Knowledge

Euler's theorem

Source đź“ť

2113: 2085: 1776:
has been translated from Gauss's Ciceronian Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.
1494: 614: 1653: : 74–104. Euler's theorem appears as "Theorema 11" on page 102. This paper was first presented to the Berlin Academy on June 8, 1758 and to the St. Petersburg Academy on October 15, 1759. In this paper, Euler's totient function, 1140: 1315: 474: 1566: 219: 801: 857: 469: 1712: 385: 103: 420: 1680: 726: 240:
is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where
151: 342: 746: 697: 677: 657: 637: 315: 285: 265: 123: 2070: 1242: 904: 31: 1935: 1980: 1029: 1489:{\displaystyle \prod _{i=1}^{\varphi (n)}x_{i}\equiv \prod _{i=1}^{\varphi (n)}ax_{i}=a^{\varphi (n)}\prod _{i=1}^{\varphi (n)}x_{i}{\pmod {n}},} 1995: 1839: 1709: 2020: 926: 2030: 2138: 1861: 1813: 1795: 609:{\displaystyle 7^{222}\equiv 7^{4\times 55+2}\equiv (7^{4})^{55}\times 7^{2}\equiv 1^{55}\times 7^{2}\equiv 49\equiv 9{\pmod {10}}} 1853: 2040: 2065: 2010: 1975: 17: 1806:
Untersuchungen uber hohere Arithmetik (Disquisitiones Arithemeticae & other papers on number theory) (Second edition)
1510: 163: 1928: 1985: 1965: 1955: 2133: 1772: 2025: 1990: 154: 755: 2103: 229: 1970: 806: 1960: 425: 2000: 2143: 2089: 1921: 1831: 2060: 1181: 347: 1294:), are identical (as sets—they may be listed in different orders), so the product of all the numbers in 880: 2112: 1757: 1582: 911: 72: 390: 2015: 1787: 1587: 892: 291: 1609: 2117: 1656: 864: 702: 125: 2005: 1887: 1857: 1835: 1809: 1791: 1577: 136: 1642: 320: 233: 1890: 1716: 2045: 1944: 1702: 1624: 731: 682: 662: 642: 622: 300: 270: 250: 225: 108: 2127: 2055: 1824: 38: 247:
The converse of Euler's theorem is also true: if the above congruence is true, then
2050: 930: 876: 236:
without proof), which is the restriction of Euler's theorem to the case where
1708:
For a review of Euler's work over the years leading to Euler's theorem, see:
1904: 1895: 1135:{\displaystyle a^{\varphi (n)}=a^{kM}=(a^{k})^{M}\equiv 1^{M}=1{\pmod {n}}.} 30:
This article is about Euler's theorem in number theory. For other uses, see
1782:
Gauss, Carl Friedrich; Clarke, Arthur A. (translated into English) (1986),
1623:
For further details on this paper, including an English translation, see:
868: 949: 66: 871:
communications. In this cryptosystem, Euler's theorem is used with
1804:
Gauss, Carl Friedrich; Maser, H. (translated into German) (1965),
1610:"Theorematum quorundam ad numeros primos spectantium demonstratio" 1199:. The proof hinges on the fundamental fact that multiplication by 1913: 1850:
A Classical Introduction to Modern Number Theory (Second edition)
317:. For example, consider finding the ones place decimal digit of 1917: 1690:; that is, the number of natural numbers that are smaller than 879:, and the security of the system is based on the difficulty of 1710:
