Knowledge (XXG)

Proton-exchange membrane

Source 📝

117: 176:(SOFC). PEMFCs operate at a lower temperature, are lighter and more compact, which makes them ideal for applications such as cars. However, some disadvantages are: the ~80 °C operating temperature is too low for cogeneration like in SOFCs, and that the electrolyte for PEMFCs must be water-saturated. However, some fuel-cell cars, including the 446: 195:
The fuel for the PEMFC is hydrogen, and the charge carrier is the hydrogen ion (proton). At the anode, the hydrogen molecule is split into hydrogen ions (protons) and electrons. The hydrogen ions permeate across the electrolyte to the cathode, while the electrons flow through an external circuit and
132:
spaceflight program. A number of technical problems led NASA to forego the use of proton-exchange membrane fuel cells in favor of batteries as a lower capacity but more reliable alternative for Gemini missions 1–4. An improved generation of General Electric's PEM fuel cell was used in all subsequent
187:
in reformate. These improvements potentially could lead to higher overall system efficiencies. However, these gains have yet to be realized, as the gold-standard perfluorinated sulfonic acid (PFSA) membranes lose function rapidly at 100 °C and above if hydration drops below ~100%, and begin to
265:
As of 2008, the automotive industry as well as personal and public power generation are the largest markets for proton-exchange membrane fuel cells. PEM fuel cells are popular in automotive applications due to their relatively low operating temperature and their ability to start up quickly even in
284:
is a technique by which proton-exchange membranes are used to decompose water into hydrogen and oxygen gas. The proton-exchange membrane allows for the separation of produced hydrogen from oxygen, allowing either product to be exploited as needed. This process has been used variously to generate
832:
Jiangshui Luo; Annemette H. Jensen; Neil R. Brooks; Jeroen Sniekers; Martin Knipper; David Aili; Qingfeng Li; Bram Vanroy; Michael Wübbenhorst; Feng Yan; Luc Van Meervelt; Zhigang Shao; Jianhua Fang; Zheng-Hong Luo; Dirk E. De Vos; Koen Binnemans; Jan Fransaer (2015).
261:
Early PEM fuel cell applications were focused within the aerospace industry. The then-higher capacity of fuel cells compared to batteries made them ideal as NASA's Project Gemini began to target longer duration space missions than had previously been attempted.
834: 1205: 257:
The primary application of proton-exchange membranes is in PEM fuel cells. These fuel cells have a wide variety of commercial and military applications including in the aerospace, automotive, and energy industries.
180:, operate without humidifiers, relying on rapid water generation and the high rate of back-diffusion through thin membranes to maintain the hydration of the membrane, as well as the ionomer in the catalyst layers. 196:
produce electric power. Oxygen, usually in the form of air, is supplied to the cathode and combines with the electrons and the hydrogen ions to produce water. The reactions at the electrodes are as follows:
188:
creep in this temperature range, resulting in localized thinning and overall lower system lifetimes. As a result, new anhydrous proton conductors, such as protic organic ionic plastic crystals (POIPCs) and
1175: 903: 183:
High-temperature PEMFCs operate between 100 °C and 200 °C, potentially offering benefits in electrode kinetics and heat management, and better tolerance to fuel impurities, particularly
592:"Barton C. Hacker and James M. Grimwood. On the Shoulders of Titans: A History of Project Gemini. Washington, D. C.: National Aeronautics and Space Administration. 1977. Pp. xx, 625. $ 19.00" 867: 90:, there are many other structural motifs used to make ionomers for proton-exchange membranes. Many use polyaromatic polymers, while others use partially fluorinated polymers. 491: 1227: 278:
based on the technology. The primary challenge facing automotive PEM technology is the safe and efficient storage of hydrogen, currently an area of high research activity.
108:
PEM fuel cells use a solid polymer membrane (a thin plastic film) which is permeable to protons when it is saturated with water, but it does not conduct electrons.
281: 60: 835:"1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells" 441:, Townsend, Carl W. & Naselow, Arthur B., "Enhanced membrane-electrode interface", issued 2008-11-30, assigned to 1079: 669: 575: 352: 1257: 124:
Early proton-exchange membrane technology was developed in the early 1960s by Leonard Niedrach and Thomas Grubb, chemists working for the
74:
membranes, where other materials are embedded in a polymer matrix. One of the most common and commercially available PEM materials is the
164:
which allowed only protons to pass through the material, making them a potential replacement for fluorinated ionomers as a PEM material.
