Knowledge (XXG)

Projections onto convex sets

Source 📝

441: 135: 1361: 102:. The case when the sets are affine spaces is special, since the iterates not only converge to a point in the intersection (assuming the intersection is non-empty) but to the orthogonal projection of the point onto the intersection. For general closed convex sets, the limit point need not be the projection. Classical work on the case of two closed convex sets shows that the 22: 1002: 1356:{\displaystyle (x_{k+1},y_{k+1})={\mathcal {P}}_{F}({\mathcal {P}}_{E}((x_{k},y_{k})))={\mathcal {P}}_{F}(({\mathcal {P}}_{C}x_{k},{\mathcal {P}}_{D}y_{k}))={\frac {1}{2}}({\mathcal {P}}_{C}(x_{k})+{\mathcal {P}}_{D}(y_{k}),({\mathcal {P}}_{C}(x_{k})+{\mathcal {P}}_{D}(y_{k})).} 1637: 580: 206: 392: 822: 716: 666: 266: 118:
of the original point. These questions are largely known for simple cases, but a topic of active research for the extensions. There are also variants of the algorithm, such as
1416: 1496: 1456: 994: 1522: 906: 877: 851: 938: 296: 1729:
J. von Neumann. Functional Operators, volume II. Princeton University Press, Princeton, NJ, 1950. Reprint of mimeographed lecture notes first distributed in 1933.
585:
It has long been known to converge globally. Furthermore, the method is easy to generalize to more than two sets; some convergence results for this case are in.
1527: 470: 148: 304: 724: 126:
section for an overview of the variants, extensions and applications of the POCS method; a good historical background can be found in section III of.
1887:
A. Auslender. Methodes Numeriques pour la Resolution des Problems d’Optimisation avec Constraintes. PhD thesis, Faculte des Sciences, Grenoble, 1969
110:, or that give faster convergence rates. Analysis of POCS and related methods attempt to show that the algorithm converges (and if so, find the 1803: 106:
of the iterates is linear. There are now extensions that consider cases when there are more than two sets, or when the sets are not
62: 44: 421: 119: 677: 1766:
Bauschke, H.H.; Borwein, J.M. (1993). "On the convergence of von Neumann's alternating projection algorithm for two sets".
1739:
Gubin, L.G.; Polyak, B.T.; Raik, E.V. (1967). "The method of projections for finding the common point of convex sets".
1897:
Lewis, A. S.; Luke, D. R.; Malick, J. (2009). "Local convergence for alternating and averaged nonconvex projections".
115: 1841: 40: 602: 398: 1954: 440: 94:
sets. It is a very simple algorithm and has been rediscovered many times. The simplest case, when the sets are
1812: 1665: 1656:
Bauschke, H.H.; Borwein, J.M. (1996). "On projection algorithms for solving convex feasibility problems".
134: 32: 240: 1369: 1817: 1670: 111: 103: 1906: 1783: 1711: 1461: 1421: 947: 414: 1501: 885: 856: 830: 1916: 1856: 1822: 1775: 1748: 1703: 1675: 99: 1632:{\displaystyle x_{k+1}={\frac {1}{2}}({\mathcal {P}}_{C}(x_{k})+{\mathcal {P}}_{D}(x_{k}))} 911: 575:{\displaystyle x_{k+1}={\frac {1}{2}}({\mathcal {P}}_{C}(x_{k})+{\mathcal {P}}_{D}(x_{k}))} 274: 201:{\displaystyle {\text{find}}\;x\in \mathbb {R} ^{n}\quad {\text{such that}}\;x\in C\cap D} 672: 1948: 1787: 1752: 95: 1801:
Lewis, Adrian S.; Malick, Jérôme (2008). "Alternating Projections on Manifolds".
387:{\displaystyle x_{k+1}={\mathcal {P}}_{C}\left({\mathcal {P}}_{D}(x_{k})\right).} 817:{\displaystyle F=\{(x,y):x\in \mathbb {R} ^{n},\,y\in \mathbb {R} ^{n},\;x=y\}.} 1920: 1679: 223: 220: 107: 91: 88: 1938: 1826: 1864: 410: 397:
The simplicity of the algorithm explains some of its popularity. If the
1779: 1715: 229:
To use the POCS algorithm, one must know how to project onto the sets
1860: 1694:
Neumann, John Von (1949). "On rings of operators. Reduction theory".