Ed Sandifer (2005) "Euler's proof of Fermat's little theorem"
1608:
Leonhard Euler (presented: August 2, 1736; published: 1741)
297:
The theorem may be used to easily reduce large powers modulo
18:
Proof of Euler-Fermat theorem using Lagrange's theorem
1908: 891:
1. Euler's theorem can be proven using concepts from the
32:
List of things named after Leonhard Euler § Theorems
1826:
An Introduction to the Theory of Numbers (Fifth edition)
1784:
Disquisitiones Arithemeticae (Second, corrected edition)
1612:(A proof of certain theorems regarding prime numbers), 1682:, is not named but referred to as "numerus partium ad 978:
form a subgroup of the group of residue classes, with
2101: 1659: 1647:
Novi Commentarii academiae scientiarum Petropolitanae
1645:(Proof of a new method in the theory of arithmetic), 1513: 1318: 1241:. (This law of cancellation is proved in the article 1032: 809: 758: 734: 705: 685: 665: 645: 625: 477: 428: 393: 350: 323: 303: 273: 253: 166: 139: 111: 75: 933:
divides the order of the entire group, in this case
1561:{\displaystyle a^{\varphi (n)}\equiv 1{\pmod {n}}.} 960:is in one of these residue classes, and its powers 903:form a group under multiplication (see the article 214:{\displaystyle a^{\varphi (n)}\equiv 1{\pmod {n}}.} 1823: 1674: 1560: 1488: 1134: 851: 795: 740: 720: 691: 671: 651: 631: 608: 463: 414: 379: 336: 309: 279: 259: 213: 145: 117: 97: 1643:"Theoremata arithmetica nova methodo demonstrata" 1614:Commentarii academiae scientiarum Petropolitanae 290:The theorem is further generalized by some of 1496:and using the cancellation law to cancel each 796:{\displaystyle x\equiv y{\pmod {\varphi (n)}}} 1929: 8: 1287:, considered as sets of congruence classes ( 852:{\displaystyle a^{x}\equiv a^{y}{\pmod {n}}} 929:states that the order of any subgroup of a 1936: 1922: 1914: 1729:Ireland & Rosen, corr. 1 to prop 3.3.2 1848:Ireland, Kenneth; Rosen, Michael (1990), 1658: 1539: 1518: 1512: 1467: 1461: 1442: 1431: 1412: 1399: 1377: 1366: 1353: 1334: 1323: 1317: 1113: 1101: 1088: 1078: 1059: 1037: 1031: 833: 827: 814: 808: 768: 757: 733: 704: 684: 664: 644: 624: 590: 572: 559: 546: 533: 523: 495: 482: 476: 464:{\displaystyle 7^{4}\equiv 1{\pmod {10}}} 445: 433: 427: 392: 387:. The integers 7 and 10 are coprime, and 361: 355: 349: 328: 322: 302: 272: 252: 192: 171: 165: 138: 110: 80: 74: 1701:For further details on this paper, see: 1686:primarum" (the number of parts prime to 1243:Multiplicative group of integers modulo 905:Multiplicative group of integers modulo 2108: 1598: 1305:) to the product of all the numbers in 699:are coprime), one needs to work modulo 1145:2. There is also a direct proof: Let 619:In general, when reducing