1295: 56: 904:"Protic ionic liquid and ionic melts prepared from methanesulfonic acid and 1H-1,2,4-triazole as high temperature PEMFC electrolytes" 902:
Jiangshui Luo; Jin Hu; Wolfgang Saak; Rüdiger Beckhaus; Gunther Wittstock; Ivo F. J. Vankelecom; Carsten Agert; Olaf Conrad (2011).
839: 875: 270:
being the most popular model. PEM fuel cells have seen successful implementation in other forms of heavy machinery as well, with
1438: 378: 1522: 1393: 911: 307: 1222: 712:
Hu, S.; Lozado-Hidalgo, M.; Wang, F.C.; et al. (26 November 2014). "Proton transport through one atom thick crystals".
413: 266:
below-freezing conditions. As of March 2019 there were 6,558 fuel cell vehicles on the road in the United States, with the
1433: 1024:
Li, Mengxiao; Bai, Yunfeng; Zhang, Caizhi; Song, Yuxi; Jiang, Shangfeng; Grouset, Didier; Zhang, Mingjun (23 April 2019).
487: 1527: 1316: 1176:"Air Liquide invests in the world's largest membrane-based electrolyzer to develop its carbon-free hydrogen production" 1486: 1403: 1346: 347: 322: 94: 52: 461: 63:: separation of reactants and transport of protons while blocking a direct electronic pathway through the membrane. 1423: 1285: 297:
PEM electrolyzer plant in Québec. Similar PEM-based devices are available for the industrial production of ozone.
128:. Significant government resources were devoted to the study and development of these membranes for use in NASA's 1512: 1413: 1331: 1290: 1326: 1250: 342: 153: 145:
plastics chemist Walther Grot. Grot also demonstrated its usefulness as an electrochemical separator membrane.
1203:, "PEM (proton exchange membrane) low-voltage electrolysis ozone generating device", issued 2011-05-16 659: 1408: 1341: 1321: 337: 142: 1428: 1367: 1129: 1025: 519:"Batteries with Solid Ion-Exchange Membrane Electrolytes: II . Low-Temperature Hydrogen-Oxygen Fuel Cells" 1336: 1300: 327: 271: 173: 32: 1351: 438: 1141: 1037: 977: 788: 733: 1080:"Fact of the Month March 2019: There Are More Than 6,500 Fuel Cell Vehicles On the Road in the U.S." 1507: 1372: 1243: 332: 312: 189: 120:
Leonard Niedrach (left) and Thomas Grubb (right), inventors of proton-exchange membrane technology.
1280: 1061: 1003: 814: 757: 723: 686: 286: 71: 1517: 1157: 1053: 995: 806: 749: 665: 607: 571: 538: 141:, which is today the most widely utilized proton-exchange membrane material, was developed by 1473: 1468: 1463: 1458: 1149: 1045: 985: 938: 920: 884: 848: 796: 741: 714: 599: 563: 530: 518: 385: 125: 40: 632: 1532: 698: 442: 317: 184: 1145: 1041: 981: 792: 737: 1026:"Review on the research of hydrogen storage system fast refueling in fuel cell vehicle" 134: 129: 1501: 1388: 1065: 1007: 161: 75: 1201: 1103: 562:. Advances in Chemistry. Vol. 47. WASHINGTON, D.C.: AMERICAN CHEMICAL SOCIETY. 116: 1398: 1153: 1049: 818: 761: 357: 267: 177: 1128:
Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen; Stolten, Detlef (22 April 2013).