1707: 908:, use the alternating projection method. The projection of a vector 1911: 87:
method, is a method to find a point in the intersection of two
1941:
by René Escalante and Marcos Raydan (2011), published by SIAM.
424:, the solution need not be a projection onto the intersection 15: 1599: 1566: 1320: 1287: 1251: 1218: 1172: 1145: 1125: 1070: 1053: 596:
projections method using a standard trick. Consider the set
542: 509: 349: 330: 247: 1741:
U.S.S.R. Computational Mathematics and Mathematical Physics
456:
is quite similar. For the case of two closed convex sets
711:{\displaystyle \mathbb {R} ^{n}\times \mathbb {R} ^{n}} 1720:(a reprint of lecture notes first distributed in 1933) 718:. Then define another set, also in the product space: 1530: 1504: 1464: 1424: 1372: 1005: 950: 914: 888: 859: 833: 727: 680: 605: 473: 307: 277: 243: 151: 1631: 1516: 1490: 1450: 1410: 1355: 988: 932: 900: 871: 845: 816: 710: 660: 574: 386: 290: 260: 200: 271:The algorithm starts with an arbitrary value for 142:The POCS algorithm solves the following problem: 1842:"The foundations of set theoretic estimation" 1524:, and hence we can simplify the iteration to 8: 808: 734: 655: 612: 43:. There might be a discussion about this on 661:{\displaystyle E=\{(x,y):x\in C,\;y\in D\}} 798: 645: 592:projections method can be reformulated as 182: 157: 1910: 1816: 1669: 1617: 1604: 1598: 1597: 1584: 1571: 1565: 1564: 1550: 1535: 1529: 1503: 1482: 1469: 1463: 1442: 1429: 1423: 1396: 1377: 1371: 1338: 1325: 1319: 1318: 1305: 1292: 1286: 1285: 1269: 1256: 1250: 1249: 1236: 1223: 1217: 1216: 1202: 1187: 1177: 1171: 1170: 1160: 1150: 1144: 1143: 1130: 1124: 1123: 1104: 1091: 1075: 1069: 1068: 1058: 1052: 1051: 1032: 1013: 1004: 978: 949: 913: 887: 858: 832: 789: 785: 784: 776: 767: 763: 762: 726: 702: 698: 697: 687: 683: 682: 679: 604: 560: 547: 541: 540: 527: 514: 508: 507: 493: 478: 472: 367: 354: 348: 347: 335: 329: 328: 312: 306: 282: 276: 252: 246: 245: 242: 177: 170: 166: 165: 152: 150: 63:Learn how and when to remove this message 1899:Foundations of Computational Mathematics 439: 133: 1648: 7: 417:to some point in this intersection. 123: 114:), and whether it converges to the 1804:Mathematics of Operations Research 261:{\displaystyle {\mathcal {P}}_{i}} 14: 413:generated by the algorithm will 298:and then generates the sequence 237:separately, via the projections 20: 1411:{\displaystyle x_{k+1}=y_{k+1}} 176: 1939:Alternating Projection Methods 1626: 1623: 1610: 1590: 1577: 1560: 1347: 1344: 1331: 1311: 1298: 1281: 1275: 1262: 1242: 1229: 1212: 1196: 1193: 1139: 1136: 1116: 1113: 1110: 1084: 1081: 1064: 1044: 1006: 975: 951: 927: 915: 749: 737: 627: 615: 569: 566: 553: 533: 520: 503: 422:Dykstra's projection algorithm 373: 360: 120:Dykstra's projection algorithm 1: 122:. See the references in the 1753:10.1016/0041-5553(67)90113-9 77:projections onto convex sets 1491:{\displaystyle x_{j}=y_{j}} 1451:{\displaystyle x_{0}=y_{0}} 989:{\displaystyle (x+y,x+y)/2} 1971: 83:), sometimes known as the 1921:10.1007/s10208-008-9036-y 1840:Combettes, P. L. (1993). 