1653:
Bezhanishvili, G.; Bezhanishvili, N.; Gabelaia, D.; Kurz, A (2010).
975:
denote the category of Priestley spaces and Priestley morphisms.
587:. This finite intersection is the desired clopen neighborhood 1319:
of Priestley spaces and Priestley morphisms and the category
637:; that is, it is a compact Hausdorff zero-dimensional space. 34:
with special properties. Priestley spaces are named after
1677:. New Mathematical Monographs. Vol. 35. Cambridge: 1330:
Thus, one has the following isomorphisms of categories:
1673:
Dickmann, Max; Schwartz, Niels; Tressl, Marcus (2019).
510: 480: 316: 286: 256: 132: 1338: 509: 479: 315: 285: 255: 131: 549:. The intersection of these clopen neighborhoods of 1398: 525: 495: 331: 301: 271: 147: 457:. To see this, one proceeds as follows. For each 16:Ordered topological space with special properties 1017:denote the collection of all open down-sets of 1529:Cornish, (1975). Bezhanishvili et al. (2010). 1520:Cornish, (1975). Bezhanishvili et al. (2010). 1193:Priestley spaces are also closely related to 1005:denote the collection of all open up-sets of 526:{\displaystyle \scriptstyle y\,\not \leq \,x} 496:{\displaystyle \scriptstyle x\,\not \leq \,y} 332:{\displaystyle \scriptstyle x\,\not \leq \,y} 309:. Assuming, without loss of generality, that 302:{\displaystyle \scriptstyle y\,\not \leq \,x} 272:{\displaystyle \scriptstyle x\,\not \leq \,y} 148:{\displaystyle \scriptstyle x\,\not \leq \,y} 8: 1628:"Prime ideal structure in commutative rings" 103:, satisfying the following two conditions: 1662:Mathematical Structures in Computer Science 826:(d) Clopen up-sets and clopen down-sets of 811:is an intersection of clopen down-sets of 1643: 1376: 1356: 1339: 1337: 609:It follows that for each Priestley space 518: 514: 508: 488: 484: 478: 324: 320: 314: 294: 290: 284: 264: 260: 254: 140: 136: 130: 1446:Duality theory for distributive lattices 1410:duality theory for distributive lattices 983:Priestley spaces are closely related to 799:is an intersection of clopen up-sets of 1457: 7: 1408:One of the main consequences of the 1189:Connection with bitopological spaces 887:, then there exists a clopen up-set 857:(e) For each pair of closed subsets 1068:Conversely, given a spectral space 778:is a union of clopen down-sets of 195:. (This condition is known as the 14: 1645:10.1090/S0002-9947-1969-0251026-X 1392: 1389: 1386: 1383: 1380: 1377: 1369: 1366: 1363: 1360: 1357: 1349: 1346: 1343: 1340: 1257:is a pairwise Stone space, then 1041:is a Priestley space, then both 766:is a union of clopen up-sets of 339:, (ii) provides a clopen up-set 1297:is the specialization order of 979:Connection with spectral spaces 445:contains a clopen neighborhood 204:Properties of Priestley spaces 1: 1323:of pairwise Stone spaces and 414:Each Priestley space is also 393:are disjoint open subsets of 1538:Bezhanishvili et al. (2010). 