462:"New Proton Exchange Membrane Developed – Nafion promises inexpensive fuel-cells" 294: 495: 290: 149: 1161: 1057: 999: 611: 542: 488:"Research Topics for Materials and Processes for PEM Fuel Cells REU for 2008" 1266: 465: 810: 753: 603: 591: 557: 1450: 567: 275: 157: 98: 48: 801: 776: 745: 86:
product. While Nafion is an ionomer with a perfluorinated backbone like
924: 888: 852: 67: 36: 534: 43:
while acting as an electronic insulator and reactant barrier, e.g. to
868:"Imidazolium methanesulfonate as a high temperature proton conductor" 285:
hydrogen fuel and oxygen for life-support systems in vessels such as
138: 87: 83: 79: 44: 990: 965: 172:
PEMFCs have some advantages over other types of fuel cells such as
1228:
EC-supported STREP program on high pressure PEM water electrolysis
728: 390: 93:
Proton-exchange membranes are primarily characterized by proton
1239: 633:"Collecting the History of Proton Exchange Membrane Fuel Cells" 51:
gas. This is their essential function when incorporated into a
1235: 192:, are actively studied for the development of suitable PEMs. 293:
submarines. A recent example is the construction of a 20 MW
556:
Young, George J.; Linden, Henry R., eds. (1 January 1969).
380:
Alternative electrochemical systems for ozonation of water
1104:"Material Handling – Fuel Cell Solutions | Ballard Power" 866:
Jiangshui Luo, Olaf Conrad; Ivo F. J. Vankelecom (2013).
249:
The theoretical exothermic potential is +1.23 V overall.
414:"Novel inorganic/organic hybrid electrolyte membranes" 156:
published initial results on atom thick monolayers of
133:
Gemini missions, but was abandoned for the subsequent
966:"Status and development of PEM fuel cell technology" 1449: 1381: 1360: 1309: 1273: 1130:"A comprehensive review on PEM water electrolysis" 517:Grubb, W. T.; Niedrach, L. W. (1 February 1960). 1251: 8: 1258: 1244: 1236: 421:Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem 16:Ion-exchange membrane specific for protons 989: 939:"Could This Hydrogen-Powered Drone Work?" 800: 727: 282:Polymer electrolyte membrane electrolysis 1134:International Journal of Hydrogen Energy 1030:International Journal of Hydrogen Energy 970:International Journal of Energy Research 115: 370: 694: 684: 523:Journal of the Electrochemical Society 1223:Dry solid polymer electrolyte battery 1019: 1017: 775:Karnik, Rohit N. (26 November 2014). 627: 625: 623: 621: 353:Proton exchange membrane electrolysis 61:proton-exchange membrane electrolyser 7: 1296:Proton-exchange membrane fuel cell 840:Energy & Environmental Science 661:Fluorinated Ionomers – 2nd Edition 460:Gabriel Gache (17 December 2007). 137:missions. The fluorinated ionomer 66:PEMs can be made from either pure 57:proton-exchange membrane fuel cell 14: 412:Zhiwei Yang; et al. (2004). 876:Journal of Materials Chemistry A 1439:Unitized regenerative fuel cell 1182:. Air Liquide. 25 February 2019 964:Barbir, F.; Yazici, S. (2008). 1154:10.1016/j.ijhydene.2013.01.151 1050:10.1016/j.ijhydene.2019.02.208 912:Journal of Materials Chemistry 658:Grot, Walther (15 July 2011). 