1680:10.1137/S0036144593251710 853:is equivalent to finding 671:which is defined in the 1849:Proceedings of the IEEE 1517:{\displaystyle j\geq 0} 901:{\displaystyle E\cap F} 872:{\displaystyle E\cap F} 846:{\displaystyle C\cap D} 409:is non-empty, then the 1827:10.1287/moor.1070.0291 1633: 1518: 1492: 1452: 1412: 1357: 990: 934: 902: 873: 847: 818: 712: 662: 576: 449: 388: 292: 262: 202: 139: 138:Example on two circles 85:alternating projection 1634: 1519: 1493: 1453: 1413: 1358: 991: 935: 933:{\displaystyle (x,y)} 903: 874: 848: 819: 713: 663: 577: 443: 389: 293: 291:{\displaystyle x_{0}} 263: 203: 137: 1528: 1502: 1462: 1422: 1370: 1003: 948: 912: 886: 857: 831: 725: 678: 603: 471: 454:averaged projections 446:averaged projections 305: 275: 241: 149: 33:confusing or unclear 1768:Set-Valued Analysis 882:To find a point in 112:rate of convergence 104:rate of convergence 41:clarify the article 1780:10.1007/bf01027691 1629: 1514: 1488: 1448: 1408: 1353: 986: 930: 898: 869: 843: 814: 708: 658: 572: 450: 436:Related algorithms 384: 288: 258: 198: 140: 98:, was analyzed by 1558: 1210: 501: 464:, it proceeds by 180: 155: 73: 72: 65: 1962: 1937:Book from 2011: 1925: 1924: 1914: 1894: 1888: 1885: 1879: 1878: 1876: 1875: 1869: 1863:. Archived from 1861:10.1109/5.214546 1846: 1837: 1831: 1830: 1820: 1798: 1792: 1791: 1763: 1757: 1756: 1736: 1730: 1727: 1721: 1719: 1690: 1684: 1683: 1673: 1653: 1638: 1636: 1635: 1630: 1622: 1621: 1609: 1608: 1603: 1602: 1589: 1588: 1576: 1575: 1570: 1569: 1559: 1551: 1546: 1545: 1523: 1521: 1520: 1515: 1497: 1495: 1494: 1489: 1487: 1486: 1474: 1473: 1457: 1455: 1454: 1449: 1447: 1446: 1434: 1433: 1417: 1415: 1414: 1409: 1407: 1406: 1388: 1387: 1362: 1360: 1359: 1354: 1343: 1342: 1330: 1329: 1324: 1323: 1310: 1309: 1297: 1296: 1291: 1290: 1274: 1273: 1261: 1260: 1255: 1254: 1241: 1240: 1228: 1227: 1222: 1221: 1211: 1203: 1192: 1191: 1182: 1181: 1176: 1175: 1165: 1164: 1155: 1154: 1149: 1148: 1135: 1134: 1129: 1128: 1109: 1108: 1096: 1095: 1080: 1079: 1074: 1073: 1063: 1062: 1057: 1056: 1043: 1042: 1024: 1023: 995: 993: 992: 987: 982: 939: 937: 936: 931: 907: 905: 904: 899: 878: 876: 875: 870: 852: 850: 849: 844: 823: 821: 820: 815: 794: 793: 788: 772: 771: 766: 717: 715: 714: 709: 707: 706: 701: 692: 691: 686: 667: 665: 664: 659: 581: 579: 578: 573: 565: 564: 552: 551: 546: 545: 532: 531: 519: 518: 513: 512: 502: 494: 489: 488: 393: 391: 390: 385: 380: 376: 372: 371: 359: 358: 353: 352: 