Knowledge (XXG)

Nucleon magnetic moment

Source 📝

597:. The measured values for these particles were only in rough agreement between the groups, but the Rabi group confirmed the earlier Stern measurements that the magnetic moment for the proton was unexpectedly large. Since a deuteron is composed of a proton and a neutron with aligned spins, the neutron's magnetic moment could be inferred by subtracting the deuteron and proton magnetic moments. The resulting value was not zero and had a sign opposite to that of the proton. By the late 1930s, accurate values for the magnetic moment of the neutron had been deduced by the Rabi group using measurements employing newly developed 1573:, "between late 1948 and the middle of 1949 at least six papers appeared reporting on second-order calculations of nucleon moments". These theories were also, as noted by Pais, "a flop" – they gave results that grossly disagreed with observation. Nevertheless, serious efforts continued along these lines for the next couple of decades, to little success. These theoretical approaches were incorrect because the nucleons are composite particles with their magnetic moments arising from their elementary components, quarks. 1100: 149: 1467: 424:. The magnetic moment of such a particle is parallel to its spin. Since the neutron has no charge, it should have no magnetic moment by the analogous expression. The non-zero magnetic moment of the neutron thus indicates that it is not an elementary particle. The sign of the neutron's magnetic moment is that of a negatively charged particle. Similarly, that the magnetic moment of the proton, 1342: 5314: 1399:. By this idea, the magnetic moment of the neutron was caused by the fleeting existence of the large magnetic moment of the electron in the course of these quantum-mechanical fluctuations, the value of the magnetic moment determined by the length of time the virtual electron was in existence. The theory proved to be untenable, however, when 1319:, or the magnetic moment for the nucleus as a whole. The nuclear magnetic moment also includes contributions from the orbital motion of the charged protons. The deuteron, consisting of a proton and a neutron, has the simplest example of a nuclear magnetic moment. The sum of the proton and neutron magnetic moments gives 0.879  1470:
One-loop correction to a fermion's magnetic dipole moment. The solid lines at top and bottom represent the fermion (electron or nucleon), the wavy lines represent the particle mediating the force (photons for QED, mesons for nuclear force). The middle solid lines represent a virtual pair of particles
1458:
magnetic moment of the electron results from the contributions of the "bare" electron, which is the Dirac particle, and the cloud of "virtual", short-lived electron–positron pairs and photons that surround this particle as a consequence of QED. The effects of these quantum mechanical fluctuations can
1386:
The anomalous values for the magnetic moments of the nucleons presented a theoretical quandary for the 30 years from the time of their discovery in the early 1930s to the development of the quark model in the 1960s. Considerable theoretical efforts were expended in trying to understand the origins of
1768:
where the q-subscripted variables refer to quark magnetic moment, charge, or mass. Simplistically, the magnetic moment of a nucleon can be viewed as resulting from the vector sum of the three quark magnetic moments, plus the orbital magnetic moments caused by the movement of the three charged quarks
1171:
The interaction of the neutron's magnetic moment with an external magnetic field was exploited to determine the spin of the neutron. In 1949, D. Hughes and M. Burgy measured neutrons reflected from a ferromagnetic mirror and found that the angular distribution of the reflections was consistent with
456:
Although the nucleons interact with normal matter through magnetic forces, the magnetic interactions are many orders of magnitude weaker than the nuclear interactions. The influence of the neutron's magnetic moment is therefore only apparent for low energy, or slow, neutrons. Because the value for
1357:
of opposite magnetic charge, bound together in some way, called a "Gilbertian" magnetic dipole. Elementary magnetic monopoles remain hypothetical and unobserved, however. Throughout the 1930s and 1940s it was not readily apparent which of these two mechanisms caused the nucleon intrinsic magnetic
1118:
When a nucleon is put into a magnetic field produced by an external source, it is subject to a torque tending to orient its magnetic moment parallel to the field (in the case of the neutron, its spin is antiparallel to the field). As with any magnet, this torque is proportional the product of the
1491:
Compared to the electron, the anomalous magnetic moments of the nucleons are enormous. The g-factor for the proton is 5.6, and the chargeless neutron, which should have no magnetic moment at all, has a g-factor of −3.8. Note, however, that the anomalous magnetic moments of the nucleons, that is,
1568:
magnetic moment of the neutron arose from the combined contributions of the "bare" neutron, which is zero, and the cloud of "virtual" pions and photons that surround this particle as a consequence of the nuclear and electromagnetic forces. The Feynman diagram at right is roughly the first-order
523:
The neutron was discovered in 1932, and since it had no charge, it was assumed to have no magnetic moment. Indirect evidence suggested that the neutron had a non-zero value for its magnetic moment, however, until direct measurements of the neutron's magnetic moment in 1940 resolved the issue.
1394:
suggested that the magnetic moments could be caused by the quantum-mechanical fluctuations of these particles in accordance with Fermi's 1934 theory of beta decay. By this theory, a neutron is partly, regularly and briefly, disassociated into a proton, an electron, and a neutrino as a natural
1362:
showed that the magnetic moments of nuclei (including the proton) are Ampèrian. The two kinds of magnetic moments experience different forces in a magnetic field. Based on Fermi's arguments, the intrinsic magnetic moments of elementary particles, including the nucleons, have been shown to be
1483:
in 1948. Computed to fourth order, the QED prediction for the electron's anomalous magnetic moment agrees with the experimentally measured value to more than 10 significant figures, making the magnetic moment of the electron one of the most accurately verified predictions in the history of
1127:. It is this phenomenon that enables the measurement of nuclear properties through nuclear magnetic resonance. The Larmor frequency can be determined from the product of the gyromagnetic ratio with the magnetic field strength. Since for the neutron the sign of 1292:
neutron beams. One technique employs the fact that cold neutrons will reflect from some magnetic materials at great efficiency when scattered at small grazing angles. The reflection preferentially selects particular spin states, thus polarizing the neutrons.
152:
Schematic diagram depicting the spin of the neutron as the black arrow and magnetic field lines associated with the neutron's magnetic moment. The spin of the neutron is upward in this diagram, but the magnetic field lines at the center of the dipole are
647:
The large value for the proton's magnetic moment and the inferred negative value for the neutron's magnetic moment were unexpected and could not be explained. The unexpected values for the magnetic moments of the nucleons would remain a puzzle until the
1387:
these magnetic moments, but the failures of these theories were glaring. Much of the theoretical focus was on developing a nuclear-force equivalence to the remarkably successful theory explaining the small anomalous magnetic moment of the electron.
1903:
are the magnetic moments for the down and up quarks respectively. This result combines the intrinsic magnetic moments of the quarks with their orbital magnetic moments and assumes that the three quarks are in a particular, dominant quantum state.
659:. This electrical property of the deuteron had been interfering with the measurements by the Rabi group. The discovery meant that the physical shape of the deuteron was not symmetric, which provided valuable insight into the nature of the 735: 974: 1766: 2113:
the mass of a nucleon. The masses of the quarks are actually only about 1% that of a nucleon. The discrepancy stems from the complexity of the Standard Model for nucleons, where most of their mass originates in the
1564:. In parallel with the theory for the electron, the hypothesis was that higher-order loops involving nucleons and pions may generate the anomalous magnetic moments of the nucleons. The physical picture was that the 406: 1371:
of atomic s-state energy levels. In the case of the neutron, the theoretical possibilities were resolved by laboratory measurements of the scattering of slow neutrons from ferromagnetic materials in 1951.
893: 639:. By directly measuring the magnetic moment of free neutrons, or individual neutrons free of the nucleus, Alvarez and Bloch resolved all doubts and ambiguities about this anomalous property of neutrons. 1833:
composed of three quarks, a straightforward calculation gives fairly accurate estimates for the magnetic moments of neutrons, protons, and other baryons. For a neutron, the magnetic moment is given by
140:
particles was developed in the 1960s. The nucleons are composed of three quarks, and the magnetic moments of these elementary particles combine to give the nucleons their magnetic moments.
109:. The neutron's magnetic moment is exploited to probe the atomic structure of materials using scattering methods and to manipulate the properties of neutron beams in particle accelerators. 2724:"Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. II / Magnetic Deviation of Hydrogen Molecules and the Magnetic Moment of the Proton. I" 2677:"Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. I / Magnetic Deviation of Hydrogen Molecules and the Magnetic Moment of the Proton. I" 2122:. Furthermore, the complex system of quarks and gluons that constitute a nucleon requires a relativistic treatment. Nucleon magnetic moments have been successfully computed from 685: 4917: 1977: 1945: 1345:
A magnetic dipole moment can be created by either a current loop (top; Ampèrian) or by two magnetic monopoles (bottom; Gilbertian). The nucleon magnetic moments are Ampèrian.
1681:). The magnetic moment of the nucleons can be modeled as a sum of the magnetic moments of the constituent quarks, although this simple model belies the complexities of the 1692: 1475:
The one-loop contribution to the anomalous magnetic moment of the electron, corresponding to the first-order and largest correction in QED, is found by calculating the
105:
made the first accurate, direct measurement of the neutron's magnetic moment in 1940. The proton's magnetic moment is exploited to make measurements of molecules by
5334: 5071: 4632: 3660: 3630: 3566: 3536: 3506: 3476: 2349: 2319: 2238: 2208: 2178: 4654:
Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M. (2008). "Revised value of the eighth-order QED contribution to the anomalous magnetic moment of the electron".
4197: 1433:, this "classical" result differs from the observed value by around 0.1%; the difference compared to the classical value is the anomalous magnetic moment. The 1403:
and R. Bacher showed that it predicted values for the magnetic moment that were either much too small or much too large, depending on speculative assumptions.
903: 158: 2826:
Toennies, J. P.; Schmidt-Bocking, H.; Friedrich, B.; Lower, J. C. A. (2011). "Otto Stern (1888–1969): The founding father of experimental atomic physics".
3903: 620:
in 1940. Using an extension of the magnetic resonance methods developed by Rabi, Alvarez and Bloch determined the magnetic moment of the neutron to be
351: 551:(1934) from studies of the hyperfine structure of atomic spectra. Although Tamm and Altshuler's estimate had the correct sign and order of magnitude ( 1333:. In this calculation, the spins of the nucleons are aligned, but their magnetic moments offset because of the neutron's negative magnetic moment. 862: 3230: 1149: 4421:
Shull, C. G.; Wollan, E. O.; Strauser, W. A. (1951). "Magnetic structure of magnetite and its use in studying the neutron magnetic interaction".