1269:is a Priestley space, where 805:and each closed down-set of 42:. In particular, there is a 1511:Bezhanishvili et al. (2010) 1215:is a Priestley space, then 936:to another Priestley space 661:(a) For each closed subset 249:is a partial order, either 213:. Indeed, given two points 1735: 1679:Cambridge University Press 1150:is a spectral space, then 793:(c) Each closed up-set of 772:and each open down-set of 197:Priestley separation axiom 1573:Priestley, H. A. (1972). 68:ordered topological space 1594:10.1112/plms/s3-24.3.507 987:. For a Priestley space 760:(b) Each open up-set of 621:, the topological space 209:Each Priestley space is 1609:Cornish, W. H. (1975). 1181:of spectral spaces and 924:from a Priestley space 1632:Trans. Amer. Math. Soc 1582:Proc. London Math. Soc 1554:Bull. London Math. Soc 1400: 1162:is a Priestley space. 745:are closed subsets of 655:be a Priestley space. 527: 497: 333: 303: 273: 155:, then there exists a 149: 1687:10.1017/9781316543870 1626:Hochster, M. (1969). 1414:distributive lattices 1401: 1065:are spectral spaces. 528: 498: 433:of a Priestley space 334: 304: 274: 223:of a Priestley space 150: 40:distributive lattices 1566:10.1112/blms/2.2.186 1436:Distributive lattice 1431:Pairwise Stone space 1336: 1233:pairwise Stone space 1195:bitopological spaces 1118:specialization order 725:  :  689:  :  507: 477: 313: 283: 253: 129: 1719:Topological spaces 1602:10338.dmlcz/134149 1490:10.1007/BF00383451 1464:Priestley, (1970). 1396: 1325:bi-continuous maps 922:Priestley morphism 523: 522: 493: 492: 329: 328: 299: 298: 269: 268: 145: 144: 1696:978-1-107-14672-3 1235:. Conversely, if 1177:and the category 1011:. Similarly, let 739: 721: 703: 685: 464: 420:open neighborhood 358: 180: 48:Priestley duality 32:topological space 1726: 1700: 1669: 1659: 1649: 1647: 1622: 1605: 1579: 1569: 1539: 1536: 1530: 1527: 1521: 1518: 1512: 1509: 1503: 1502:Cornish, (1975). 1500: 1494: 1493: 1471: 1465: 1462: 1405: 1403: 1402: 1397: 1395: 1372: 1352: 1311: 1296: 1292: 1283: 1274: 1268: 1256: 1230: 1214: 1161: 1149: 1131: 1115: 1107: 1095: 1085: 1079: 1064: 1052: 1040: 1022: 1016: 1010: 1004: 998: 966:order-preserving 959: 947: 935: 913: 902: 892: 886: 874: 868: 862: 847: 831: 816: 810: 804: 798: 783: 777: 771: 765: 750: 744: 737: 719: 708: 701: 683: 672: 666: 654: 632: 620: 604: 598: 592: 586: 576: 570: 565:. Therefore, as 564: 554: 548: 542: 532: 530: 529: 524: 502: 500: 499: 494: 472: 462: 456: 450: 444: 432: 426: 418:; that is, each 416:zero-dimensional 410: 404: 398: 392: 378: 372: 362: 356: 350: 344: 338: 336: 335: 330: 308: 306: 305: 300: 278: 276: 275: 270: 248: 244: 234: 222: 194: 184: 178: 172: 166: 154: 152: 151: 146: 117: 102: 93: 87:equipped with a 86: 80: 36:Hilary Priestley 1734: 1733: 1729: 1728: 1727: 1725: 1724: 