a power of 7: 1822:Hardy, G. H.; Wright, E. M. (1980), 1547: 1475: 1121: 841: 776: 598: 453: 380:{\displaystyle 7^{222}{\pmod {10}}} 369: 200: 1996:Euler's continued fraction formula 25: 2021:Euler's pump and turbine equation 27:Theorem on modular exponentiation 2111: 2084: 2083: 2041:Euler equations (fluid dynamics) 2031:Euler's sum of powers conjecture 1540: 1468: 1114: 834: 769: 591: 446: 362: 193: 98:{\displaystyle a^{\varphi (n)}} 1981:Euler–Poisson–Darboux equation 1669: 1663: 1551: 1541: 1528: 1522: 1479: 1469: 1452: 1446: 1422: 1416: 1387: 1381: 1344: 1338: 1125: 1115: 1085: 1071: 1047: 1041: 895:: The residue classes modulo 863:Euler's theorem underlies the 845: 835: 789: 786: 780: 770: 715: 709: 602: 592: 530: 516: 457: 447: 415:{\displaystyle \varphi (10)=4} 403: 397: 373: 363: 204: 194: 181: 175: 90: 84: 1: 875:being a product of two large 2011:Euler's four-square identity 422:. So Euler's theorem yields 2066:Euler–Bernoulli beam theory 1773:Disquisitiones Arithmeticae 1738:Hardy & Wright, thm. 72 1675:{\displaystyle \varphi (n)} 1641:L. Euler (published: 1763) 1004:, i.e. there is an integer 721:{\displaystyle \varphi (n)} 2160: 1195:be any integer coprime to 989:. Lagrange's theorem says 867:, which is widely used in 29: 2139:Theorems in number theory 2079: 1976:Euler–Mascheroni constant 1951: 1891:"Euler's Totient Theorem" 2026:Euler's rotation theorem 1872:Elementary Number Theory 1694:and relatively prime to 155:Euler's totient function 146:{\displaystyle \varphi } 69:positive integers, then 1986:Euler–Rodrigues formula 1966:Euler–Maclaurin formula 1956:Euler–Lagrange equation 1870:Landau, Edmund (1966), 1832:Oxford University Press 337:{\displaystyle 7^{222}} 230:Fermat's little theorem 51:Euler's totient theorem 2061:Euler number (physics) 1991:Euler–Tricomi equation 1676: 1562: 1503:gives Euler's theorem: 1490: 1456: 1391: 1348: 1182:reduced residue system 1136: 853: 797: 742: 722: 693: 673: 653: 633: 610: 465: 416: 381: 338: 311: 281: 261: 215: 147: 119: 99: 2001:Euler's critical load 1971:Euler–Maruyama method 1808:, New York: Chelsea, 1677: 1563: 1491: 1427: 1362: 1319: 1248:.) That is, the sets 1137: 1023:. This then implies, 854: 798: 743: 723: 694: 674: 654: 634: 611: 466: 417: 382: 339: 312: 292:Carmichael's theorems 282: 262: 228:published a proof of 216: 148: 120: 100: 1961:Euler–Lotka equation 1905:Euler-Fermat Theorem 1657: 1511: 1316: 1210:: in other words if 1030: 899:that are coprime to 807: 756: 732: 703: 683: 663: 643: 623: 475: 426: 391: 348: 321: 301: 271: 251: 164: 137: 109: 73: 47:Fermat–Euler theorem 1874:, New York: Chelsea 728:in the exponent of 45:(also known as the 2134:Modular arithmetic 1888:Weisstein, Eric W. 1715:2006-08-28 at the 1672: 1558: 1486: 1132: 927:Lagrange's theorem 910:for details). The 849: 793: 738: 718: 689: 669: 649: 629: 606: 461: 412: 377: 334: 307: 277: 257: 211: 143: 115: 95: 53:) states that, if 2099: 2098: 1841:978-0-19-853171-5 1703:The Euler Archive 1625:The Euler Archive 1583:Euler's criterion 1578:Carmichael number 914:of that group is 883:such an integer. 