1240:. Neutrons can deeply penetrate matter. The magnetic moment of the neutron has therefore been exploited to probe the properties of matter using 505:. The proton's magnetic moment was determined by measuring the deflection of a beam of molecular hydrogen by a magnetic field. Stern won the 4968: 4207: 4145: 3843: 3829: 3775: 3735: 3445: 2659: 2553: 2435: 663:
binding nucleons. Rabi was awarded the Nobel Prize in 1944 for his resonance method for recording the magnetic properties of atomic nuclei.
4234: 1252:. In particular, the magnetic moment of the neutron is used to determine magnetic properties of materials at length scales of 1–100  1119:
magnetic moment and the external magnetic field strength. Since the nucleons have spin angular momentum, this torque will cause them to
1103:
Direction of Larmor precession for a neutron. The central arrow denotes the magnetic field, the small red arrow the spin of the neutron.
3683: 4766: 4608: 4528: 4484: 4006: 3886: 3802: 3361: 3310: 2907: 2507: 2475: 1682: 613: 3290: 5293: 5279: 3697: 3599: 3589: 3240: 1192:
that used a magnetic field to separate the neutron spin states. They recorded the two such spin states, consistent with a spin 
1143: 106: 5318: 4135: 1315:
Since an atomic nucleus consists of a bound state of protons and neutrons, the magnetic moments of the nucleons contribute to the
2150: 1381: 574: 345: 112:
The existence of the neutron's magnetic moment and the large value for the proton magnetic moment indicate that nucleons are not
1288:. The magnetic moment of the neutron allows some control of neutrons using magnetic fields, however, including the formation of 1134:
is negative, the neutron's spin angular momentum precesses counterclockwise about the direction of the external magnetic field.
78:. Their magnetic strengths are measured by their magnetic moments. The nucleons interact with normal matter through either the 2989:
Alvarez, L. W.; Bloch, F. (1940). "A quantitative determination of the neutron magnetic moment in absolute nuclear magnetons".
5099: 5265: 2145: 1492:
their magnetic moments with the expected Dirac particle magnetic moments subtracted, are roughly equal but of opposite sign:
1689:, each having their own magnetic moment, as computed using an expression similar to the one above for the nuclear magneton: 318:. A magnetic moment is a vector quantity, and the direction of the nucleon's magnetic moment is determined by its spin. The 3792: 1189: 5364: 3377:
Kellogg, J. M.; Rabi, I. I.; Ramsey, N. F.; Zacharias, J. R. (1939). "An electrical quadrupole moment of the deuteron".
1241: 655:
The refinement and evolution of the Rabi measurements led to the discovery in 1939 that the deuteron also possessed an
4097:
Oku, T.; Suzuki, J.; et al. (2007). "Highly polarized cold neutron beam obtained by using a quadrupole magnet".
2135: 457:
the magnetic moment is inversely proportional to particle mass, the nuclear magneton is about 1/2000 as large as the
1353:. One way is by a small loop of electric current, called an "Ampèrian" magnetic dipole. Another way is by a pair of 1028: 598: 132:, but the neutron has no net charge. Their magnetic moments were puzzling and defied a valid explanation until the 5029:
Sakita, B. (1964). "Electromagnetic properties of baryons in the supermultiplet scheme of elementary particles".
4553: 2140: 1807: 1411: 1298: 4907: 5339: 1454:. QED is the theory of the mediation of the electromagnetic force by photons. The physical picture is that the 518: 462: 3934: 5349: 5031: 4994: 4316: 4022: 2097:
The results of this calculation are encouraging, but the masses of the up or down quarks were assumed to be
1407: 1316: 1310: 421: 3962:
Sherwood, J.E.; Stephenson, T.E.; Bernstein, S. (1954). "Stern–Gerlach experiment on polarized neutrons".
532: 506: 37: 897:
For nucleons, the ratio is conventionally written in terms of the proton mass and charge, by the formula
3264: 1285: 1099: 502: 94: 476:
have the same magnitudes as their antiparticles, the proton and neutron, but they have opposite sign.
453:, and the magnetic moments of the quarks can be used to compute the magnetic moments of the nucleons. 5205: 5147: 5085: 5040: 5003: 4869: 4824: 4724: 4675: 4562: 4432: 4395: 4358: 4281: 4108: 4064: 3971: 3918: 3386: 3297:
Discovering Alvarez: Selected works of Luis W. Alvarez with commentary by his students and colleagues
3191: 3156: 3114: 3042: 3000: 2960: 2916: 2845: 2784: 2735: 2688: 2595: 2276: 1955: 1923: 617: 330: 4521:
20th Century Physics: Essays and Recollections: a Selection of Historical Writings by Edoardo Amaldi
97:. While the neutron was determined to have a magnetic moment by indirect methods in the mid-1930s, 5271: 5260:
S. W. Lovesey (1986). Theory of Neutron Scattering from Condensed Matter. Oxford University Press.
4858:
Gell, Y.; Lichtenberg, D. B. (1969). "Quark model and the magnetic moments of proton and neutron".
4758: 1368: 1294: 1257: 1245: 605: 586: 113: 98: 4545: 3412: 3027: 2879: 5344: 5171: 5137: 4974: 4946: 4885: 4860: 4807: 4792: 4691: 4665: 4297: 4169: 2861: 2835: 2808: 2751: 2704: 1822: 1815: 1554: 1354: 1261: 1249: 846: 672: 498: 494: 4600: 4594: 3353: 2582: 2545: 2467: 1390:
The problem of the origins of the magnetic moments of nucleons was recognized as early as 1935.
4476: 3302: 5289: 5275: 5261: 5163: 4964: 4912: 4840: 4762: 4656: 4604: 4524: 4519:
Amaldi, E. (1998). "Gian Carlo Wick during the 1930s". In Battimelli, G.; Paoloni, G. (eds.).
4480: 4464: 4349: 4245: 4203: 4141: 4055: 4002: 3882: 3839: 3835: 3798: 3771: 3731: 3721: 3693: 3595: 3441: 3435: 3357: 3306: 3236: 2800: 2655: 2549: 2503: 2471: 2431: 2403: 1795:, which agrees with the experimental value to within 3%. The measured value for this ratio is 1364: 1289: 1124: 1113: 1027:
and the strength of the magnetic field in nuclear magnetic resonance applications, such as in
1024: 582: 413: 264: 5232: 2951:
Breit, G.; Rabi, I. I. (1934). "On the interpretation of present values of nuclear moments".
2380: 1776:, and A. Pais theoretically calculated the ratio of proton-to-neutron magnetic moments to be 5359: 5299: 5213: 5155: 5048: 5011: 4956: 4877: 4832: 4732: 4683: 4570: 4440: 4403: 4366: 4289: 4116: 4072: 3979: 3926: 3727: 3394: 3199: 3164: 3122: 3069: 3050: 3008: 2968: 2924: 2853: 2792: 2743: 2696: 2603: 2423: 2376: 2284: 1480: 1233: 770: 754: 249: 3182:
Rabi, I. I.; Kellogg, J. M.; Zacharias, J. R. (1934). "The magnetic moment of the deuton".
3147:
Rabi, I. I.; Kellogg, J. M.; Zacharias, J. R. (1934). "The magnetic moment of the proton".
3101: 2408: 1414:
of a particle stems from the small contributions of quantum mechanical fluctuations to the
148: 5354: 4815: 4715: 4423: 4386: 3767: 2991: 2415: 2123: 1773: 1476: 1460: 1419: 1415: 1391: 1350: 544: 449:
indicates that it too is not an elementary particle. Protons and neutrons are composed of
121: 2723: 2676: 2118:
fields, virtual particles, and their associated energy that are essential aspects of the
730:{\displaystyle {\boldsymbol {\mu }}={\frac {g\mu _{\text{N}}}{\hbar }}{\boldsymbol {I}},} 213:. The best available measurement for the value of the magnetic moment of the neutron is 17: 5209: 5190: 5151: 5044: 5007: 4873: 4828: 4786: 4728: 4679: 4593:
Peskin, M. E.; Schroeder, D. V. (1995). "6.3. The Electron VertexFunction: Evaluation".
4566: 4436: 4399: 4362: 4285: 4112: 4068: 3975: 3922: 3390: 3195: 3160: 3118: 3046: 3004: 2964: 2920: 2849: 2788: 2739: 2692: 2599: 2280: 5285: 4469: 3652: 3622: 3346: 3295: 3226: 2538: 2495: 2460: 1265: 1237: 1156: 969:{\displaystyle \gamma ={\frac {g\mu _{\text{N}}}{\hbar }}=g{\frac {e}{2m_{\text{p}}}}.} 334: 323: 117: 63: 4384:
Hughes, D. J.; Burgy, M. T. (1951). "Reflection of neutrons from magnetized mirrors".
2628: 2261: 1023:. The gyromagnetic ratio is also the ratio between the observed angular frequency of 5328: 5274:(1982). Introduction to High Energy Physics. Reading, Massachusetts: Addison Wesley, 5217: 4889: 4695: 4370: 4301: 3268: 2865: 2812: 2755: 2708: 2230: 2200: 2170: 1826: 1281: 1208:
particle. Until these measurements, the possibility that the neutron was a spin 
660: 590: 528: 458: 326:
is towards aligning the neutron's spin vector opposite to the magnetic field vector.
260: 116:. For an elementary particle to have an intrinsic magnetic moment, it must have both 83: 79: 5175: 4978: 3558: 3528: 1772:
In one of the early successes of the Standard Model (SU(6) theory), in 1964 M. Beg,
1761:{\displaystyle \ \mu _{\text{q}}={\frac {\ e_{\text{q}}\hbar \ }{2m_{\text{q}}}}\ ,} 1557:
for nucleons was discovered in the mid-1930s, and this nuclear force is mediated by
4992:
Beg, M.A.B.; Lee, B.W.; Pais, A. (1964). "SU(6) and electromagnetic interactions".
2419: 2119: 1811: 1686: 1570: 1359: 1044: 548: 2341: 4960: 4624: 3760: 3468: 2311: 1148:
Nuclear magnetic resonance employing the magnetic moments of protons is used for
5159: 4120: 3498: 1582: 1466: 1269: 769:-factor is dimensionless, for composite particles it is defined relative to the 649: 609: 473: 450: 133: 102: 5052: 5015: 4687: 4076: 2502:. Reading, Massachusetts: Addison-Wesley Publishing Company. pp. 679–680. 2289: 1806:. A contradiction of the quantum mechanical basis of this calculation with the 1188:. In 1954, J. Sherwood, T. Stephenson, and S. Bernstein employed neutrons in a 527:
Values for the magnetic moment of the neutron were independently determined by
4941:
Greenberg, O.W. (2009). "Color charge degree of freedom in particle physics".