1723: 1704: 1703: 1697: 1675:Spectral Spaces 1672: 1657: 1652: 1625: 1608: 1577: 1572: 1551: 1548: 1543: 1542: 1537: 1533: 1528: 1524: 1519: 1515: 1510: 1506: 1501: 1497: 1473: 1472: 1468: 1463: 1459: 1454: 1422: 1334: 1333: 1309: 1298: 1294: 1291: 1285: 1282: 1276: 1275:is the join of 1270: 1258: 1254: 1247: 1236: 1216: 1204: 1191: 1151: 1139: 1121: 1113: 1097: 1091: 1081: 1069: 1054: 1042: 1030: 1018: 1012: 1006: 1000: 988: 985:spectral spaces 981: 949: 937: 925: 904: 894: 888: 876: 870: 864: 858: 837: 827: 812: 806: 800: 794: 779: 773: 767: 761: 746: 710: 674: 668: 662: 644: 622: 610: 600: 594: 588: 578: 572: 566: 556: 550: 544: 538: 505: 504: 475: 474: 458: 452: 446: 434: 428: 422: 406: 400: 394: 380: 374: 364: 352: 346: 340: 311: 310: 281: 280: 251: 250: 246: 236: 224: 214: 206: 186: 174: 168: 162: 127: 126: 107: 98: 91: 82: 70: 64:Priestley space 60: 50:") between the 25:Priestley space 17: 12: 11: 5: 1732: 1730: 1722: 1721: 1716: 1706: 1705: 1702: 1701: 1695: 1670: 1650: 1623: 1621:(27): 329–332. 1606: 1588:(3): 507–530. 1570: 1560:(2): 186–190. 1547: 1544: 1541: 1540: 1531: 1522: 1513: 1504: 1495: 1484:(3): 299–315. 1466: 1456: 1455: 1453: 1450: 1449: 1448: 1443: 1438: 1433: 1428: 1426:Spectral space 1421: 1418: 1394: 1391: 1388: 1385: 1382: 1379: 1375: 1371: 1368: 1365: 1362: 1359: 1355: 1351: 1348: 1345: 1342: 1307: 1289: 1280: 1252: 1245: 1190: 1187: 1169:and yields an 1088:patch topology 980: 977: 918: 917: 916: 915: 852: 851: 850: 849: 821: 820: 819: 818: 788: 787: 786: 785: 755: 754: 753: 752: 607: 606: 555:does not meet 521: 517: 513: 491: 487: 483: 412: 327: 323: 319: 297: 293: 289: 267: 263: 259: 205: 202: 201: 200: 143: 139: 135: 123: 59: 56: 15: 13: 10: 9: 6: 4: 3: 2: 1731: 1720: 1717: 1715: 1712: 1711: 1709: 1698: 1692: 1688: 1684: 1680: 1676: 1671: 1667: 1663: 1656: 1651: 1646: 1641: 1637: 1633: 1629: 1624: 1620: 1616: 1612: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1576: 1571: 1567: 1563: 1559: 1555: 1550: 1549: 1545: 1535: 1532: 1526: 1523: 1517: 1514: 1508: 1505: 1499: 1496: 1491: 1487: 1483: 1479: 1478: 1470: 1467: 1461: 1458: 1451: 1447: 1444: 1442: 1441:Stone duality 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1423: 1419: 1417: 1415: 1411: 1406: 1373: 1353: 1331: 1328: 1326: 1322: 1318: 1313: 1306: 1302: 1288: 1279: 1273: 1266: 1262: 1251: 1244: 1240: 1234: 1228: 1224: 1220: 1212: 1208: 1202: 1198: 1196: 1188: 1186: 1184: 1183:spectral maps 1180: 1176: 1172: 1168: 1163: 1159: 1155: 1147: 1143: 1137: 1133: 1129: 1125: 1119: 1111: 1105: 1101: 1094: 1089: 1084: 1077: 1073: 1066: 1062: 1058: 1050: 1046: 1038: 1034: 1028: 1024: 1021: 1015: 1009: 1003: 996: 992: 986: 978: 976: 974: 969: 967: 963: 957: 953: 945: 941: 933: 929: 923: 911: 907: 901: 897: 891: 884: 880: 873: 867: 861: 856: 855: 854: 853: 845: 841: 835: 830: 825: 824: 823: 822: 815: 