741:{\displaystyle a} 692:{\displaystyle n} 672:{\displaystyle a} 652:{\displaystyle n} 632:{\displaystyle a} 310:{\displaystyle n} 287:must be coprime. 280:{\displaystyle n} 260:{\displaystyle a} 118:{\displaystyle 1} 16:(Redirected from 2151: 2116: 2115: 2107: 2087: 2086: 2016:Euler's identity 1938: 1931: 1924: 1915: 1901: 1900: 1875: 1866: 1844: 1829: 1818: 1800: 1760: 1754: 1748: 1745: 1739: 1736: 1730: 1727: 1721: 1681: 1679: 1678: 1673: 1636: 1630: 1620: : 141–146. 1603: 1588:Wilson's theorem 1567: 1565: 1564: 1559: 1554: 1532: 1531: 1502: 1495: 1493: 1492: 1487: 1482: 1466: 1465: 1455: 1441: 1426: 1425: 1404: 1403: 1390: 1376: 1358: 1357: 1347: 1333: 1308: 1304: 1297: 1293: 1286: 1251: 1240: 1230: 1209: 1202: 1198: 1194: 1190: 1179: 1141: 1139: 1138: 1133: 1128: 1106: 1105: 1093: 1092: 1083: 1082: 1067: 1066: 1051: 1050: 1022: 1007: 1003: 992: 988: 977: 973: 959: 955: 947: 943: 924: 902: 898: 893:theory of groups 874: 865:RSA cryptosystem 858: 856: 855: 850: 848: 832: 831: 819: 818: 802: 800: 799: 794: 792: 747: 745: 744: 739: 727: 725: 724: 719: 698: 696: 695: 690: 678: 676: 675: 670: 658: 656: 655: 650: 638: 636: 635: 630: 615: 613: 612: 607: 605: 577: 576: 564: 563: 551: 550: 538: 537: 528: 527: 512: 511: 487: 486: 470: 468: 467: 462: 460: 438: 437: 421: 419: 418: 413: 386: 384: 383: 378: 376: 360: 359: 343: 341: 340: 335: 333: 332: 316: 314: 313: 308: 286: 284: 283: 278: 266: 264: 263: 258: 243: 239: 220: 218: 217: 212: 207: 185: 184: 152: 150: 149: 144: 132: 124: 122: 121: 116: 105:is congruent to 104: 102: 101: 96: 94: 93: 64: 58: 21: 2159: 2158: 2154: 2153: 2152: 2150: 2149: 2148: 2124: 2123: 2122: 2110: 2102: 2100: 2095: 2075: 2036:Euler's theorem 2006:Euler's formula 1947: 1942: 1886: 1885: 1882: 1869: 1864: 1847: 1842: 1821: 1816: 1803: 1798: 1781: 1768: 1763: 1755: 1751: 1747:Landau, thm. 75 1746: 1742: 1737: 1733: 1728: 1724: 1717:Wayback Machine 1655: 1654: 1637: 1633: 1604: 1600: 1596: 1574: 1514: 1509: 1508: 1501: 1497: 1457: 1408: 1395: 1349: 1314: 1313: 1306: 1299: 1295: 1288: 1284: 1270: 1263: 1253: 1249: 1232: 1223: 1216: 1211: 1208: 1204: 1200: 1196: 1192: 1185: 1177: 1163: 1156: 1146: 1097: 1084: 1074: 1055: 1033: 1028: 1027: 1009: 1005: 994: 990: 983:≡ 1 (mod 979: 975: 961: 957: 953: 945: 934: 915: 900: 896: 889: 872: 823: 810: 805: 804: 754: 753: 730: 729: 701: 700: 681: 680: 661: 660: 641: 640: 621: 620: 568: 555: 542: 529: 519: 491: 478: 473: 472: 429: 424: 423: 389: 388: 351: 346: 345: 324: 319: 318: 