2427: 1406:
Similar considerations for the electron proved to be much more successful. In
1400: 1396: 1341: 1153: 1120: 656: 578: 490: 469: 90: 5128:
Ji, Xiangdong (1995). "A QCD analysis of the mass structure of the nucleon".
4836: 4500:
Wick, G. C. (1935). "Teoria dei raggi beta e momento magnetico del protone".
2804: 1569:
diagram, with the role of the virtual particles played by pions. As noted by
1284:
cannot be controlled by the conventional electromagnetic methods employed in
4574: 4099: 4049: 3983: 3930: 3879:
Neutrons, Nuclei, and Matter: An exploration of the physics of slow neutrons
3689: 3054: 1160: 540: 536: 5167: 4737: 4710: 4444: 4407: 4001:. Vol. 1: Nuclear Scattering. Oxford: Clarendon Press. pp. 1–30. 3398: 3203: 3168: 3126: 3012: 2972: 2929: 2902: 2857: 604:
The value for the neutron's magnetic moment was first directly measured by
82:
or their magnetic moments, with the charged proton also interacting by the
5313: 4272: 1430: 1253: 594: 268: 125: 5068:
The 2010 CODATA Recommended Values of the Fundamental Physical Constants
2650:
Schreckenbach, K. (2013). "Physics of the Neutron". In Stock, R. (ed.).
1363:
Ampèrian. The arguments are based on basic electromagnetism, elementary
1163:
of many substances, NMR can determine the structure of those molecules.
671:
The magnetic moment of a nucleon is sometimes expressed in terms of its
5142: 4881: 4347:
Mezei, F. (1986). "La Nouvelle Vague in Polarized Neutron Scattering".
4293: 2796: 2747: 2700: 2654:. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. pp. 321–354. 1586: 1485: 1429:
for a negatively charged, spin-1/2 particle. For particles such as the
1248:
techniques. These methods provide information that is complementary to
75: 71: 45: 4844: 4475:. Bristol and Philadelphia: Institute of Physics Publishing. pp.  2607: 2231:"2022 CODATA Value: neutron magnetic moment to nuclear magneton ratio" 252:, a standard unit for the magnetic moments of nuclear components, and 2771: 2171:"2022 CODATA Value: proton magnetic moment to nuclear magneton ratio" 1830: 1479:
shown in the diagram on the right. The calculation was discovered by
465:
is therefore about 1000 times larger than that of the nucleons.
319: 137: 41: 5067: 4711:"On Quantum-Electrodynamics and the Magnetic Moment of the Electron" 4523:. Singapore: World Scientific Publishing Company. pp. 128–139. 3828:
R. M. Silverstein; F. X. Webster; D. J. Kiemle; D. L. Bryce (2014).
1232:
Since neutrons are neutral particles, they do not have to overcome
682:-factor for composite particles, such as the neutron or proton, is 5302:(1975). Magnetism of Elementary Particles. Moscow: Mir Publishers. 5288:(1987). Rabi, Scientist and Citizen. New York: Basic Books, Inc., 4951: 4670: 2840: 2201:"2022 CODATA Value: proton magnetic moment to Bohr magneton ratio" 2115: 1561: 1465: 1340: 1098: 856: 851: 593:
had independently measured the magnetic moments of the proton and
147: 4270:
Fermi, E. (1930). "Uber die magnetischen Momente der Atomkerne".
4202:(5th ed.). London: Holt, Rinehart and Winston. p. 556. 401:{\displaystyle \mu _{\text{N}}={\frac {e\hbar }{2m_{\text{p}}}},} 4324: 1685:. The calculation assumes that the quarks behave like pointlike 1558: 337:, a charged, spin-1/2 elementary particle, with a proton's mass 67: 5189:
Martinelli, G.; Parisi, G.; Petronzio, R.; Rapuano, F. (1982).
3904:"Reflection and polarization of neutrons by magnetized mirrors" 1272:
in physics in 1994 for developing these scattering techniques.
4808:"Anomalous Magnetic Moment of the Electron, Muon, and Nucleon" 3437:
Particles and Nuclei: An Introduction to the Physical Concepts
1040: 888:{\displaystyle {\boldsymbol {\mu }}=\gamma {\boldsymbol {I}}.} 89:
The proton's magnetic moment was directly measured in 1933 by
5066:
Mohr, P.J.; Taylor, B.N.; Newell, D.B., eds. (June 2, 2011).
1471:(electron and positron for QED, pions for the nuclear force). 489:
The magnetic moment of the proton was discovered in 1933 by
161:
recommended value for the magnetic moment of the proton is
1635:) while the proton is composed of one down quark (charge 5191:"The proton and neutron magnetic moments in lattice QCD" 3766:. West Sussex, England: John Wiley & Sons. pp.  3623:"2022 CODATA Value: neutron gyromagnetic ratio in MHz/T" 2260:
Beringer, J.; et al. (Particle Data Group) (2012).
859:
of its magnetic moment to its spin angular momentum, or
4755:
Theoretical Nuclear Physics Volume I: Nuclear Structure
4629:
The NIST Reference on Constants, Units, and Uncertainty
3657:
The NIST Reference on Constants, Units, and Uncertainty
3653:"2022 CODATA Value: proton gyromagnetic ratio in MHz/T" 3627:
The NIST Reference on Constants, Units, and Uncertainty
3563:
The NIST Reference on Constants, Units, and Uncertainty
3533:
The NIST Reference on Constants, Units, and Uncertainty
3503:
The NIST Reference on Constants, Units, and Uncertainty
3473:
The NIST Reference on Constants, Units, and Uncertainty
2346:
The NIST Reference on Constants, Units, and Uncertainty
2316:
The NIST Reference on Constants, Units, and Uncertainty
2235:
The NIST Reference on Constants, Units, and Uncertainty
2205:
The NIST Reference on Constants, Units, and Uncertainty
2175:
The NIST Reference on Constants, Units, and Uncertainty
5084:
The database was developed by J. Baker, M. Douma, and
1326:, which is within 3% of the measured value 0.857  678:, a dimensionless scalar. The convention defining the 3685:
Fundamentals of MRI: An Interactive Learning Approach
3028:"Note on the Magnetic Moment of the Nitrogen Nucleus" 1958: 1926: 1695: 1236:
as they approach charged targets, unlike protons and
906: 865: 688: 354: 5233:"Pinpointing the magnetic moments of nuclear matter" 4050:"Demonstration of focusing by a neutron accelerator" 3440:. Berlin: Springer-Verlag. pp. 74–75, 259–260. 3434:
Povh, B.; Rith, K.; Scholz, C.; Zetsche, F. (2002).
2652:
Encyclopedia of Nuclear Physics and its Applications
4918:
American Association for the Advancement of Science
3881:. Mineola, NY: Dover Publications. pp. 28–31. 3797:(1st ed.). Amsterdam: Elsevier. pp. 1–7. 3762:
Spin dynamics: basics of nuclear magnetic resonance
2544:. Reading, Massachusetts: Addison Wesley. pp.  4599:. Reading, Massachusetts: Perseus Books. pp.  4468: 4458: 4456: 4454: 4048: 3999:Theory of Neutron Scattering from Condensed Matter 3759: 3345: 3294: 3100: 2770: 2581: 2537: 2459: 2407: 1971: 1939: 1760: 1589:, the neutron is composed of one up quark (charge 968: 887: 729: 400: 4317:"The nature of intrinsic magnetic dipole moments" 4047:Arimoto, Y.; Geltenbort, S.; et al. (2012). 3831:Spectrometric Identification of Organic Compounds 2262:"Review of Particle Physics, 2013 partial update" 4945:. Springer Berlin Heidelberg. pp. 109–111. 4546:"Nuclear Physics A. Stationary states of nuclei" 3529:"2022 CODATA Value: neutron gyromagnetic ratio" 3235:. New York: Basic Books, Inc. pp. 99–114. 5072:National Institute of Standards and Technology 4908:"Mass of the common quark finally nailed down" 4791:. New York: Oxford University Press. pp.  4134:Fernandez-Alonso, Felix; Price, David (2013). 3823: 3821: 3559:"2022 CODATA Value: proton gyromagnetic ratio" 1301:phenomenon to control beams of slow neutrons. 4242:Joseph Henry Laboratory, Princeton University 2772:"Molecular beams: our legacy from Otto Stern" 2126:, requiring significant computing resources. 