596:The American Historical Review 308:Alkali anion exchange membrane 1: 1434:Solid oxide electrolyzer cell 1317:Direct borohydride fuel cell 243:O + heat + electrical energy 25:polymer-electrolyte membrane 1404:Membrane electrode assembly 1347:Reformed methanol fuel cell 348:Membrane electrode assembly 323:Dynamic mechanical analysis 53:membrane electrode assembly 1549: 1424:Protonic ceramic fuel cell 1394:Electro-galvanic fuel cell 1286:Molten carbonate fuel cell 777:"Breakthrough for protons" 393:. 20 March 2007. MSC-23045 105:), and thermal stability. 1482: 1414:Photoelectrochemical cell 1332:Direct methanol fuel cell 1291:Phosphoric acid fuel cell 639:. Smithsonian Institution 1419:Proton-exchange membrane 1327:Direct-ethanol fuel cell 343:Isotope electrochemistry 154:University of Manchester 126:General Electric Company 21:proton-exchange membrane 1409:Membraneless Fuel Cells 1342:Metal hydride fuel cell 1322:Direct carbon fuel cell 338:Gas diffusion electrode 228:Overall cell reaction: 1429:Regenerative fuel cell 1368:Enzymatic biofuel cell 637:americanhistory.si.edu 174:solid oxide fuel cells 121: 33:semipermeable membrane 1523:Hydrogen technologies 1337:Formic acid fuel cell 1301:Solid oxide fuel cell 439:US patent 5266421 328:Electrolysis of water 272:Ballard Power Systems 119: 604:10.1086/ahr/84.2.593 568:10.1021/ba-1965-0047 486:Nakhiah Goulbourne. 389:(Technical report). 190:protic ionic liquids 35:generally made from 1528:Membrane technology 1373:Microbial fuel cell 1146:2013IJHE...38.4901C 1042:2019IJHE...4410677L 1036:(21): 10677–10693. 982:2008IJER...32..369B 919:(28): 10426–10436. 802:10.1038/nature14074 793:2014Natur.516..173K 746:10.1038/nature14015 738:2014Natur.516..227H 498:on 27 February 2009 333:Electroosmotic pump 313:Artificial membrane 1281:Alkaline fuel cell 925:10.1039/C0JM04306K 889:10.1039/C2TA00713D 853:10.1039/C4EE02280G 664:. William Andrew. 212:Cathode reaction: 122: 70:membranes or from 1495: 1494: 1140:(12): 4901–4934. 787:(7530): 173–174. 671:978-1-4377-4457-6 577:978-0-8412-0048-7 559:Fuel Cell Systems 535:10.1149/1.2427622 1540: 1513:Electrochemistry 1352:Zinc–air battery 1260: 1253: 1246: 1237: 1210: 1209: 1208: 1204: 1198: 1192: 1191: 1189: 1187: 1172: 1166: 1165: 1125: 1119: 1118: 1116: 1114: 1100: 1094: 1093: 1091: 1089: 1076: 1070: 1069: 1021: 1012: 1011: 993: 961: 955: 954: 952: 950: 935: 929: 928: 908: 899: 893: 892: 872: 863: 857: 856: 829: 823: 822: 804: 772: 766: 765: 731: 722:(7530): 227–30. 709: 703: 702: 696: 692: 690: 682: 680: 678: 655: 649: 648: 646: 644: 629: 616: 615: 588: 582: 581: 553: 547: 546: 514: 508: 507: 505: 503: 494:. Archived from 483: 477: 476: 474: 472: 457: 451: 450: 449: 445: 435: 429: 428: 418: 409: 403: 402: 400: 398: 386:NASA Tech Briefs 375: 200:Anode reaction: 39:and designed to 1548: 1547: 1543: 1542: 1541: 1539: 1538: 1537: 1498: 1497: 1496: 1491: 1478: 1445: 1377: 1356: 1305: 1269: 1264: 1233: 1219: 1214: 1213: 1206: 1200: 1199: 1195: 1185: 1183: 1174: 1173: 1169: 1127: 1126: 1122: 1112: 1110: 1102: 1101: 1097: 1087: 1085: 1078: 1077: 1073: 1023: 1022: 1015: 991:10.1002/er.1371 963: 962: 958: 948: 946: 943:Popular Science 937: 936: 932: 906: 901: 900: 896: 870: 865: 864: 860: 831: 830: 826: 774: 773: 769: 711: 710: 706: 693: 683: 676: 674: 672: 657: 656: 652: 642: 640: 631: 630: 619: 590: 589: 585: 578: 555: 554: 550: 516: 515: 511: 501: 499: 485: 484: 480: 470: 468: 459: 458: 454: 447: 443:Hughes Aircraft 437: 436: 432: 416: 411: 410: 406: 396: 394: 377: 376: 372: 367: 362: 