299: 298: 269: 268: 249: 248: 241: 237: 167: 162: 161: 135: 134: 128: 107: 106: 76: 71: 70: 60: 54: 43:Euler's theorem 35: 28: 23: 22: 15: 12: 11: 5: 2157: 2155: 2147: 2146: 2144:Leonhard Euler 2141: 2136: 2126: 2125: 2121: 2120: 2097: 2096: 2094: 2093: 2080: 2077: 2076: 2074: 2073: 2068: 2063: 2058: 2053: 2048: 2046:Euler function 2043: 2038: 2033: 2028: 2023: 2018: 2013: 2008: 2003: 1998: 1993: 1988: 1983: 1978: 1973: 1968: 1963: 1958: 1952: 1949: 1948: 1945:Leonhard Euler 1943: 1941: 1940: 1933: 1926: 1918: 1912: 1911: 1902: 1881: 1880:External links 1878: 1877: 1876: 1867: 1862: 1845: 1840: 1819: 1814: 1801: 1796: 1767: 1764: 1762: 1761: 1758:BĂ©zout's lemma 1749: 1740: 1731: 1722: 1720: 1719: 1706: 1699: 1671: 1668: 1665: 1662: 1631: 1629: 1628: 1621: 1597: 1595: 1592: 1591: 1590: 1585: 1580: 1573: 1570: 1569: 1568: 1557: 1553: 1550: 1546: 1543: 1538: 1535: 1530: 1527: 1524: 1521: 1517: 1505: 1504: 1499: 1485: 1481: 1478: 1474: 1471: 1464: 1460: 1454: 1451: 1448: 1445: 1440: 1437: 1434: 1430: 1424: 1421: 1418: 1415: 1411: 1407: 1402: 1398: 1394: 1389: 1386: 1383: 1380: 1375: 1372: 1369: 1365: 1361: 1356: 1352: 1346: 1343: 1340: 1337: 1332: 1329: 1326: 1322: 1298:is congruent ( 1275: 1268: 1261: 1221: 1214: 1206: 1168: 1161: 1154: 1143: 1142: 1131: 1127: 1124: 1120: 1117: 1112: 1109: 1104: 1100: 1096: 1091: 1087: 1081: 1077: 1073: 1070: 1065: 1062: 1058: 1054: 1049: 1046: 1043: 1040: 1036: 948:is any number 888: 885: 861: 860: 847: 844: 840: 837: 830: 826: 822: 817: 813: 791: 788: 785: 782: 779: 775: 772: 767: 764: 761: 737: 717: 714: 711: 708: 688: 668: 648: 628: 604: 601: 597: 594: 589: 586: 583: 580: 575: 571: 567: 562: 558: 554: 549: 545: 541: 536: 532: 526: 522: 518: 515: 510: 507: 504: 501: 498: 494: 490: 485: 481: 459: 456: 452: 449: 444: 441: 436: 432: 411: 408: 405: 402: 399: 396: 375: 372: 368: 365: 358: 354: 331: 327: 306: 276: 256: 244:is not prime. 226:Leonhard Euler 222: 221: 210: 206: 203: 199: 196: 191: 188: 183: 180: 177: 174: 170: 142: 114: 92: 89: 86: 83: 79: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2156: 2145: 2142: 2140: 2137: 2135: 2132: 2131: 2129: 2119: 2114: 2109: 2105: 2092: 2091: 2082: 2081: 2078: 2072: 2069: 2067: 2064: 2062: 2059: 2057: 2056:Euler numbers 2054: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2034: 2032: 2029: 2027: 2024: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1953: 1950: 1946: 1939: 1934: 1932: 1927: 1925: 1920: 1919: 1916: 1910: 1906: 1903: 1898: 1897: 1892: 1889: 1884: 1883: 1879: 1873: 1868: 1865: 1863:0-387-97329-X 1859: 1855: 1851: 1846: 1843: 1837: 1833: 1828: 1827: 1820: 1817: 1815:0-8284-0191-8 1811: 1807: 1802: 1799: 1797:0-387-96254-9 1793: 1789: 1785: 1780: 1779: 1778: 1775: 1774: 1765: 1759: 1753: 1750: 1744: 1741: 1735: 1732: 1726: 1723: 1718: 