1418:of that particle. The g-factor for a "Dirac" 1349:A magnetic dipole moment can be generated by 1150:nuclear magnetic resonance (NMR) spectroscopy 322:on the neutron that results from an external 8: 4936: 4934: 3265:"Isidor Isaac Rabi: walking the path of God" 2629:"CODATA values of the fundamental constants" 2342:"2022 CODATA Value: neutron magnetic moment" 1376:Anomalous magnetic moments and meson physics 4471:The Origin of the Concept of Nuclear Forces 4228: 4226: 3957: 3955: 3594:. Hoboken, New Jersey: Wiley-Interscience. 3352:. Oxford: Oxford University Press. p.  2371: 2369: 2367: 2312:"2022 CODATA Value: proton magnetic moment" 1437:-factor for the electron is measured to be 4199:Introduction to Atomic and Nuclear Physics 4140:. Amsterdam: Academic Press. p. 103. 2984: 2982: 2494:Hausser, O. (1981). "Nuclear Moments". In 2489: 2487: 1228:Neutrons used to probe material properties 1123:with a well-defined frequency, called the 1039:called "gamma bar", expressed in the unit 5141: 4950: 4736: 4669: 4588: 4586: 4584: 3221: 3219: 3217: 3215: 3213: 2928: 2839: 2398: 2396: 2394: 2392: 2288: 1963: 1957: 1931: 1925: 1743: 1722: 1712: 1703: 1694: 954: 941: 923: 913: 905: 877: 866: 864: 719: 707: 697: 689: 687: 386: 368: 359: 353: 4191: 4189: 3872: 3870: 3868: 3866: 3864: 3862: 3301:. University of Chicago Press. pp.  3291:"Chapter 5: The Neutron Magnetic Moment" 2946: 2944: 2942: 2940: 1906: 1224:particle could not have been ruled out. 573:By 1934 groups led by Stern, now at the 27:In physics, proton and neutron magnetism 4901: 4899: 4596:An Introduction to Quantum Field Theory 3339: 3337: 3335: 3333: 3331: 3329: 2575: 2573: 2571: 2569: 2567: 2565: 2531: 2529: 2527: 2525: 2523: 2521: 2519: 2162: 1728: 1577:Quark model of nucleon magnetic moments 930: 878: 867: 720: 714: 690: 570:), the result was met with skepticism. 374: 5335:Electric and magnetic fields in matter 4625:"2022 CODATA Value: electron g factor" 4042: 4040: 3068:Tamm, I. Y.; Altshuler, S. A. (1934). 1337:Nature of the nucleon magnetic moments 1280:As neutrons carry no electric charge, 1001:. The proton's gyromagnetic ratio is 4788:Electromagnetic Structure of Nucleons 4780: 4778: 3834:(8th ed.). Hoboken, New Jersey: 3726:(2nd ed.). Hoboken, New Jersey: 3469:"2022 CODATA Value: neutron g factor" 2458:Bjorken, J. D.; Drell, S. D. (1964). 1276:Control of neutron beams by magnetism 348:are ignored. The nuclear magneton is 70:comprises protons and neutrons, both 7: 4753:deShalit, A.; Feschbach, H. (1974). 4544:Bethe, H. A.; Bacher, R. F. (1936). 3720:B. D. Cullity; C. D. Graham (2008). 3499:"2022 CODATA Value: proton g factor" 2453: 2451: 2449: 2447: 979:The neutron's gyromagnetic ratio is 5231:Kincade, Kathy (February 2, 2015). 4785:Drell, S.; Zachariasen, F. (1961). 2583:"Exotic physics with slow neutrons" 2540:Introduction to High Energy Physics 3902:Hughes, D.J.; Burgy, M.T. (1949). 3723:Introduction to Magnetic Materials 3682:Berry, E.; Bulpitt, A. J. (2008). 2908:Proceedings of the Royal Society A 2466:. New York: McGraw-Hill. pp.  1683:Standard Model of Particle Physics 745:is the intrinsic magnetic moment, 25: 4806:Drell, S.; Pagels, H. R. (1965). 4170:"Neutron Optics and Polarization" 4023:"The Nobel Prize in Physics 1994" 3413:"The Nobel Prize in Physics 1944" 2880:"The Nobel Prize in Physics 1943" 2382:Magnetism of Elementary Particles 1144:Proton nuclear magnetic resonance 1138:Proton nuclear magnetic resonance 1047:, is often given. The quantities 855:, of a particle or system is the 824:, while the proton's g-factor is 107:proton nuclear magnetic resonance 5312: 4235:"The Forces on Magnetic Dipoles" 3099:Esterman, I.; Stern, O. (1934). 3070:"Magnetic moment of the neutron" 2722:Esterman, I.; Stern, O. (1933). 2151:Neutron triple-axis spectrometry 1459:be computed theoretically using 1382:Anomalous magnetic dipole moment 1031:. For this reason, the quantity 575:Carnegie Institute of Technology 4137:Neutron Scattering Fundamentals 3794:Basic H- and C-NMR Spectroscopy 3102:"Magnetic moment of the deuton" 2410:Principles of Quantum Mechanics 1972:{\displaystyle \mu _{\text{N}}} 1940:{\displaystyle \mu _{\text{N}}} 463:magnetic moment of the electron 3263:J. Rigden (November 1, 1999). 2769:Ramsey, N. F. (June 1, 1988). 2675:Frisch, R.; Stern, O. (1933). 2462:Relativistic Quantum Mechanics 2146:Neutron electric dipole moment 1612:) and two down quarks (charge 442:is not almost equal to 1  1: 4943:Compendium of Quantum Physics 4906:Cho, Adiran (April 2, 2010). 3293:. In Trower, W. Peter (ed.). 1167:Determination of neutron spin 5218:10.1016/0370-2693(82)90162-9 5070:(Report). Gaithersburg, MD: 5002:(16): 514–517, erratum 650. 4961:10.1007/978-3-540-70626-7_32 4751:See chapter 1, section 6 in 4371:10.1016/0378-4363(86)90335-9 1810:led to the discovery of the 1658:) and two up quarks (charge 1091:, are therefore convenient. 652:was developed in the 1960s. 509:in 1943 for this discovery. 468:The magnetic moments of the 329:The nuclear magneton is the 5160:10.1103/PhysRevLett.74.1071 4121:10.1016/j.physb.2007.02.055 3232:Rabi, Scientist and Citizen 2536:Perkins, Donald H. (1982). 667:Nucleon gyromagnetic ratios 5381: 5053:10.1103/physrevlett.13.643 5016:10.1103/physrevlett.13.514 4688:10.1103/PhysRevD.77.053012 4077:10.1103/PhysRevA.86.023843 3591:NMR spectroscopy explained 3588:Jacobsen, Neil E. (2007). 3289:Ramsey, Norman F. (1987). 3074:Doklady Akademii Nauk SSSR 2290:10.1103/PhysRevD.86.010001 1379: 1308: 1141: 1111: 657:electric quadrupole moment 599:nuclear magnetic resonance 516: 4554:Reviews of Modern Physics 2428:10.1007/978-1-4757-0576-8 2385:. Moscow: Mir Publishers. 2141:LARMOR neutron microscope 1808:Pauli exclusion principle 1412:anomalous magnetic moment 1299:total internal reflection 18:Proton–gyromagnetic ratio 4837:10.1103/PhysRev.140.B397 4233:McDonald, K. T. (2014). 2903:"Existence of a Neutron" 2901:Chadwick, James (1932). 2777:Zeitschrift für Physik D 1305:Nuclear magnetic moments 1295:Neutron magnetic mirrors 1190:Stern–Gerlach experiment 614:University of California 519:Discovery of the neutron 34:nucleon magnetic moments 5319:Neutron magnetic moment 5032:Physical Review Letters 4995:Physical Review Letters 4575:10.1103/RevModPhys.8.82 4315:Jackson, J. D. (1977). 3984:10.1103/PhysRev.96.1546 3931:10.1103/PhysRev.76.1413 3688:. Boca Raton, Florida: 3055:10.1103/physrev.43.1001 2500:Encyclopedia of Physics 2498:; Trigg, G. L. (eds.). 1408:quantum electrodynamics 1351:two possible mechanisms 1317:nuclear magnetic moment 1311:Nuclear magnetic moment 643:Unexpected consequences 422:reduced Planck constant 38:magnetic dipole moments 5074:. Web Version 6.0 4738:10.1103/PhysRev.73.416 4709:Schwinger, J. (1948). 4502:Rend. R. Accad. Lincei 4445:10.1103/physrev.81.483 4408:10.1103/physrev.81.498 3997:S. W. Lovesey (1986). 3399:10.1103/physrev.55.318 3344:Pais, Abraham (1986). 3204:10.1103/physrev.46.163 3169:10.1103/physrev.46.157 3127:10.1103/PhysRev.45.739 3026:Bacher, R. F. (1933). 3013:10.1103/physrev.57.111 2973:10.1103/physrev.46.230 2930:10.1098/rspa.1932.0112 2858:10.1002/andp.201100228 2136:Aharonov–Casher effect 1973: 1941: 1762: 1472: 1346: 1104: 970: 889: 731: 533:University of Michigan 507:Nobel Prize in Physics 402: 154: 4196:Semat, Henry (1972). 3758:M. H. Levitt (2001). 