Knowledge (XXG)

Proper length

Source 📝

378:, and then quietly measure the distance between the marks. We can even consider such measurement as a possible operational definition of proper length. From the viewpoint of the experimental physics, the requirement that the marks be made simultaneously is redundant for a stationary object with constant shape and size, and can in this case be dropped from such definition. Since the rod is stationary in 96:
of an object is the length of the object measured by an observer which is at rest relative to it, by applying standard measuring rods on the object. The measurement of the object's endpoints doesn't have to be simultaneous, since the endpoints are constantly at rest at the same positions in the
635: 146:
However, in relatively moving frames the object's endpoints have to be measured simultaneously, since they are constantly changing their position. The resulting length is shorter than the rest length, and is given by the formula for
696:
in any spacetime, curved or flat. In a flat spacetime, the proper distance between two events is the proper distance along a straight path between the two events. In a curved spacetime, there may be more than one straight path
495: 80:. The difference is that the proper distance is defined between two spacelike-separated events (or along a spacelike path), while the proper time is defined between two timelike-separated events (or along a timelike path). 281: 800: 59:. In classical mechanics, lengths are measured based on the assumption that the locations of all points involved are measured simultaneously. But in the theory of relativity, the notion of 203: 536: 688:
The above formula for the proper distance between two events assumes that the spacetime in which the two events occur is flat. Hence, the above formula cannot in general be used in
141: 422: 961: 881: 316:, measured at the endpoints of the same object, only agree with each other when the measurement events were simultaneous in the object's rest frame so that Δ 720: 701:) between two events, so the proper distance along a straight path between two events would not uniquely define the proper distance between the two events. 531:
The definition can be given equivalently with respect to any inertial frame of reference (without requiring the events to be simultaneous in that frame) by
350:
of the rod, and you want to measure its length, you can do it by first marking its endpoints. And it is not necessary that you mark them simultaneously in
214: 1072: 1042: 945: 815: 336:
of an object whose end points happen to be respectively coincident with these events. Consider a solid rod of constant proper length
208:
In comparison, the invariant proper distance between two arbitrary events happening at the endpoints of the same object is given by:
1097: 698: 413:, the proper distance between two spacelike-separated events is the distance between the two events, as measured in an 414: 911: 60: 978:
Franklin, Jerrold (2010). "Lorentz contraction, Bell's spaceships, and rigid body motion in special relativity".
165: 857:
instead of a distance. The − sign in the equation should be dropped with a metric tensor that instead uses the
692:, in which curved spacetimes are considered. It is, however, possible to define the proper distance along a 884: 524: 676:
Two events are spacelike-separated if and only if the above formula gives a real, non-zero value for Δ
997: 107: 52: 389:
of the rod regardless of the time lapse between the two markings. On the other hand, it is not the
56: 630:{\displaystyle \Delta \sigma ={\sqrt {\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-c^{2}\Delta t^{2}}},} 1013: 987: 955: 896: 689: 666: 410: 148: 1079: 1068: 1049: 1038: 941: 906: 31: 1005: 850: 883:
should be dropped with a metric tensor that is normalized to use a distance, or that uses
693: 417:
in which the events are simultaneous. In such a specific frame, the distance is given by
1001: 866: 658: 156: 1091: 1009: 713: 1017: 1062: 1032: 901: 490:{\displaystyle \Delta \sigma ={\sqrt {\Delta x^{2}+\Delta y^{2}+\Delta z^{2}}},} 77: 17: 833: 823: 520: 45: 819: 70:, provides an invariant measure whose value is the same for all observers. 276:{\displaystyle \Delta \sigma ={\sqrt {\Delta x^{2}-c^{2}\Delta t^{2}}}.} 393:
between the marking events if the marks are not made simultaneously in