318:Dry electrolyte 303: 255: 242: 238: 234: 222: 218: 206: 170: 114: 41:conduct protons 17: 12: 11: 5: 1546: 1544: 1536: 1535: 1530: 1525: 1520: 1515: 1510: 1500: 1499: 1493: 1492: 1490: 1489: 1483: 1480: 1479: 1477: 1476: 1471: 1466: 1461: 1455: 1453: 1447: 1446: 1444: 1443: 1442: 1441: 1436: 1426: 1421: 1416: 1411: 1406: 1401: 1396: 1391: 1385: 1383: 1379: 1378: 1376: 1375: 1370: 1364: 1362: 1358: 1357: 1355: 1354: 1349: 1344: 1339: 1334: 1329: 1324: 1319: 1313: 1311: 1307: 1306: 1304: 1303: 1298: 1293: 1288: 1283: 1277: 1275: 1274:By electrolyte 1271: 1270: 1265: 1263: 1262: 1255: 1248: 1240: 1231: 1230: 1225: 1218: 1217:External links 1215: 1212: 1211: 1193: 1167: 1120: 1095: 1071: 1013: 976:(5): 369–378. 956: 930: 894: 858: 824: 767: 704: 695:|website= 670: 650: 617: 598:. April 1979. 583: 576: 548: 509: 478: 452: 430: 404: 369: 368: 366: 363: 361: 360: 355: 350: 345: 340: 335: 330: 325: 320: 315: 310: 304: 302: 299: 254: 251: 247: 246: 245: 244: 240: 236: 232: 226: 225: 224: 220: 219:+ 4H + 4e → 2H 216: 210: 209: 208: 204: 169: 166: 130:Project Gemini 113: 110: 101:permeability ( 15: 13: 10: 9: 6: 4: 3: 2: 1545: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1505: 1503: 1488: 1485: 1484: 1481: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1456: 1454: 1452: 1448: 1440: 1437: 1435: 1432: 1431: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1386: 1384: 1380: 1374: 1371: 1369: 1366: 1365: 1363: 1361:Biofuel cells 1359: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1318: 1315: 1314: 1312: 1308: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1278: 1276: 1272: 1268: 1261: 1256: 1254: 1249: 1247: 1242: 1241: 1238: 1234: 1229: 1226: 1224: 1221: 1220: 1216: 1202: 1197: 1194: 1181: 1177: 1171: 1168: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1124: 1121: 1109: 1105: 1099: 1096: 1084: 1081: 1075: 1072: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1027: 1020: 1018: 1014: 1009: 1005: 1001: 997: 992: 987: 983: 979: 975: 971: 967: 960: 957: 945:. 23 May 2015 944: 940: 934: 931: 926: 922: 918: 914: 913: 905: 898: 895: 890: 886: 882: 878: 877: 869: 862: 859: 854: 850: 846: 842: 841: 836: 828: 825: 820: 816: 812: 808: 803: 798: 794: 790: 786: 782: 778: 771: 768: 763: 759: 755: 751: 747: 743: 739: 735: 730: 725: 721: 717: 716: 708: 705: 700: 688: 673: 667: 663: 662: 654: 651: 638: 634: 628: 626: 624: 622: 618: 613: 609: 605: 601: 597: 593: 587: 584: 579: 573: 569: 565: 561: 560: 552: 549: 544: 540: 536: 532: 528: 524: 520: 513: 510: 497: 493: 492:Virginia Tech 489: 482: 479: 467: 463: 456: 453: 444: 440: 434: 431: 426: 422: 415: 408: 405: 392: 388: 387: 382: 381: 374: 371: 364: 359: 356: 354: 351: 349: 346: 344: 341: 339: 336: 334: 331: 329: 326: 324: 321: 319: 316: 314: 311: 309: 306: 305: 300: 298: 296: 292: 288: 283: 279: 277: 273: 269: 263: 259: 252: 250: 230: 229: 227: 214: 213: 211: 202: 201: 199: 198: 197: 193: 191: 186: 181: 179: 175: 167: 165: 163: 162:boron nitride 159: 155: 151: 146: 144: 140: 136: 131: 127: 118: 111: 109: 106: 104: 100: 96: 91: 89: 85: 81: 77: 76:fluoropolymer 73: 69: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 1418: 1399:Flow battery 1232: 1196: 1184:. Retrieved 1179: 1170: 1137: 1133: 1123: 1111:. Retrieved 1107: 1098: 1086:. Retrieved 1082: 1074: 1033: 1029: 973: 969: 