1974: 1942: 1763: 1469: 1344: 1286:particle accelerators 1102: 1095:Physical significance 971: 890: 732: 503:University of Hamburg 403: 346:anomalous corrections 151: 95:University of Hamburg 74:that behave as small 5321:at Wikimedia Commons 5220:– via cern.ch. 5100:"The Origin of Mass" 5098:Wilczek, F. (2003). 3838:. pp. 126–163. 1956: 1924: 1693: 1297:and guides use this 904: 863: 686: 545:S. A. Altshuler 352: 331:spin magnetic moment 124:. The nucleons have 114:elementary particles 5365:Physical quantities 5210:1982PhLB..116..434M 5152:1995PhRvL..74.1071J 5045:1964PhRvL..13..643S 5008:1964PhRvL..13..514B 4874:1969NCimA..61...27G 4829:1965PhRv..140..397D 4759:John Wiley and Sons 4729:1948PhRv...73..416S 4680:2008PhRvD..77e3012A 4567:1936RvMP....8...82B 4437:1951PhRv...81..483S 4400:1951PhRv...81..498H 4363:1986PhyBC.137..295M 4286:1930ZPhy...60..320F 4113:2007PhyB..397..188O 4069:2012PhRvA..86b3843A 3976:1954PhRv...96.1546S 3923:1949PhRv...76.1413H 3391:1939PhRv...55..318K 3196:1934PhRv...46..163R 3161:1934PhRv...46..157R 3119:1934PhRv...45..739S 3047:1933PhRv...43.1001B 3005:1940PhRv...57..111A 2965:1934PhRv...46..230B 2921:1932RSPSA.136..692C 2850:2011AnP...523.1045T 2789:1988ZPhyD..10..121R 2740:1933ZPhy...85...17E 2693:1933ZPhy...85....4F 2600:2013PhT....66c..50S 2281:2012PhRvD..86a0001B 1825:quantum-mechanical 1422:is predicted to be 1369:hyperfine structure 802:, so the neutron's 773:. For the neutron, 765:-factor. While the 587:Columbia University 271:, these values are 5107:MIT Physics Annual 4882:10.1007/BF02760010 4861:Il Nuovo Cimento A 4294:10.1007/bf01339933 4025:. Nobel Foundation 3940:on August 13, 2016 3877:Byrne, J. (2011). 3791:Balci, M. (2005). 3415:. Nobel Foundation 2882:. Nobel Foundation 2828:Annalen der Physik 2797:10.1007/BF01384845 2748:10.1007/bf01330774 2701:10.1007/bf01330773 1969: 1937: 1758: 1555:Yukawa interaction 1473: 1358:moments. In 1930, 1355:magnetic monopoles 1347: 1250:X-ray spectroscopy 1105: 966: 885: 847:gyromagnetic ratio 727: 499:Immanuel Estermann 495:Otto Robert Frisch 398: 265:physical constants 155: 36:are the intrinsic 5317:Media related to 5272:Donald H. Perkins 5198:Physics Letters B 4970:978-3-540-70622-9 4823:(2B): B397–B407. 4657:Physical Review D 4251:on August 2, 2019 4209:978-1-4615-9701-8 4147:978-0-12-398374-9 4056:Physical Review A 3845:978-0-470-61637-6 3777:978-0-471-48921-4 3737:978-0-471-47741-9 3447:978-3-540-43823-6 3113:(10): 761(A109). 3041:(12): 1001–1002. 2834:(12): 1045–1070. 2661:978-3-527-40742-2 2608:10.1063/PT.3.1918 2580:Snow, M. (2013). 2555:978-0-201-05757-7 2437:978-1-4757-0576-8 2377:Vonsovsky, Sergei 2095: 2094: 1966: 1934: 1754: 1750: 1746: 1733: 1725: 1717: 1706: 1698: 1365:quantum mechanics 1234:Coulomb repulsion 1114:Larmor precession 1108:Larmor precession 1080: =  1058: =  1025:Larmor precession 1008: =  986: =  961: 957: 933: 926: 831: =  813: =  761:is the effective 717: 710: 414:elementary charge 393: 389: 362: 306: =  278: =  16:(Redirected from 5372: 5316: 5300:Sergei Vonsovsky 5248: 5247: 5245: 5243: 5228: 5222: 5221: 5195: 5186: 5180: 5179: 5145: 5136:(7): 1071–1074. 5125: 5119: 5118: 5116: 5114: 5104: 5095: 5089: 5083: 5081: 5079: 5063: 5057: 5056: 5026: 5020: 5019: 4989: 4983: 4982: 4954: 4938: 4929: 4928: 4926: 4924: 4903: 4894: 4893: 4855: 4849: 4848: 4812: 4803: 4797: 4796: 4782: 4773: 4772: 4749: 4743: 4742: 4740: 4706: 4700: 4699: 4673: 4651: 4645: 4644: 4642: 4640: 4621: 4615: 4614: 4590: 4579: 4578: 4550: 4541: 4535: 4534: 4516: 4510: 4509: 4497: 4491: 4490: 4474: 4460: 4449: 4448: 4418: 4412: 4411: 4381: 4375: 4374: 4344: 4338: 4337: 4335: 4333: 4321: 4312: 4306: 4305: 4280:(5–6): 320–333. 4267: 4261: 4260: 4258: 4256: 4250: 4244:. Archived from 4239: 4230: 4221: 4220: 4218: 4216: 4193: 4184: 4183: 4181: 4179: 4174: 4165: 4159: 4158: 4156: 4154: 4131: 4125: 4124: 4107:(1–2): 188–191. 4094: 4088: 4087: 4085: 4083: 4052: 4044: 4035: 4034: 4032: 4030: 4019: 4013: 4012: 3994: 3988: 3987: 3970:(6): 1546–1548. 3959: 3950: 3949: 3947: 3945: 3939: 3933:. Archived from 3917:(9): 1413–1414. 3908: 3899: 3893: 3892: 3874: 3857: 3856: 3854: 3852: 3825: 3816: 3815: 3813: 3811: 3788: 3782: 3781: 3765: 3755: 3749: 3748: 3746: 3744: 3728:Wiley-IEEE Press 3717: 3711: 3710: 3708: 3706: 3679: 3673: 3672: 3670: 3668: 3649: 3643: 3642: 3640: 3638: 3619: 3613: 3612: 3610: 3608: 3585: 3579: 3578: 3576: 3574: 3555: 3549: 3548: 3546: 3544: 3525: 3519: 3518: 3516: 3514: 3495: 3489: 3488: 3486: 3484: 3465: 3459: 3458: 3456: 3454: 3431: 3425: 3424: 3422: 3420: 3409: 3403: 3402: 3374: 3368: 3367: 3351: 3341: 3324: 3323: 3321: 3319: 3300: 3286: 3280: 3279: 3277: 3275: 3260: 3254: 3253: 3251: 3249: 3223: 3208: 3207: 3179: 3173: 3172: 3144: 3138: 3137: 3135: 3133: 3104: 3096: 3090: 3089: 3087: 3085: 3065: 3059: 3058: 3032: 3023: 3017: 3016: 2986: 2977: 2976: 2948: 2935: 2934: 2932: 2915:(830): 692–708. 2898: 2892: 2891: 2889: 2887: 2876: 2870: 2869: 2843: 2823: 2817: 2816: 2774: 2766: 2760: 2759: 2719: 2713: 2712: 2672: 2666: 2665: 2647: 2641: 2640: 2638: 2636: 2625: 2619: 2618: 2616: 2614: 2585: 2577: 2560: 2559: 2543: 2533: 2514: 2513: 2491: 2482: 2481: 2465: 2455: 2442: 2441: 2414:(2nd ed.). 2413: 2400: 2387: 2386: 2373: 2362: 2361: 2359: 2357: 2338: 2332: 2331: 2329: 2327: 2308: 2302: 2301: 2299: 2297: 2292: 2266: 2257: 2251: 2250: 2248: 2246: 2227: 2221: 2220: 2218: 2216: 2197: 2191: 2190: 2188: 2186: 2167: 2124:first principles 2112: 2110: 2109: 2106: 2103: 2082: 2079: 2077: 2076: 2073: 2070: 2060: 2057: 2055: 2054: 2051: 2048: 2026: 2023: 2021: 2020: 2017: 2014: 2004: 2001: 1999: 1998: 1995: 1992: 1978: 1976: 1975: 1970: 1968: 1967: 1964: 1946: 1944: 1943: 1938: 1936: 1935: 1932: 1907: 1899: 1892: 1888: 1886: 1879: 1877: 1876: 1873: 1870: 1857: 1855: 1854: 1851: 1848: 1805: 1803: 1800: 1794: 1792: 1791: 1788: 1785: 1781: 1767: 1765: 1764: 1759: 1752: 1751: 1749: 1748: 1747: 1744: 1734: 1731: 1727: 1726: 1723: 1715: 1713: 1708: 1707: 1704: 1696: 1680: 1676: 1674: 1673: 1670: 1667: 1663: 1657: 1653: 1651: 1650: 1647: 1644: 1640: 1634: 1630: 1628: 1627: 1624: 1621: 1617: 1611: 1607: 1605: 1604: 1601: 1598: 1594: 1549: 1548: 1538: 1520: 1519: 1509: 1461:Feynman diagrams 1453: 1451: 1448: 1445: 1442: 1428: 1223: 1221: 1220: 1217: 1214: 1207: 1205: 1204: 1201: 1198: 1187: 1185: 1184: 1181: 1178: 1125:Larmor frequency 1090: 1088: 1085: 1068: 1065: 1063: 1022: 1020: 1016: 1013: 1000: 998: 994: 991: 975: 973: 972: 967: 962: 960: 959: 958: 955: 942: 934: 929: 928: 927: 924: 914: 894: 892: 891: 886: 881: 870: 854: 841: 839: 836: 823: 821: 818: 805: 801: 800: 797: 795: 794: 791: 788: 780: 771:nuclear magneton 768: 764: 760: 755:angular momentum 752: 744: 736: 734: 733: 728: 723: 718: 713: 712: 711: 708: 698: 693: 681: 675: 638: 637: 633: 624: 569: 568: 564: 555: 445: 441: 419: 411: 407: 405: 404: 399: 394: 392: 391: 390: 387: 377: 369: 364: 363: 360: 340: 317: 315: 311: 298: 295: 293: 289: 286: 283: 250:nuclear magneton 240: 231: 229: 226: 205: 203: 200: 197: 194: 181: 179: 176: 173: 21: 5380: 5379: 5375: 5374: 5373: 5371: 5370: 5369: 5340:Magnetic moment 5325: 5324: 5309: 5257: 5252: 5251: 5241: 5239: 5230: 5229: 5225: 5193: 5188: 5187: 5183: 5130:Phys. Rev. Lett 5127: 5126: 5122: 5112: 5110: 5102: 5097: 5096: 5092: 5077: 5075: 5065: 5064: 5060: 5039:(21): 643–646. 