340: 339: 334: 333: 323: 322: 297: 295: 294: 289: 287: 286: 267: 265: 264: 259: 257: 256: 251: 250: 207: 205: 204: 199: 181: 178: 175: 174: 169: 156: 153: 100:John von Neumann 75:In mathematics, 68: 61: 57: 54: 48: 24: 23: 16: 1970: 1969: 1965: 1964: 1963: 1961: 1960: 1959: 1955:Convex geometry 1945: 1944: 1934: 1932:Further reading 1929: 1928: 1896: 1895: 1891: 1886: 1882: 1873: 1871: 1867: 1844: 1839: 1838: 1834: 1818:10.1.1.416.6182 1800: 1799: 1795: 1765: 1764: 1760: 1738: 1737: 1733: 1728: 1724: 1708:10.2307/1969463 1693: 1692:J. von Neumann, 1691: 1687: 1655: 1654: 1650: 1645: 1613: 1596: 1580: 1563: 1531: 1526: 1525: 1500: 1499: 1478: 1465: 1460: 1459: 1438: 1425: 1420: 1419: 1392: 1373: 1368: 1367: 1334: 1317: 1301: 1284: 1265: 1248: 1232: 1215: 1183: 1169: 1156: 1142: 1122: 1100: 1087: 1067: 1050: 1028: 1009: 1001: 1000: 946: 945: 910: 909: 884: 883: 855: 854: 829: 828: 783: 761: 723: 722: 696: 681: 676: 675: 601: 600: 556: 539: 523: 506: 474: 469: 468: 438: 363: 346: 345: 341: 327: 308: 303: 302: 278: 273: 272: 244: 239: 238: 164: 147: 146: 132: 124:further reading 69: 58: 52: 49: 38: 25: 21: 12: 11: 5: 1968: 1966: 1958: 1957: 1947: 1946: 1943: 1942: 1933: 1930: 1927: 1926: 1905:(4): 485–513. 1889: 1880: 1855:(2): 182–208. 1832: 1793: 1774:(2): 185–212. 1758: 1731: 1722: 1702:(2): 401–485. 1685: 1671:10.1.1.49.4940 1664:(3): 367–426. 1647: 1646: 1644: 1641: 1628: 1625: 1620: 1616: 1612: 1607: 1601: 1595: 1592: 1587: 1583: 1579: 1574: 1568: 1562: 1557: 1554: 1549: 1544: 1541: 1538: 1534: 1513: 1510: 1507: 1485: 1481: 1477: 1472: 1468: 1445: 1441: 1437: 1432: 1428: 1405: 1402: 1399: 1395: 1391: 1386: 1383: 1380: 1376: 1364: 1363: 1352: 1349: 1346: 1341: 1337: 1333: 1328: 1322: 1316: 1313: 1308: 1304: 1300: 1295: 1289: 1283: 1280: 1277: 1272: 1268: 1264: 1259: 1253: 1247: 1244: 1239: 1235: 1231: 1226: 1220: 1214: 1209: 1206: 1201: 1198: 1195: 1190: 1186: 1180: 1174: 1168: 1163: 1159: 1153: 1147: 1141: 1138: 1133: 1127: 1121: 1118: 1115: 1112: 1107: 1103: 1099: 1094: 1090: 1086: 1083: 1078: 1072: 1066: 1061: 1055: 1049: 1046: 1041: 1038: 1035: 1031: 1027: 1022: 1019: 1016: 1012: 1008: 985: 981: 977: 974: 971: 968: 965: 962: 959: 956: 953: 929: 926: 923: 920: 917: 897: 894: 891: 868: 865: 862: 842: 839: 836: 825: 824: 813: 810: 807: 804: 801: 797: 792: 787: 782: 779: 775: 770: 765: 760: 757: 754: 751: 748: 745: 742: 739: 736: 733: 730: 705: 700: 695: 690: 685: 669: 668: 657: 654: 651: 648: 644: 641: 638: 635: 632: 629: 626: 623: 620: 617: 614: 611: 608: 583: 582: 571: 568: 563: 559: 555: 550: 544: 538: 535: 530: 526: 522: 517: 511: 505: 500: 497: 492: 487: 484: 481: 477: 452:The method of 437: 434: 395: 394: 383: 379: 375: 370: 366: 362: 357: 351: 344: 338: 332: 326: 321: 318: 315: 311: 285: 281: 255: 249: 