1714: 1711: 1707: 1704: 1700: 1697: 1693: 1689: 1685: 1666: 1660: 1652: 1648: 1644: 1640: 1639: 1635: 1632: 1626: 1622: 1619: 1615: 1611: 1607: 1606: 1602: 1599: 1593: 1589: 1586: 1584: 1581: 1579: 1576: 1575: 1571: 1555: 1548: 1544: 1536: 1533: 1525: 1519: 1515: 1507: 1506: 1483: 1476: 1472: 1462: 1458: 1449: 1443: 1438: 1435: 1432: 1428: 1419: 1413: 1409: 1405: 1400: 1396: 1392: 1384: 1378: 1373: 1370: 1367: 1363: 1359: 1354: 1350: 1341: 1335: 1330: 1327: 1324: 1320: 1312: 1311: 1310: 1303: 1292: 1282: 1278: 1274: 1267: 1260: 1256: 1247: 1246: 1239: 1235: 1228: 1224: 1217: 1203:permutes the 1189: 1183: 1175: 1171: 1167: 1160: 1153: 1149: 1129: 1122: 1118: 1110: 1107: 1102: 1098: 1094: 1089: 1079: 1075: 1068: 1063: 1060: 1056: 1052: 1044: 1038: 1034: 1026: 1025: 1024: 1020: 1016: 1012: 1001: 997: 986: 982: 972: 968: 964: 951: 941: 937: 932: 928: 922: 918: 913: 909: 908: 894: 886: 884: 882: 878: 877:prime numbers 870: 866: 842: 838: 828: 824: 820: 815: 811: 783: 777: 773: 765: 762: 759: 751: 750: 749: 735: 712: 706: 686: 666: 646: 626: 617: 599: 595: 587: 584: 581: 578: 573: 569: 565: 560: 556: 552: 547: 543: 539: 534: 524: 520: 513: 508: 505: 502: 499: 496: 492: 488: 483: 479: 471:, and we get 454: 450: 442: 439: 434: 430: 409: 406: 400: 394: 370: 366: 356: 352: 329: 325: 304: 295: 293: 288: 274: 254: 245: 235: 231: 227: 208: 201: 197: 189: 186: 178: 172: 168: 160: 159: 158: 156: 140: 131: 127: 112: 87: 81: 77: 68: 63: 57: 52: 48: 44: 40: 39:number theory 33: 19: 2088: 2051:Euler method 2035: 1894: 1871: 1852:, New York: 1849: 1825: 1805: 1786:, New York: 1783: 1771: 1769: 1752: 1743: 1734: 1725: 1695: 1691: 1687: 1683: 1650: 1646: 1634: 1617: 1613: 1601: 1301: 1290: 1280: 1276: 1272: 1265: 1258: 1254: 1244: 1237: 1233: 1226: 1219: 1212: 1187: 1173: 1169: 1165: 1158: 1151: 1147: 1144: 1018: 1014: 1010: 999: 995: 993:must divide 984: 980: 970: 966: 962: 939: 935: 931:finite group 920: 916: 906: 890: 862: 618: 296: 289: 246: 223: 129: 61: 55: 50: 46: 42: 36: 2118:Mathematics 232:(stated by 2128:Categories 1909:PlanetMath 1830:, Oxford: 1766:References 1191:) and let 1008:such that 157:; that is 2071:Namesakes 1896:MathWorld 1661:φ 1534:≡ 1520:φ 1444:φ 1429:∏ 1414:φ 1379:φ 1364:∏ 1360:≡ 1336:φ 1321:∏ 1095:≡ 1039:φ 881:factoring 821:≡ 778:φ 763:≡ 707:φ 585:≡ 579:≡ 566:× 553:≡ 540:× 514:≡ 500:× 489:≡ 440:≡ 395:φ 224:In 1736, 187:≡ 173:φ 141:φ 82:φ 2090:Category 1854:Springer 1788:Springer 1713:Archived 1572:See also 1271:, ... , 1218:≡ 1164:, ... , 969:, ... , 869:Internet 153:denotes 133:, where 974:modulo 950:coprime 803:, then 659:(where 639:modulo 344:, i.e. 67:coprime 2104:Portal 1860:  1838:  1812:  1794:  887:Proofs 234:Fermat 126:modulo 1638:See: 1605:See: 1594:Notes 1231:then 1225:(mod 1180:be a 956:then 944:. If 912:order 1858:ISBN 1836:ISBN 1810:ISBN 1792:ISBN 1770:The 1756:See 1300:mod 1289:mod 1252:and 1186:mod 679:and 267:and 65:are 59:and 1907:at 1545:mod 1473:mod 1257:= { 1150:= { 1119:mod 952:to 839:mod 774:mod 752:if 596:mod 484:222 451:mod 367:mod 357:222 330:222 198:mod 49:or 37:In 2130:: 1893:. 