5028: 5027: 5023: 4991: 4990: 4986: 4971: 4940: 4939: 4932: 4922: 4920: 4905: 4904: 4897: 4857: 4856: 4852: 4816:Physical Review 4810: 4805: 4804: 4800: 4784: 4783: 4776: 4769: 4752: 4750: 4746: 4716:Physical Review 4708: 4707: 4703: 4653: 4652: 4648: 4638: 4636: 4623: 4622: 4618: 4611: 4592: 4591: 4582: 4548: 4543: 4542: 4538: 4531: 4518: 4517: 4513: 4499: 4498: 4494: 4487: 4462: 4461: 4452: 4424:Physical Review 4420: 4419: 4415: 4387:Physical Review 4383: 4382: 4378: 4346: 4345: 4341: 4331: 4329: 4319: 4314: 4313: 4309: 4269: 4268: 4264: 4254: 4252: 4248: 4237: 4232: 4231: 4224: 4214: 4212: 4210: 4195: 4194: 4187: 4177: 4175: 4172: 4167: 4166: 4162: 4152: 4150: 4148: 4133: 4132: 4128: 4096: 4095: 4091: 4081: 4079: 4046: 4045: 4038: 4028: 4026: 4021: 4020: 4016: 4009: 3996: 3995: 3991: 3961: 3960: 3953: 3943: 3941: 3937: 3906: 3901: 3900: 3896: 3889: 3876: 3875: 3860: 3850: 3848: 3846: 3827: 3826: 3819: 3809: 3807: 3805: 3790: 3789: 3785: 3778: 3757: 3756: 3752: 3742: 3740: 3738: 3730:. p. 103. 3719: 3718: 3714: 3704: 3702: 3700: 3692:. p. 320. 3681: 3680: 3676: 3666: 3664: 3651: 3650: 3646: 3636: 3634: 3621: 3620: 3616: 3606: 3604: 3602: 3587: 3586: 3582: 3572: 3570: 3557: 3556: 3552: 3542: 3540: 3527: 3526: 3522: 3512: 3510: 3497: 3496: 3492: 3482: 3480: 3467: 3466: 3462: 3452: 3450: 3448: 3433: 3432: 3428: 3418: 3416: 3411: 3410: 3406: 3379:Physical Review 3376: 3375: 3371: 3364: 3343: 3342: 3327: 3317: 3315: 3313: 3288: 3287: 3283: 3273: 3271: 3262: 3261: 3257: 3247: 3245: 3243: 3227:Rigden, John S. 3225: 3224: 3211: 3184:Physical Review 3181: 3180: 3176: 3149:Physical Review 3146: 3145: 3141: 3131: 3129: 3107:Physical Review 3098: 3097: 3093: 3083: 3081: 3067: 3066: 3062: 3035:Physical Review 3030: 3025: 3024: 3020: 2992:Physical Review 2988: 2987: 2980: 2953:Physical Review 2950: 2949: 2938: 2900: 2899: 2895: 2885: 2883: 2878: 2877: 2873: 2825: 2824: 2820: 2768: 2767: 2763: 2721: 2720: 2716: 2674: 2673: 2669: 2662: 2649: 2648: 2644: 2634: 2632: 2627: 2626: 2622: 2612: 2610: 2579: 2578: 2563: 2556: 2535: 2534: 2517: 2510: 2493: 2492: 2485: 2478: 2457: 2456: 2445: 2438: 2422:. p. 676. 2416:Kluwer Academic 2402: 2401: 2390: 2375: 2374: 2365: 2355: 2353: 2340: 2339: 2335: 2325: 2323: 2310: 2309: 2305: 2295: 2293: 2264: 2259: 2258: 2254: 2244: 2242: 2229: 2228: 2224: 2214: 2212: 2199: 2198: 2194: 2184: 2182: 2169: 2168: 2164: 2159: 2132: 2107: 2104: 2101: 2100: 2098: 2085: 2080: 2074: 2071: 2068: 2067: 2065: 2063: 2058: 2052: 2049: 2046: 2045: 2043: 2029: 2024: 2018: 2015: 2012: 2011: 2009: 2007: 2002: 1996: 1993: 1990: 1989: 1987: 1959: 1954: 1953: 1951: 1927: 1922: 1921: 1919: 1915:of quark model 1914: 1913:Magnetic moment 1902: 1897: 1895: 1890: 1885: 1874: 1871: 1868: 1867: 1865: 1863: 1852: 1849: 1846: 1845: 1843: 1841: 1835: 1834: 1823:nonrelativistic 1801: 1798: 1796: 1789: 1786: 1783: 1782: 1779: 1777: 1739: 1735: 1718: 1714: 1699: 1691: 1690: 1687:Dirac particles 1678: 1671: 1668: 1665: 1664: 1661: 1659: 1655: 1648: 1645: 1642: 1641: 1638: 1636: 1632: 1625: 1622: 1619: 1618: 1615: 1613: 1609: 1602: 1599: 1596: 1595: 1592: 1590: 1579: 1547: 1540: 1537: 1530: 1528: 1522: 1518: 1511: 1508: 1501: 1499: 1493: 1477:vertex function 1449: 1446: 1443: 1440: 1438: 1423: 1420:magnetic moment 1416:magnetic moment 1395:consequence of 1384: 1378: 1339: 1332: 1325: 1313: 1307: 1278: 1258:cold or thermal 1238:alpha particles 1230: 1218: 1215: 1212: 1211: 1209: 1202: 1199: 1196: 1195: 1193: 1182: 1179: 1176: 1175: 1173: 1169: 1159:are within the 1146: 1140: 1133: 1116: 1110: 1097: 1089:(18) MHz⋅T 1086: 1083: 1081: 1075: 1066: 1064:(69) MHz⋅T 1061: 1059: 1053: 1018: 1014: 1011: 1009: 1007: 996: 992: 989: 987: 985: 950: 946: 919: 915: 902: 901: 861: 860: 850: 837: 834: 832: 830: 819: 816: 814: 812: 803: 798: 792: 789: 786: 785: 783: 782: 774: 766: 762: 758: 746: 738: 703: 699: 684: 683: 679: 673: 669: 645: 636: 631: 629: 627: 622: 621: 583:I. I. Rabi 567: 562: 560: 558: 553: 552: 541:I. Y. Tamm 521: 515: 487: 482: 448: 443: 439: 437: 430: 417: 409: 382: 378: 370: 355: 350: 349: 343: 338: 313: 309: 307: 305: 296: 291: 287: 284: 281: 279: 277: 258: 247: 238: 227: 224: 222: 220: 214: 212: 201: 198: 195: 192: 190: 188: 177: 174: 171: 169: 167: 146: 122:electric charge 61: 54: 28: 23: 22: 15: 12: 11: 5: 5378: 5376: 5368: 5367: 5362: 5357: 5352: 5350:Magnetostatics 5347: 5342: 5337: 5327: 5326: 5323: 5322: 5308: 5307:External links 5305: 5304: 5303: 5297: 5286:John S. Rigden 5283: 5269: 5256: 5253: 5250: 5249: 5223: 5204:(6): 434–436. 5181: 5143:hep-ph/9410274 5120: 5090: 5086:S. Kotochigova 5058: 5021: 4984: 4969: 4930: 4895: 4850: 4798: 4774: 4768:978-0471203858 4767: 4761:. p. 31. 4744: 4723:(4): 416–417. 4701: 4646: 4616: 4610:978-0201503975 4609: 4580: 4536: 4530:978-9810223694 4529: 4511: 4492: 4486:978-0750303736 4485: 4465:Rechenberg, H. 4463:Brown, L. M.; 4450: 4431:(3): 483–484. 4413: 4394:(4): 498–506. 4376: 4357:(1): 295–308. 4339: 4307: 4262: 4222: 4208: 4185: 4160: 4146: 4126: 4089: 4036: 4014: 4008:978-0198520290 4007: 3989: 3951: 3894: 3888:978-0486482385 3887: 3858: 3844: 3817: 3804:978-0444518118 3803: 3783: 3776: 3750: 3736: 3712: 3698: 3674: 3644: 3614: 3600: 3580: 3550: 3520: 3490: 3460: 3446: 3426: 3404: 3385:(3): 318–319. 3369: 3363:978-0198519973 3362: 3325: 3312:978-0226813042 3311: 3281: 3255: 3241: 3209: 3190:(3): 163–165. 3174: 3155:(3): 157–163. 3139: 3091: 3060: 3018: 2999:(2): 111–122. 2978: 2959:(3): 230–231. 2936: 2893: 2871: 2818: 2783:(2): 121–125. 2761: 2734:(1–2): 17–24. 2714: 2667: 2660: 2642: 2620: 2561: 2554: 2515: 2509:978-0201043136 2508: 2483: 2477:978-0070054936 2476: 2443: 2436: 2388: 2363: 2333: 2303: 2252: 2222: 2192: 2161: 2160: 2158: 2155: 2154: 2153: 2148: 2143: 2138: 2131: 2128: 2093: 2092: 2089: 2086: 2083: 2061: 2041: 2037: 2036: 2033: 2030: 2027: 2005: 1985: 1981: 1980: 1962: 1948: 1930: 1916: 1911: 1900: 1893: 1883: 1861: 1839: 1814:for quarks by 1757: 1742: 1738: 1730: 1721: 1711: 1702: 1578: 1575: 1545: 1535: 1526: 1516: 1506: 1497: 1377: 1374: 1338: 1335: 1330: 1323: 1309:Main article: 1306: 1303: 1277: 1274: 1229: 1226: 1168: 1165: 1142:Main article: 1139: 1136: 1131: 1112:Main article: 1109: 1106: 1096: 1093: 1073: 1051: 1005: 983: 977: 976: 965: 953: 949: 945: 940: 937: 932: 922: 918: 912: 909: 884: 880: 876: 873: 869: 828: 810: 726: 722: 716: 706: 702: 696: 692: 668: 665: 644: 641: 634: 630:−1.93(2)  625: 565: 556: 529:R. Bacher 514: 511: 486: 483: 481: 478: 446: 435: 428: 397: 385: 381: 376: 373: 367: 358: 341: 335:Dirac particle 324:magnetic field 303: 275: 256: 245: 236: 218: 210: 186: 165: 145: 142: 59: 52: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5377: 5366: 5363: 5361: 5358: 5356: 5353: 5351: 5348: 5346: 5343: 5341: 5338: 5336: 5333: 5332: 5330: 5320: 5315: 5311: 5310: 5306: 5301: 5298: 5295: 5294:0-465-06792-1 5291: 5287: 5284: 5281: 5280:0-201-05757-3 5277: 5273: 5270: 5267: 5263: 5259: 5258: 5254: 5238: 5234: 5227: 5224: 5219: 5215: 5211: 5207: 5203: 5199: 5192: 5185: 5182: 5177: 5173: 5169: 5165: 5161: 5157: 5153: 5149: 5144: 5139: 5135: 5131: 5124: 5121: 5108: 5101: 5094: 5091: 5087: 5073: 5069: 5062: 5059: 5054: 5050: 5046: 5042: 5038: 5034: 5033: 5025: 5022: 5017: 5013: 5009: 5005: 5001: 4997: 4996: 4988: 4985: 4980: 4976: 4972: 4966: 4962: 4958: 4953: 4948: 4944: 4937: 4935: 4931: 4923:September 27, 4919: 4915: 4914: 4909: 4902: 4900: 4896: 4891: 4887: 4883: 4879: 4875: 4871: 4867: 4864:. Series 10. 