209: 208: 197: 194: 191: 188: 185: 173: 168: 163: 160: 131: 128: 71: 70: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 1967: 1956: 1953: 1952: 1950: 1940: 1936: 1935: 1931: 1922: 1918: 1913: 1908: 1904: 1900: 1893: 1890: 1884: 1881: 1870:on 2015-06-14 1866: 1862: 1858: 1854: 1850: 1843: 1836: 1833: 1828: 1824: 1819: 1814: 1810: 1806: 1805: 1797: 1794: 1789: 1785: 1781: 1777: 1773: 1769: 1762: 1759: 1754: 1750: 1746: 1742: 1735: 1732: 1726: 1723: 1717: 1713: 1709: 1705: 1701: 1697: 1689: 1686: 1681: 1677: 1672: 1667: 1663: 1659: 1652: 1649: 1642: 1640: 1618: 1614: 1605: 1593: 1585: 1581: 1572: 1555: 1552: 1547: 1542: 1539: 1536: 1532: 1511: 1508: 1505: 1483: 1479: 1475: 1470: 1466: 1443: 1439: 1435: 1430: 1426: 1418:and assuming 1403: 1400: 1397: 1393: 1389: 1384: 1381: 1378: 1374: 1350: 1339: 1335: 1326: 1314: 1306: 1302: 1293: 1278: 1270: 1266: 1257: 1245: 1237: 1233: 1224: 1207: 1204: 1199: 1188: 1184: 1178: 1166: 1161: 1157: 1151: 1131: 1119: 1105: 1101: 1097: 1092: 1088: 1076: 1059: 1047: 1039: 1036: 1033: 1029: 1025: 1020: 1017: 1014: 1010: 999: 998: 997: 983: 979: 972: 969: 966: 963: 960: 957: 954: 943: 940:onto the set 924: 921: 918: 895: 892: 889: 880: 866: 863: 860: 840: 837: 834: 827:Thus finding 811: 805: 802: 799: 795: 790: 780: 777: 773: 768: 758: 755: 752: 746: 743: 740: 731: 728: 721: 720: 719: 703: 693: 688: 674: 673:product space 652: 649: 646: 642: 639: 636: 633: 630: 624: 621: 618: 609: 606: 599: 598: 597: 595: 591: 586: 561: 557: 548: 536: 528: 524: 515: 498: 495: 490: 485: 482: 479: 475: 467: 466: 465: 463: 459: 455: 447: 442: 435: 433: 431: 427: 423: 418: 416: 412: 408: 404: 400: 381: 377: 368: 364: 355: 342: 336: 324: 319: 316: 313: 309: 301: 300: 299: 283: 279: 269: 253: 236: 232: 227: 225: 222: 218: 214: 195: 192: 189: 186: 183: 171: 161: 158: 145: 144: 143: 136: 129: 127: 125: 121: 117: 113: 109: 105: 101: 97: 96:affine spaces 93: 90: 86: 82: 78: 67: 64: 56: 46: 45:the talk page 42: 36: 34: 29:This article 27: 18: 17: 1902: 1898: 1892: 1883: 1872:. Retrieved 1865:the original 1852: 1848: 1835: 1808: 1802: 1796: 1771: 1767: 1761: 1744: 1740: 1734: 1725: 1699: 1696:Ann. of Math 1695: 1688: 1661: 1657: 1651: 1365: 944:is given by 941: 881: 826: 670: 593: 589: 587: 584: 461: 457: 453: 451: 445: 429: 425: 419: 406: 402: 399:intersection 396: 270: 234: 230: 228: 216: 212: 210: 141: 84: 80: 76: 74: 59: 50: 39:Please help 30: 1811:: 216–234. 1747:(6): 1–24. 