795:{\displaystyle L=c\int _{P}{\sqrt {-g_{\mu \nu }dx^{\mu }dx^{\nu }}},} 709: 516: 992: 1037:(illustrated ed.). Cambridge University Press. p. 191. 673:= 0 exactly when the events are simultaneous in the given frame. 854: 648: 844:
In the equation above, the metric tensor is assumed to use the
1061:
Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George (2011).
665:
The two formulae are equivalent because of the invariance of
294:, whereas (as explained above) the object's rest length 51:
The measurement of lengths is more complicated in the
869: 836:
separation between neighboring events along the path
723: 539: 425: 217: 168: 110: 1064:
Relativistic Celestial Mechanics of the Solar System
30:
For the cosmological notion of proper distance, see
875: 794: 629: 489: 275: 197: 135: 1034:Gravity: Newtonian, Post-Newtonian, Relativistic 405:Proper distance between two events in flat space 853:, and is assumed to be normalized to return a 97:object's rest frame, so it is independent of Δ 27:Length of an object in the object's rest frame 8: 198:{\displaystyle L={\frac {L_{0}}{\gamma }}.} 44:is the length of an object in the object's 973: 971: 960:: CS1 maint: location missing publisher ( 931: 929: 927: 1031:Poisson, Eric; Will, Clifford M. (2014). 991: 868: 781: 768: 752: 743: 737: 722: 616: 603: 590: 574: 558: 549: 538: 476: 460: 444: 435: 424: 262: 249: 236: 227: 216: 181: 175: 167: 115: 109: 385:, the distance between the marks is the 357:. You can mark one end now (at a moment 923: 364:) and the other end later (at a moment 1067:. John Wiley & Sons. p. 136. 953: 7: 938:Special Relativity and How it Works 320:is zero. As explained by Fayngold: 708:, the proper distance is given in 704:Along an arbitrary spacelike path 651:coordinates of the two events, and 609: 583: 567: 551: 540: 469: 453: 437: 426: 301:can be measured independently of Δ 255: 229: 218: 124: 25: 328:between two events is generally 101:. This length is thus given by: 343:. If you are in the rest frame 136:{\displaystyle L_{0}=\Delta x.} 63:is dependent on the observer. 527:coordinates of the two events. 1: 863:metric signature. Also, the 684:Proper distance along a path 84:Proper length or rest length 980:European Journal of Physics 415:inertial frame of reference 1114: 1010:10.1088/0143-0807/31/2/006 912:Relativity of simultaneity 29: 940:. John Wiley & Sons. 647:is the difference in the 936:Moses Fayngold (2009). 515:are differences in the 324:p. 407: "Note that the 877: 796: 631: 491: 277: 199: 137: 878: 797: 632: 492: 278: 200: 138: 1098:Theory of relativity 867: 721: 537: 423: 215: 166: 108: 53:theory of relativity 1080:Extract of page 136 1050:Extract of page 191 1002:2010EJPh...31..291F 667:spacetime intervals 305:. It follows that Δ 57:classical mechanics 897:Invariant interval 873: 792: 690:general relativity 627: 487: 411:special relativity 273: 195: 149:length contraction 133: 66:A different term, 1074:978-3-527-63457-6 1044:978-1-107-03286-6 907:Comoving distance 885:geometrized units 876:{\displaystyle c} 787: 622: 482: 268: 190: 32:Comoving distance 16:(Redirected from 1105: 1082: 1078: 1058: 1052: 1048: 1028: 1022: 1021: 995: 975: 966: 965: 959: 951: 933: 882: 880: 879: 874: 861: 851:metric signature 848: 818:for the current 801: 799: 798: 793: 788: 786: 785: 773: 772: 760: 759: 744: 742: 741: 636: 634: 633: 628: 623: 621: 620: 608: 607: 595: 594: 579: 578: 563: 562: 550: 496: 494: 493: 488: 483: 481: 480: 465: 464: 449: 448: 436: 332:the same as the 282: 280: 279: 274: 269: 267: 266: 254: 253: 241: 240: 228: 204: 202: 201: 196: 191: 186: 185: 176: 142: 140: 139: 134: 120: 119: 76:is analogous to 21: 1113: 1112: 1108: 1107: 1106: 1104: 1103: 1102: 1088: 1087: 1086: 1085: 1075: 1060: 1059: 1055: 1045: 1030: 1029: 1025: 977: 976: 969: 952: 948: 935: 934: 925: 920: 893: 865: 864: 859: 846: 812: 777: 764: 748: 733: 719: 718: 686: 612: 599: 586: 570: 554: 535: 534: 472: 456: 440: 421: 420: 407: 399: 391:proper distance 384: 377: 370: 363: 356: 349: 342: 326:proper distance 315: 300: 258: 245: 232: 213: 212: 177: 164: 163: 111: 106: 105: 86: 74:Proper distance 68:proper distance 35: 28: 23: 22: 18:Proper distance 15: 12: 11: 5: 1111: 1109: 1101: 1100: 1090: 1089: 1084: 1083: 1073: 1053: 1043: 1023: 986:(2): 291–298. 