809: 803: 797: 792: 791: 790: 789: 782: 776: 770: 764: 759: 758: 757: 756: 749: 742: 736: 732: 728: 724: 718: 714: 706: 700: 696: 692: 688: 682: 678: 671: 665: 660: 659: 658: 657: 656: 652: 648: 641: 638: 636: 630: 626: 618: 614: 603: 599:contained in 597: 591: 585: 581: 575: 569: 563: 559: 553: 547: 541: 536: 519: 515: 511: 489: 485: 481: 471: 467: 461: 455: 449: 442: 438: 431: 425: 421: 417: 413: 409: 403: 397: 391: 387: 383: 377: 373:. Therefore, 371: 367: 361: 355: 349: 343: 325: 321: 317: 295: 291: 287: 265: 261: 257: 243: 239: 232: 228: 221: 217: 212: 208: 207: 203: 198: 193: 189: 183: 177: 171: 165: 161: 158: 141: 137: 133: 124: 121: 115: 111: 106: 105: 104: 101: 97: 90: 89:partial order 85: 81:, i.e. a set 78: 74: 69: 65: 57: 55: 53: 49: 45: 41: 37: 33: 30: 26: 22: 1674: 1665: 1661: 1635: 1631: 1618: 1614: 1585: 1581: 1557: 1553: 1534: 1525: 1516: 1507: 1498: 1481: 1475: 1469: 1460: 1407: 1332: 1329: 1320: 1316: 1314: 1304: 1300: 1286: 1277: 1271: 1264: 1260: 1249: 1242: 1238: 1226: 1222: 1218: 1210: 1206: 1200: 1199: 1192: 1178: 1174: 1164: 1157: 1153: 1145: 1141: 1135: 1134: 1127: 1123: 1103: 1099: 1092: 1082: 1075: 1071: 1067: 1060: 1056: 1048: 1044: 1036: 1032: 1026: 1025: 1019: 1013: 1007: 1001: 994: 990: 982: 972: 970: 955: 951: 943: 939: 931: 927: 921: 919: 909: 905: 899: 895: 889: 882: 878: 871: 865: 859: 843: 839: 828: 813: 807: 801: 795: 780: 774: 768: 762: 747: 740: 734: 730: 726: 722: 716: 712: 704: 698: 694: 690: 686: 680: 676: 669: 663: 650: 646: 642: 639: 628: 624: 616: 612: 608: 601: 595: 589: 583: 579: 573: 567: 561: 557: 551: 545: 543:and missing 539: 469: 465: 459: 453: 447: 440: 436: 429: 423: 407: 401: 395: 389: 385: 381: 375: 369: 365: 359: 353: 347: 341: 241: 237: 230: 226: 219: 215: 196: 191: 187: 181: 175: 169: 163: 113: 109: 99: 83: 76: 72: 67: 63: 61: 47: 24: 18: 1615:Mat. Vesnik 1171:isomorphism 1116:denote the 1112:. Let also 1110:complements 1086:denote the 950:f  : 635:Stone space 537:containing 427:of a point 399:separating 21:mathematics 1708:Categories 1546:References 1167:functorial 1108:and their 962:continuous 893:such that 351:such that 245:, then as 173:such that 58:Definition 1638:: 43–60. 1374:≅ 1354:≅ 960:which is 948:is a map 733:for some 697:for some 473:, either 211:Hausdorff 1714:Topology 1420:See also 1201:Theorem: 1173:between 1136:Theorem: 1027:Theorem: 834:subbasis 577:missing 535:down-set 516:≰ 486:≰ 322:≰ 292:≰ 262:≰ 138:≰ 96:topology 52:category 832:form a 673:, both 120:compact 44:duality 29:ordered 1693:  1321:PStone 1080:, let 999:, let 160:up-set 157:clopen 94:and a 66:is an 27:is an 1658:(PDF) 1578:(PDF) 1477:Order 1452:Notes 1317:Pries 1231:is a 1175:Pries 973:Pries 946:′,≤′) 875:, if 633:is a 235:, if 1691:ISBN 1293:and 1284:and 1179:Spec 1053:and 971:Let 964:and 903:and 863:and 836:for 715:= { 709:and 643:Let 405:and 379:and 363:and 185:and 23:, a 1683:doi 1640:doi 1636:142 1598:hdl 1590:doi 1562:doi 1486:doi 1267:,≤) 1213:,≤) 1203:If 1160:,≤) 1138:If 1120:of 1090:on 1039:,≤) 1029:If 997:,≤) 934:,≤) 912:= ∅ 885:= ∅ 881:∩ ↓ 869:of 679:= { 667:of 653:,≤) 619:,≤) 593:of 503:or 451:of 443:,≤) 345:of 279:or 233:,≤) 167:of 125:If 118:is 79:,≤) 19:In 1710:: 1689:. 