959: 947:. Retrieved 942: 933: 916: 910: 897: 880: 874: 861: 844: 838: 827: 784: 780: 770: 719: 713: 707: 675:. Retrieved 660: 653: 641:. Retrieved 636: 595: 586: 558: 551: 526: 522: 512: 500:. Retrieved 496:the original 481: 469:. Retrieved 455: 433: 424: 420: 407: 395:. Retrieved 384: 379: 373: 358:Roll-to-roll 280: 268:Toyota Mirai 264: 260: 256: 253:Applications 248: 194: 182: 178:Toyota Mirai 171: 147: 123: 107: 102: 95:conductivity 92: 65: 28: 24: 20: 18: 1389:Blue energy 1180:newswire.ca 1108:ballard.com 883:(6): 2238. 847:(4): 1276. 295:Air Liquide 55:(MEA) of a 1508:Fuel cells 1502:Categories 1267:Fuel cells 1083:Energy.gov 529:(2): 131. 397:17 January 365:References 291:Royal Navy 274:supplying 150:Andre Geim 1186:28 August 1162:0360-3199 1066:108785340 1058:0360-3199 1008:110367501 1000:1099-114X 949:7 January 729:1410.8724 697:ignored ( 687:cite book 612:1937-5239 543:1945-7111 466:Softpedia 427:(2): 599. 276:forklifts 207:→ 4H + 4e 168:Fuel cell 148:In 2014, 72:composite 1518:Polymers 1487:Glossary 1451:Hydrogen 1113:19 April 1088:19 April 811:25470064 754:25470058 677:19 April 643:19 April 301:See also 158:graphene 99:methanol 59:or of a 49:hydrogen 37:ionomers 31:), is a 1474:Vehicle 1469:Storage 1464:Station 1459:Economy 1310:By fuel 1142:Bibcode 1038:Bibcode 978:Bibcode 819:4390672 789:Bibcode 762:4455321 734:Bibcode 502:18 July 471:18 July 152:of the 112:History 78:(PFSA) 68:polymer 1533:Proton 1382:Others 1207:  1160:  1064:  1056:  1006:  998:  817:  809:  781:Nature 760:  752:  715:Nature 668:  610:  574:  541:  448:  143:DuPont 139:Nafion 135:Apollo 88:Teflon 84:DuPont 80:Nafion 45:oxygen 1062:S2CID 1004:S2CID 907:(PDF) 871:(PDF) 815:S2CID 758:S2CID 724:arXiv 417:(PDF) 97:(σ), 23:, or 1188:2020 1158:ISSN 1115:2021 1090:2021 1054:ISSN 996:ISSN 951:2016 807:PMID 750:PMID 699:help 679:2021 666:ISBN 645:2021 608:ISSN 572:ISBN 539:ISSN 504:2008 473:2008 399:2015 391:NASA 289:and 239:→ 2H 160:and 82:, a 47:and 1150:doi 1046:doi 986:doi 921:doi 885:doi 849:doi 797:doi 785:516 742:doi 720:516 600:doi 564:doi 531:doi 527:107 235:+ O 29:PEM 1504:: 1178:. 1156:. 1148:. 1138:38 1136:. 1132:. 1106:. 1060:. 1052:. 1044:. 1034:44 1032:. 1028:. 1016:^ 1002:. 994:. 984:. 974:32 972:. 968:. 941:. 917:21 915:. 909:. 879:. 873:. 843:. 837:. 813:. 805:. 795:. 783:. 779:. 756:. 748:. 740:. 732:. 718:. 691:: 689:}} 685:{{ 635:. 620:^ 606:. 594:. 570:. 537:. 525:. 521:. 490:. 464:. 425:49 423:. 419:. 383:. 287:US 231:2H 203:2H 185:CO 19:A 1259:e 1252:t 1245:v 1190:. 1164:. 1152:: 1144:: 1117:. 1092:. 1068:. 1048:: 1040:: 1010:. 988:: 980:: 953:. 927:. 923:: 891:. 887:: 881:1 855:. 851:: 845:8 821:. 799:: 791:: 764:. 744:: 736:: 726:: 701:) 681:. 647:. 614:. 602:: 580:. 566:: 545:. 533:: 506:. 475:. 401:. 241:2 237:2 233:2 223:O 221:2 217:2 215:O 205:2 103:P 27:(

Index

semipermeable membrane
ionomers
conduct protons
oxygen
hydrogen
membrane electrode assembly
proton-exchange membrane fuel cell
proton-exchange membrane electrolyser
polymer
composite
fluoropolymer
Nafion
DuPont
Teflon
conductivity
methanol

General Electric Company
Project Gemini
Apollo
Nafion
DuPont
Andre Geim
University of Manchester
graphene
boron nitride
solid oxide fuel cells
Toyota Mirai
CO
protic ionic liquids

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.