967: 947:978-3527406074 946: 922: 921: 919: 916: 915: 914: 909: 904: 899: 892: 889: 872: 842: 841: 827: 810: 791: 784: 780: 776: 771: 767: 763: 758: 755: 751: 747: 740: 736: 732: 729: 726: 712:syntax by the 685: 682: 663: 662: 659:speed of light 652: 626: 619: 615: 611: 606: 602: 598: 593: 589: 585: 582: 577: 573: 569: 566: 561: 557: 553: 548: 545: 542: 529: 528: 486: 479: 475: 471: 468: 463: 459: 455: 452: 447: 443: 439: 434: 431: 428: 406: 403: 402: 401: 397: 382: 375: 368: 361: 354: 347: 340: 313: 298: 284: 283: 272: 265: 261: 257: 252: 248: 244: 239: 235: 231: 226: 223: 220: 206: 205: 194: 189: 184: 180: 174: 171: 157:Lorentz factor 144: 143: 132: 129: 126: 123: 118: 114: 85: 82: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1110: 1099: 1096: 1095: 1093: 1081: 1076: 1070: 1066: 1065: 1057: 1054: 1051: 1046: 1040: 1036: 1035: 1027: 1024: 1019: 1015: 1011: 1007: 1003: 999: 994: 989: 985: 981: 974: 972: 968: 963: 957: 949: 943: 939: 932: 930: 928: 924: 917: 913: 910: 908: 905: 903: 900: 898: 895: 894: 890: 888: 886: 870: 862: 856: 852: 849: 839: 835: 831: 828: 825: 821: 817: 816:metric tensor 813: 807: 806: 805: 802: 789: 782: 778: 774: 769: 765: 761: 756: 753: 749: 745: 738: 734: 730: 727: 724: 716: 715: 714:line integral 711: 707: 702: 700: 695: 691: 683: 681: 679: 674: 672: 669:, and since Δ 668: 660: 656: 653: 650: 646: 642: 641: 640: 637: 624: 617: 613: 604: 600: 596: 591: 587: 580: 575: 571: 564: 559: 555: 546: 543: 532: 526: 522: 518: 514: 510: 506: 502: 501: 500: 497: 484: 477: 473: 466: 461: 457: 450: 445: 441: 432: 429: 418: 416: 412: 404: 396: 392: 388: 387:proper length 381: 374: 367: 360: 353: 346: 339: 335: 334:proper length 331: 327: 323: 322: 321: 319: 312: 308: 304: 297: 293: 289: 270: 263: 259: 250: 246: 242: 237: 233: 224: 221: 211: 210: 209: 192: 187: 182: 178: 172: 169: 162: 161: 160: 158: 154: 150: 130: 127: 121: 116: 112: 104: 103: 102: 100: 95: 91: 90:proper length 83: 81: 79: 75: 71: 69: 64: 62: 58: 54: 49: 47: 43: 39: 38:Proper length 33: 19: 1063: 1056: 1033: 1026: 983: 979: 937: 858: 845: 843: 837: 829: 826:mapping, and 808: 803: 717: 705: 703: 687: 677: 675: 670: 664: 654: 644: 638: 533: 530: 512: 508: 504: 498: 419: 408: 394: 390: 386: 379: 372: 365: 358: 351: 344: 337: 333: 329: 325: 317: 310: 306: 302: 295: 291: 290:depends on Δ 287: 285: 207: 152: 145: 98: 93: 89: 87: 73: 72: 67: 65: 61:simultaneity 50: 41: 37: 36: 902:Proper time 94:rest length 78:proper time 42:rest length 918:References 834:coordinate 824:coordinate 521:orthogonal 155:being the 46:rest frame 993:0906.1919 956:cite book 820:spacetime 783:ν 770:μ 757:ν 754:μ 746:− 735:∫ 610:Δ 597:− 584:Δ 568:Δ 552:Δ 544:σ 541:Δ 470:Δ 454:Δ 438:Δ 430:σ 427:Δ 256:Δ 243:− 230:Δ 222:σ 219:Δ 188:γ 125:Δ 1092:Category 1018:18059490 891:See also 699:geodesic 649:temporal 55:than in 998:Bibcode 832:is the 814:is the 657:is the 639:where 525:spatial 511:, and Δ 499:where 1071:  1041:  1016:  944:  804:where 710:tensor 517:linear 151:(with 1014:S2CID 988:arXiv 371:) in 1069:ISBN 1039:ISBN 962:link 942:ISBN 860:−+++ 855:time 847:+−−− 822:and 694:path 309:and 286:So Δ 88:The 1006:doi 507:, Δ 409:In 330:not 159:): 92:or 40:or 1094:: 1012:. 1004:. 996:. 984:31 982:. 970:^ 958:}} 954:{{ 926:^ 887:. 830:dx 811:μν 680:. 523:, 519:, 400:." 48:. 1077:. 1047:. 1020:. 1008:: 1000:: 990:: 964:) 950:. 871:c 840:. 838:P 809:g 790:, 779:x 775:d 766:x 762:d 750:g 739:P 731:c 728:= 725:L 706:P 697:( 678:σ 671:t 661:. 655:c 645:t 643:Δ 625:, 618:2 614:t 605:2 601:c 592:2 588:z 581:+ 576:2 572:y 565:+ 560:2 556:x 547:= 513:z 509:y 505:x 503:Δ 485:, 478:2 474:z 467:+ 462:2 458:y 451:+ 446:2 442:x 433:= 398:0 395:K 383:0 380:K 376:0 373:K 369:2 366:t 362:1 359:t 355:0 352:K 348:0 345:K 341:0 338:l 318:t 314:0 311:L 307:σ 303:t 299:0 296:L 292:t 288:σ 271:. 264:2 260:t 251:2 247:c 238:2 234:x 225:= 193:. 183:0 179:L 173:= 170:L 153:γ 131:. 128:x 122:= 117:0 113:L 99:t 34:. 20:)

Index

Proper distance
Comoving distance
rest frame
theory of relativity
classical mechanics
simultaneity
proper time
length contraction
Lorentz factor
special relativity
inertial frame of reference
linear
orthogonal
spatial
temporal
speed of light
spacetime intervals
general relativity
path
geodesic
tensor
line integral
metric tensor
spacetime
coordinate
coordinate
metric signature
time
geometrized units
Invariant interval

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.