4863: 4862: 4854: 4851: 4846: 4842: 4838: 4834: 4830: 4826: 4822: 4818: 4817: 4809: 4802: 4799: 4794: 4790: 4789: 4781: 4779: 4775: 4770: 4764: 4760: 4756: 4748: 4745: 4739: 4734: 4730: 4726: 4722: 4718: 4717: 4712: 4705: 4702: 4697: 4693: 4689: 4685: 4681: 4677: 4672: 4667: 4664:(5): 053012. 4663: 4659: 4658: 4650: 4647: 4634: 4630: 4626: 4620: 4617: 4612: 4606: 4602: 4598: 4597: 4589: 4587: 4585: 4581: 4576: 4572: 4568: 4564: 4561:(5): 82–229. 4560: 4556: 4555: 4547: 4540: 4537: 4532: 4526: 4522: 4515: 4512: 4507: 4503: 4496: 4493: 4488: 4482: 4478: 4473: 4472: 4466: 4459: 4457: 4455: 4451: 4446: 4442: 4438: 4434: 4430: 4426: 4425: 4417: 4414: 4409: 4405: 4401: 4397: 4393: 4389: 4388: 4380: 4377: 4372: 4368: 4364: 4360: 4356: 4352: 4351: 4343: 4340: 4328:. 77–17: 1–25 4327: 4326: 4318: 4311: 4308: 4303: 4299: 4295: 4291: 4287: 4283: 4279: 4276:(in German). 4275: 4274: 4266: 4263: 4247: 4243: 4236: 4229: 4227: 4223: 4211: 4205: 4201: 4200: 4192: 4190: 4186: 4171: 4164: 4161: 4149: 4143: 4139: 4138: 4130: 4127: 4122: 4118: 4114: 4110: 4106: 4102: 4101: 4093: 4090: 4078: 4074: 4070: 4066: 4063:(2): 023843. 4062: 4058: 4057: 4051: 4043: 4041: 4037: 4024: 4018: 4015: 4010: 4004: 4000: 3993: 3990: 3985: 3981: 3977: 3973: 3969: 3965: 3958: 3956: 3952: 3936: 3932: 3928: 3924: 3920: 3916: 3912: 3905: 3898: 3895: 3890: 3884: 3880: 3873: 3871: 3869: 3867: 3865: 3863: 3859: 3847: 3841: 3837: 3833: 3832: 3824: 3822: 3818: 3806: 3800: 3796: 3795: 3787: 3784: 3779: 3773: 3769: 3764: 3763: 3754: 3751: 3739: 3733: 3729: 3725: 3724: 3716: 3713: 3701: 3699:9781584889021 3695: 3691: 3687: 3686: 3678: 3675: 3662: 3658: 3654: 3648: 3645: 3632: 3628: 3624: 3618: 3615: 3603: 3601:9780471730965 3597: 3593: 3592: 3584: 3581: 3568: 3564: 3560: 3554: 3551: 3538: 3534: 3530: 3524: 3521: 3508: 3504: 3500: 3494: 3491: 3478: 3474: 3470: 3464: 3461: 3449: 3443: 3439: 3438: 3430: 3427: 3414: 3408: 3405: 3400: 3396: 3392: 3388: 3384: 3380: 3373: 3370: 3365: 3359: 3355: 3350: 3349: 3340: 3338: 3336: 3334: 3332: 3330: 3326: 3314: 3308: 3304: 3299: 3298: 3292: 3285: 3282: 3270: 3269:Physics World 3266: 3259: 3256: 3244: 3242:9780674004351 3238: 3234: 3233: 3228: 3222: 3220: 3218: 3216: 3214: 3210: 3205: 3201: 3197: 3193: 3189: 3185: 3178: 3175: 3170: 3166: 3162: 3158: 3154: 3150: 3143: 3140: 3128: 3124: 3120: 3116: 3112: 3108: 3103: 3095: 3092: 3079: 3075: 3071: 3064: 3061: 3056: 3052: 3048: 3044: 3040: 3036: 3029: 3022: 3019: 3014: 3010: 3006: 3002: 2998: 2994: 2993: 2985: 2983: 2979: 2974: 2970: 2966: 2962: 2958: 2954: 2947: 2945: 2943: 2941: 2937: 2931: 2926: 2922: 2918: 2914: 2910: 2909: 2904: 2897: 2894: 2881: 2875: 2872: 2867: 2863: 2859: 2855: 2851: 2847: 2842: 2837: 2833: 2829: 2822: 2819: 2814: 2810: 2806: 2802: 2798: 2794: 2790: 2786: 2782: 2778: 2773: 2765: 2762: 2757: 2753: 2749: 2745: 2741: 2737: 2733: 2729: 2725: 2718: 2715: 2710: 2706: 2702: 2698: 2694: 2690: 2687:(1–2): 4–16. 2686: 2682: 2678: 2671: 2668: 2663: 2657: 2653: 2646: 2643: 2630: 2624: 2621: 2609: 2605: 2601: 2597: 2593: 2589: 2588:Physics Today 2584: 2576: 2574: 2572: 2570: 2568: 2566: 2562: 2557: 2551: 2547: 2542: 2541: 2532: 2530: 2528: 2526: 2524: 2522: 2520: 2516: 2511: 2505: 2501: 2497: 2496:Lerner, R. G. 2490: 2488: 2484: 2479: 2473: 2469: 2464: 2463: 2454: 2452: 2450: 2448: 2444: 2439: 2433: 2429: 2425: 2421: 2417: 2412: 2411: 2405: 2399: 2397: 2395: 2393: 2389: 2384: 2383: 2378: 2372: 2370: 2368: 2364: 2351: 2347: 2343: 2337: 2334: 2321: 2317: 2313: 2307: 2304: 2291: 2286: 2282: 2278: 2275:(1): 010001. 2274: 2270: 2263: 2256: 2253: 2240: 2236: 2232: 2226: 2223: 2210: 2206: 2202: 2196: 2193: 2180: 2176: 2172: 2166: 2163: 2156: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2133: 2129: 2127: 2125: 2121: 2117: 2090: 2087: 2042: 2039: 2038: 2034: 2031: 1986: 1983: 1982: 1960: 1949: 1928: 1917: 1912: 1909: 1908: 1905: 1882: 1860: 1838: 1832: 1828: 1827:wave function 1824: 1819: 1817: 1813: 1809: 1775: 1770: 1755: 1740: 1736: 1719: 1709: 1700: 1688: 1684: 1588: 1584: 1576: 1574: 1572: 1567: 1563: 1560: 1556: 1551: 1544: 1534: 1525: 1515: 1505: 1496: 1489: 1487: 1482: 1478: 1468: 1464: 1462: 1457: 1436: 1432: 1426: 1421: 1417: 1413: 1409: 1404: 1402: 1398: 1393: 1388: 1383: 1375: 1373: 1370: 1366: 1361: 1356: 1352: 1343: 1336: 1334: 1329: 1322: 1318: 1312: 1304: 1302: 1300: 1296: 1291: 1287: 1283: 1282:neutron beams 1275: 1273: 1271: 1267: 1263: 1262:B. Brockhouse 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1227: 1225: 1191: 1166: 1164: 1162: 1158: 1155: 1151: 1145: 1137: 1135: 1130: 1126: 1122: 1115: 1107: 1101: 1094: 1092: 1079: 1072: 1057: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1004: 982: 963: 951: 947: 943: 938: 935: 920: 916: 910: 907: 900: 899: 898: 895: 882: 874: 871: 858: 853: 848: 843: 827: 809: 779: 778: 772: 756: 751: 750: 743: 742: 724: 704: 700: 694: 677: 666: 664: 662: 661:nuclear force 658: 653: 651: 642: 640: 619: 615: 611: 607: 602: 600: 596: 592: 588: 584: 580: 576: 571: 550: 546: 542: 538: 534: 530: 525: 520: 512: 510: 508: 504: 500: 496: 492: 484: 479: 477: 475: 471: 466: 464: 460: 459:Bohr magneton 454: 452: 438: ≈  434: 427: 423: 415: 395: 383: 379: 371: 365: 356: 347: 336: 332: 327: 325: 321: 302: 274: 270: 266: 263:, both being 262: 261:Bohr magneton 255: 251: 244: 235: 217: 209: 185: 168: =  164: 160: 150: 143: 141: 139: 135: 131: 129: 123: 119: 115: 110: 108: 104: 100: 96: 92: 87: 85: 84:Coulomb force 81: 80:nuclear force 77: 73: 69: 65: 58: 51: 47: 43: 39: 35: 30: 19: 5255:Bibliography 5240:. Retrieved 5236: 5226: 5201: 5197: 5184: 5133: 5129: 5123: 5111:. Retrieved 5106: 5093: 5076:. Retrieved 5061: 5036: 5030: 5024: 4999: 4993: 4987: 4942: 4921:. Retrieved 4911: 4868:(1): 27–40. 4865: 4859: 4853: 4820: 4814: 4801: 4787: 4757:. New York: 4754: 4747: 4720: 4714: 4704: 4661: 4655: 4649: 4637:. Retrieved 4628: 4619: 4595: 4558: 4552: 4539: 4520: 4514: 4505: 4501: 4495: 4470: 4428: 4422: 4416: 4391: 4385: 4379: 4354: 4348: 4342: 4330:. Retrieved 4323: 4310: 4277: 4271: 4265: 4253:. Retrieved 4246:the original 4241: 4213:. Retrieved 4198: 4176:. Retrieved 4163: 4151:. Retrieved 4136: 4129: 4104: 4098: 4092: 4080:. Retrieved 4060: 4054: 4027:. Retrieved 4017: 3998: 3992: 3967: 3963: 3942:. Retrieved 3935:the original 3914: 3910: 3897: 3878: 3851:December 10, 3849:. Retrieved 3830: 3810:December 12, 3808:. Retrieved 3793: 3786: 3761: 3753: 3741:. Retrieved 3722: 3715: 3705:December 12, 3703:. Retrieved 3684: 3677: 3665:. Retrieved 3656: 3647: 3635:. Retrieved 3626: 3617: 3605:. Retrieved 3590: 3583: 3571:. Retrieved 3562: 3553: 3541:. Retrieved 3532: 3523: 3511:. Retrieved 3502: 3493: 3481:. Retrieved 3472: 3463: 3451:. Retrieved 3436: 3429: 3417:. Retrieved 3407: 3382: 3378: 3372: 3348:Inward Bound 3347: 3316:. Retrieved 3296: 3284: 3274:December 11, 3272:. Retrieved 3258: 3246:. Retrieved 3231: 3187: 3183: 3177: 3152: 3148: 3142: 3130:. Retrieved 3110: 3106: 3094: 3082:. Retrieved 3077: 3073: 3063: 3038: 3034: 3021: 2996: 2990: 2956: 2952: 2912: 2906: 2896: 2884:. Retrieved 2874: 2831: 2827: 2821: 2780: 2776: 2764: 2731: 2727: 2717: 2684: 2680: 2670: 2651: 2645: 2633:. Retrieved 2623: 2613:December 11, 2611:. Retrieved 2594:(3): 50–55. 2591: 2587: 2539: 2499: 2461: 2420:Plenum Press 2409: 2381: 2354:. Retrieved 2345: 2336: 2324:. Retrieved 2315: 2306: 2294:. Retrieved 2272: 2269:Phys. Rev. D 2268: 2255: 2243:. Retrieved 2234: 2225: 2213:. Retrieved 2204: 2195: 2183:. Retrieved 2174: 2165: 2120:strong force 2096: 1880: 1858: 1836: 1820: 1816:O. Greenberg 1812:color charge 1771: 1580: 1565: 1552: 1542: 1532: 1523: 1513: 1503: 1494: 1490: 1481:J. Schwinger 1474: 1463:with loops. 