1658:SIAM Review 594:alternating 444:Example of 224:convex sets 1874:2012-10-09 1643:References 116:projection 53:April 2018 35:to readers 1912:0709.0109 1813:CiteSeerX 1788:121602545 1666:CiteSeerX 1509:≥ 893:∩ 864:∩ 838:∩ 781:∈ 759:∈ 694:× 650:∈ 637:∈ 193:∩ 187:∈ 179:such that 162:∈ 130:Algorithm 1949:Category 1498:for all 996:. Hence 590:averaged 415:converge 411:sequence 1716:1969463 1458:, then 448:variant 420:Unlike 31:may be 1815:  1786:  1714:  1668:  1366:Since 221:closed 211:where 108:convex 92:convex 89:closed 1907:arXiv 1868:(PDF) 1845:(PDF) 1784:S2CID 1712:JSTOR 588:The 460:and 428:and 405:and 233:and 219:are 215:and 154:find 81:POCS 1917:doi 1857:doi 1823:doi 1776:doi 1749:doi 1704:doi 1676:doi 401:of 1951:: 1915:. 1901:. 1853:81 1851:. 1847:. 1821:. 1809:33 1807:. 1782:. 1770:. 1743:. 1710:. 1700:50 1698:. 1674:. 1662:38 1660:. 1639:. 879:. 432:. 268:. 226:. 1923:. 1919:: 1909:: 1903:9 1877:. 1859:: 1829:. 1825:: 1790:. 1778:: 1772:1 1755:. 1751:: 1745:7 1718:. 1706:: 1682:. 1678:: 1627:) 1624:) 1619:k 1615:x 1611:( 1606:D 1600:P 1594:+ 1591:) 1586:k 1582:x 1578:( 1573:C 1567:P 1561:( 1556:2 1553:1 1548:= 1543:1 1540:+ 1537:k 1533:x 1512:0 1506:j 1484:j 1480:y 1476:= 1471:j 1467:x 1444:0 1440:y 1436:= 1431:0 1427:x 1404:1 1401:+ 1398:k 1394:y 1390:= 1385:1 1382:+ 1379:k 1375:x 1351:. 1348:) 1345:) 1340:k 1336:y 1332:( 1327:D 1321:P 1315:+ 1312:) 1307:k 1303:x 1299:( 1294:C 1288:P 1282:( 1279:, 1276:) 1271:k 1267:y 1263:( 1258:D 1252:P 1246:+ 1243:) 1238:k 1234:x 1230:( 1225:C 1219:P 1213:( 1208:2 1205:1 1200:= 1197:) 1194:) 1189:k 1185:y 1179:D 1173:P 1167:, 1162:k 1158:x 1152:C 1146:P 1140:( 1137:( 1132:F 1126:P 1120:= 1117:) 1114:) 1111:) 1106:k 1102:y 1098:, 1093:k 1089:x 1085:( 1082:( 1077:E 1071:P 1065:( 1060:F 1054:P 1048:= 1045:) 1040:1 1037:+ 1034:k 1030:y 1026:, 1021:1 1018:+ 1015:k 1011:x 1007:( 984:2 980:/ 976:) 973:y 970:+ 967:x 964:, 961:y 958:+ 955:x 952:( 942:F 928:) 925:y 922:, 919:x 916:( 896:F 890:E 867:F 861:E 841:D 835:C 812:. 809:} 806:y 803:= 800:x 796:, 791:n 786:R 778:y 774:, 769:n 764:R 756:x 753:: 750:) 747:y 744:, 741:x 738:( 735:{ 732:= 729:F 704:n 699:R 689:n 684:R 656:} 653:D 647:y 643:, 640:C 634:x 631:: 628:) 625:y 622:, 619:x 616:( 613:{ 610:= 607:E 570:) 567:) 562:k 558:x 554:( 549:D 543:P 537:+ 534:) 529:k 525:x 521:( 516:C 510:P 504:( 499:2 496:1 491:= 486:1 483:+ 480:k 476:x 462:D 458:C 430:D 426:C 407:D 403:C 382:. 378:) 374:) 369:k 365:x 361:( 356:D 350:P 343:( 337:C 331:P 325:= 320:1 317:+ 314:k 310:x 284:0 280:x 254:i 248:P 235:D 231:C 217:D 213:C 196:D 190:C 184:x 172:n 167:R 159:x 79:( 66:) 60:( 55:) 51:( 47:. 37:.

Index

confusing or unclear
clarify the article
the talk page
Learn how and when to remove this message
closed
convex
affine spaces
John von Neumann
rate of convergence
convex
rate of convergence
projection
Dykstra's projection algorithm
further reading

closed
convex sets
intersection
sequence
converge
Dykstra's projection algorithm

product space
CiteSeerX
10.1.1.49.4940
doi
10.1137/S0036144593251710
doi
10.2307/1969463
JSTOR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.