1681:. 1666:20 1664:. 1660:. 1634:. 1630:. 1619:12 1617:. 1613:. 1596:. 1586:24 1584:. 1580:. 1556:. 1480:. 1416:. 1327:. 1312:. 1197:. 1185:. 1132:. 1023:. 968:. 954:→ 942:′, 920:A 908:∩ 898:⊆ 743:} 729:≤ 711:↓ 707:} 693:≤ 675:↑ 582:− 560:− 468:− 388:− 384:= 368:∉ 240:≠ 199:.) 190:∉ 62:A 46:(" 1699:. 1685:: 1668:. 1648:. 1642:: 1604:. 1600:: 1592:: 1568:. 1564:: 1558:2 1492:. 1488:: 1482:8 1393:e 1390:n 1387:o 1384:t 1381:S 1378:P 1370:s 1367:e 1364:i 1361:r 1358:P 1350:c 1347:e 1344:p 1341:S 1310:) 1308:1 1305:τ 1303:, 1301:X 1299:( 1295:≤ 1290:2 1287:τ 1281:1 1278:τ 1272:τ 1265:τ 1263:, 1261:X 1259:( 1255:) 1253:2 1250:τ 1248:, 1246:1 1243:τ 1241:, 1239:X 1237:( 1229:) 1227:τ 1225:, 1223:τ 1221:, 1219:X 1217:( 1211:τ 1209:, 1207:X 1205:( 1158:τ 1156:, 1154:X 1152:( 1148:) 1146:τ 1144:, 1142:X 1140:( 1130:) 1128:τ 1126:, 1124:X 1122:( 1114:≤ 1106:) 1104:τ 1102:, 1100:X 1098:( 1093:X 1083:τ 1078:) 1076:τ 1074:, 1072:X 1070:( 1063:) 1061:τ 1059:, 1057:X 1055:( 1051:) 1049:τ 1047:, 1045:X 1043:( 1037:τ 1035:, 1033:X 1031:( 1020:X 1014:τ 1008:X 1002:τ 995:τ 993:, 991:X 989:( 958:′ 956:X 952:X 944:τ 940:X 938:( 932:τ 930:, 928:X 926:( 914:. 910:G 906:U 900:U 896:F 890:U 883:G 879:F 877:↑ 872:X 866:G 860:F 848:. 846:) 844:τ 842:, 840:X 838:( 829:X 817:. 814:X 808:X 802:X 796:X 784:. 781:X 775:X 769:X 763:X 751:. 748:X 741:F 738:∈ 735:y 731:y 727:x 723:X 720:∈ 717:x 713:F 705:F 702:∈ 699:y 695:x 691:y 687:X 684:∈ 681:x 677:F 670:X 664:F 651:τ 649:, 647:X 645:( 631:) 629:τ 627:, 625:X 623:( 617:τ 615:, 613:X 611:( 605:. 602:U 596:x 590:C 584:U 580:X 574:x 568:X 562:U 558:X 552:x 546:y 540:x 520:x 512:y 490:y 482:x 470:U 466:X 463:∈ 460:y 454:x 448:C 441:τ 439:, 437:X 435:( 430:x 424:U 411:. 408:y 402:x 396:X 390:U 386:X 382:V 376:U 370:U 366:y 360:U 357:∈ 354:x 348:X 342:U 326:y 318:x 296:x 288:y 266:y 258:x 247:≤ 242:y 238:x 231:τ 229:, 227:X 225:( 220:y 218:, 216:x 192:U 188:y 182:U 179:∈ 176:x 170:X 164:U 142:y 134:x 122:. 116:) 114:τ 112:, 110:X 108:( 100:τ 92:≤ 84:X 77:τ 75:, 73:X 71:(

Index

mathematics
ordered
topological space
Hilary Priestley
distributive lattices
duality
category
partial order
topology
compact
clopen
up-set
Hausdorff
zero-dimensional
open neighborhood
down-set
Stone space
subbasis
continuous
order-preserving
spectral spaces
patch topology
complements
specialization order
functorial
isomorphism
spectral maps
bitopological spaces
pairwise Stone space
bi-continuous maps

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.