1856:, 1834:, 1790:, 1698:). 1649:, 1616:, 1309:: 1307:aR 1273:ax 1266:ax 1264:, 1259:ax 1255:aR 1236:= 1220:ax 1213:ax 1157:, 1013:= 1011:kM 965:, 925:. 748:: 616:. 600:10 582:49 561:55 535:55 503:55 455:10 401:10 371:10 294:. 41:, 2106:: 1937:e 1930:t 1923:v 1899:. 1705:. 1696:N 1692:N 1688:N 1684:N 1670:) 1667:n 1664:( 1651:8 1627:. 1618:8 1556:. 1552:) 1549:n 1542:( 1537:1 1529:) 1526:n 1523:( 1516:a 1500:i 1498:x 1484:, 1480:) 1477:n 1470:( 1463:i 1459:x 1453:) 1450:n 1447:( 1439:1 1436:= 1433:i 1423:) 1420:n 1417:( 1410:a 1406:= 1401:i 1397:x 1393:a 1388:) 1385:n 1382:( 1374:1 1371:= 1368:i 1355:i 1351:x 1345:) 1342:n 1339:( 1331:1 1328:= 1325:i 1302:n 1296:R 1291:n 1285:} 1283:) 1281:n 1279:( 1277:φ 1269:2 1262:1 1250:R 1245:n 1238:k 1234:j 1229:) 1227:n 1222:k 1215:j 1207:i 1205:x 1201:a 1197:n 1193:a 1188:n 1184:( 1178:} 1176:) 1174:n 1172:( 1170:φ 1166:x 1162:2 1159:x 1155:1 1152:x 1148:R 1130:. 1126:) 1123:n 1116:( 1111:1 1108:= 1103:M 1099:1 1090:M 1086:) 1080:k 1076:a 1072:( 1069:= 1064:M 1061:k 1057:a 1053:= 1048:) 1045:n 1042:( 1035:a 1021:) 1019:n 1017:( 1015:φ 1006:M 1002:) 1000:n 998:( 996:φ 991:k 987:) 985:n 981:a 976:n 971:a 967:a 963:a 958:a 954:n 946:a 942:) 940:n 938:( 936:φ 923:) 921:n 919:( 917:φ 907:n 901:n 897:n 873:n 859:. 846:) 843:n 836:( 829:y 825:a 816:x 812:a 790:) 787:) 784:n 781:( 771:( 766:y 760:x 736:a 716:) 713:n 710:( 687:n 667:a 647:n 627:a 603:) 593:( 588:9 574:2 570:7 557:1 548:2 544:7 531:) 525:4 521:7 517:( 509:2 506:+ 497:4 493:7 480:7 458:) 448:( 443:1 435:4 431:7 410:4 407:= 404:) 398:( 374:) 364:( 353:7 326:7 305:n 275:n 255:a 242:n 238:n 209:. 205:) 202:n 195:( 190:1 182:) 179:n 176:( 169:a 130:n 113:1 91:) 88:n 85:( 78:a 62:a 56:n 34:. 20:)

Index

Proof of Euler-Fermat theorem using Lagrange's theorem
List of things named after Leonhard Euler § Theorems
number theory
coprime
modulo
Euler's totient function
Leonhard Euler
Fermat's little theorem
Fermat
Carmichael's theorems
RSA cryptosystem
Internet
prime numbers
factoring
theory of groups
Multiplicative group of integers modulo n
order
Lagrange's theorem
finite group
coprime
reduced residue system
Multiplicative group of integers modulo n
Carmichael number
Euler's criterion
Wilson's theorem
"Theorematum quorundam ad numeros primos spectantium demonstratio"
The Euler Archive
"Theoremata arithmetica nova methodo demonstrata"
The Euler Archive
Ed Sandifer (2005) "Euler's proof of Fermat's little theorem"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