1455: 1434: 1424: 1405: 1389: 1385: 1360:Enrico Fermi 1348: 1327: 1320: 1314: 1279: 1231: 1170: 1147: 1128: 1117: 1077: 1070: 1055: 1048: 1036: 1032: 1002: 980: 978: 896: 844: 825: 807: 776: 775: 753:is the spin 748: 747: 740: 739: 670: 654: 646: 603: 601:techniques. 572: 549:Soviet Union 526: 522: 488: 467: 455: 432: 425: 328: 300: 272: 253: 242: 233: 215: 207: 183: 162: 156: 127: 111: 99:Luis Alvarez 88: 56: 49: 33: 31: 29: 4029:January 25, 2886:January 30, 2404:Shankar, R. 1769:within it. 1583:quark model 1541:−1.91  1410:(QED), the 1270:Nobel Prize 1246:diffraction 1029:MRI imaging 1021:10 s⋅T 999:10 s⋅T 806:-factor is 650:quark model 539:(1933) and 480:Measurement 474:antineutron 344:, in which 316:10 J⋅T 294:10 J⋅T 144:Description 134:quark model 103:Felix Bloch 5329:Categories 5266:0198520298 4635:. May 2024 4508:: 170–175. 4168:Chupp, T. 3663:. May 2024 3633:. May 2024 3569:. May 2024 3539:. May 2024 3509:. May 2024 3479:. May 2024 3419:25 January 3084:30 January 2352:. May 2024 2322:. May 2024 2241:. May 2024 2211:. May 2024 2181:. May 2024 2157:References 1531:0.00  1512:1.79  1502:1.00  1397:beta decay 1392:G. C. Wick 1380:See also: 1367:, and the 1260:neutrons. 1242:scattering 1172:spin  1154:hydrogen-1 606:L. Alvarez 579:Pittsburgh 561:−0.5  517:See also: 491:Otto Stern 470:antiproton 91:Otto Stern 48:, symbols 5345:Magnetism 4952:0805.0289 4890:123822660 4696:119264728 4671:0712.2607 4302:122962691 4178:April 16, 4100:Physica B 3964:Phys. Rev 3911:Phys. Rev 3690:CRC Press 2866:119204397 2841:1109.4864 2813:120812185 2805:1431-5866 2756:186232193 2709:120793548 1961:μ 1929:μ 1821:From the 1818:in 1964. 1729:ℏ 1701:μ 1566:effective 1456:effective 1290:polarized 1161:molecules 1152:. Since 1076:/⁠2 1054:/⁠2 931:ℏ 921:μ 908:γ 875:γ 868:μ 849:, symbol 715:ℏ 705:μ 691:μ 537:Ann Arbor 375:ℏ 357:μ 153:downward. 5237:Phys.org 5176:15148740 5168:10058927 4979:17512393 4467:(1996). 4332:June 18, 4273:Z. Phys. 4255:June 18, 4153:June 30, 3944:June 26, 3229:(1987). 2406:(1994). 2379:(1975). 2130:See also 1950:Observed 1918:Computed 1778:⁠− 1660:⁠+ 1637:⁠− 1614:⁠− 1591:⁠+ 1431:electron 1401:H. Bethe 1268:won the 1266:C. Shull 618:Berkeley 610:F. Bloch 595:deuteron 591:New York 431:/⁠ 269:SI units 93:team in 72:nucleons 5360:Neutron 5206:Bibcode 5148:Bibcode 5109:: 24–35 5041:Bibcode 5004:Bibcode 4913:Science 4870:Bibcode 4845:1444215 4825:Bibcode 4725:Bibcode 4676:Bibcode 4639:May 18, 4601:175–198 4563:Bibcode 4433:Bibcode 4396:Bibcode 4359:Bibcode 4350:Physica 4282:Bibcode 4109:Bibcode 4065:Bibcode 3972:Bibcode 3919:Bibcode 3667:May 18, 3637:May 18, 3573:May 18, 3543:May 18, 3513:May 18, 3483:May 18, 3453:May 10, 3387:Bibcode 3192:Bibcode 3157:Bibcode 3115:Bibcode 3043:Bibcode 3001:Bibcode 2961:Bibcode 2917:Bibcode 2846:Bibcode 2785:Bibcode 2736:Bibcode 2728:Z. Phys 2689:Bibcode 2681:Z. Phys 2596:Bibcode 2546:201–202 2356:May 18, 2326:May 18, 2277:Bibcode 2245:May 18, 2215:May 18, 2185:May 18, 2111:⁠ 2099:⁠ 2091:−1.913 2078:⁠ 2066:⁠ 2056:⁠ 2044:⁠ 2022:⁠ 2010:⁠ 2000:⁠ 1988:⁠ 1910:Baryon 1878:⁠ 1866:⁠ 1856:⁠ 1844:⁠ 1831:baryons 1793:⁠ 1675:⁠ 1652:⁠ 1629:⁠ 1606:⁠ 1587:hadrons 1581:In the 1571:A. Pais 1486:physics 1222:⁠ 1210:⁠ 1206:⁠ 1194:⁠ 1186:⁠ 1174:⁠ 1121:precess 1067:‍ 1060:−29.164 796:⁠ 784:⁠ 676:-factor 612:at the 547:in the 531:at the 513:Neutron 501:at the 420:is the 412:is the 297:‍ 259:is the 248:is the 189:=  76:magnets 64:nucleus 46:neutron 40:of the 5355:Proton 5292:  5278:  5264:  5242:May 8, 5174:  5166:  5113:May 8, 5078:May 9, 4977:  4967:  4888:  4843:  4765:  4694:  4607:  4527:  4483:  4477:95–312 4300:  4215:May 8, 4206:  4144:  4082:May 9, 4005:  3885:  3842:  3801:  3774:  3743:May 8, 3734:  3696:  3607:May 8, 3598:  3444:  3360:  3318:May 9, 3309:  3248:May 9, 3239:  3132:May 9, 2864:  2811:  2803:  2754:  2707:  2658:  2635:May 8, 2631:. NIST 2552:  2506:  2474:  2470:–246. 2434:  2296:May 8, 2088:−1.86 2035:2.793 1889:where 1797:−1.459 1774:B. Lee 1753:  1732:  1716:  1697:  1677:  1654:  1631:  1608:  1562:mesons 1521:, but 1439:−2.002 1256:using 1157:nuclei 1082:42.577 1078:π 1071:γ 1056:π 1049:γ 1003:γ 988:−1.832 981:γ 815:−3.826 757:, and 737:where 581:, and 485:Proton 461:. The 451:quarks 433:μ 426:μ 416:, and 408:where 320:torque 308:−9.662 301:μ 273:μ 241:Here, 232:  223:−1.913 206:  182:  159:CODATA 138:hadron 66:of an 62:. The 42:proton 5194:(PDF) 5172:S2CID 5138:arXiv 5103:(PDF) 4975:S2CID 4947:arXiv 4886:S2CID 4811:(PDF) 4795:–130. 4692:S2CID 4666:arXiv 4549:(PDF) 4320:(PDF) 4298:S2CID 4249:(PDF) 4238:(PDF) 4173:(PDF) 3938:(PDF) 3907:(PDF) 3836:Wiley 3770:–30. 3305:–32. 3080:: 455 3031:(PDF) 2862:S2CID 2836:arXiv 2809:S2CID 2752:S2CID 2705:S2CID 2265:(PDF) 2116:gluon 2032:2.79 1010:2.675 857:ratio 833:5.585 472:and 440:2.793 333:of a 280:1.410 267:. In 191:0.001 170:2.792 126:spin 5290:ISBN 5276:ISBN 5262:ISBN 5244:2015 5164:PMID 5115:2015 5080:2015 4965:ISBN 4925:2014 4841:OSTI 4763:ISBN 4641:2024 4633:NIST 4605:ISBN 4525:ISBN 4481:ISBN 4355:137B 4334:2017 4325:CERN 4257:2017 4217:2015 4204:ISBN 4180:2019 4155:2016 4142:ISBN 4084:2015 4031:2015 4003:ISBN 3946:2016 3883:ISBN 3853:2022 3840:ISBN 3812:2022 3799:ISBN 3772:ISBN 3745:2015 3732:ISBN 3707:2022 3694:ISBN 3669:2024 3661:NIST 3639:2024 3631:NIST 3609:2015 3596:ISBN 3575:2024 3567:NIST 3545:2024 3537:NIST 3515:2024 3507:NIST 3485:2024 3477:NIST 3455:2015 3442:ISBN 3421:2015 3358:ISBN 3320:2015 3307:ISBN 3276:2022 3250:2015 3237:ISBN 3134:2015 3086:2015 2888:2015 2801:ISSN 2656:ISBN 2637:2015 2615:2015 2550:ISBN 2504:ISBN 2472:ISBN 2432:ISBN 2358:2024 2350:NIST 2328:2024 2320:NIST 2298:2015 2247:2024 2239:NIST 2217:2024 2209:NIST 2187:2024 2179:NIST 1896:and 1829:for 1804:(34) 1585:for 1559:pion 1553:The 1452:(36) 1427:= −2 1264:and 1069:and 1062:6935 1017:(11) 1015:8708 995:(43) 845:The 840:(16) 838:6893 822:(90) 608:and 543:and 497:and 312:(23) 310:3653 299:and 290:(60) 230:(45) 204:(45) 180:(82) 157:The 136:for 120:and 118:spin 101:and 68:atom 55:and 44:and 32:The 5214:doi 5202:116 5156:doi 5049:doi 5012:doi 4957:doi 4878:doi 4833:doi 4821:140 4733:doi 4684:doi 4571:doi 4441:doi 4404:doi 4367:doi 4290:doi 4117:doi 4105:397 4073:doi 3980:doi 3927:doi 3395:doi 3354:299 3200:doi 3165:doi 3123:doi 3051:doi 3009:doi 2969:doi 2925:doi 2913:136 2854:doi 2832:523 2793:doi 2744:doi 2697:doi 2604:doi 2468:241 2424:doi 2285:doi 1799:898 1510:= + 1447:360 1444:304 1441:319 1244:or 1087:461 1084:478 1041:MHz 1012:221 990:471 835:694 817:085 781:is 616:at 589:in 585:at 577:in 535:at 285:795 282:606 225:042 199:202 196:032 193:521 175:344 172:847 5331:: 5235:. 5212:. 5200:. 5196:. 5170:. 5162:. 5154:. 5146:. 5134:74 5132:. 5105:. 5047:. 5037:13 5035:. 5010:. 5000:13 4998:. 4973:. 4963:. 4955:. 4933:^ 4916:. 4910:. 4898:^ 4884:. 4876:. 4866:61 4839:. 4831:. 4819:. 4813:. 4777:^ 4731:. 4721:73 4719:. 4713:. 4690:. 4682:. 4674:. 4662:77 4660:. 4631:. 4627:. 4603:. 4583:^ 4569:. 4557:. 4551:. 4506:21 4504:. 4479:. 4453:^ 4439:. 4429:81 4427:. 4402:. 4392:81 4390:. 4365:. 4353:. 4322:. 4296:. 4288:. 4278:60 4240:. 4225:^ 4188:^ 4115:. 4103:. 4071:. 4061:86 4059:. 4053:. 4039:^ 3978:. 3968:96 3966:. 3954:^ 3925:. 3915:76 3913:. 3909:. 3861:^ 3820:^ 3768:25 3659:. 3655:. 3629:. 3625:. 3565:. 3561:. 3535:. 3531:. 3505:. 3501:. 3475:. 3471:. 3393:. 3383:55 3381:. 3356:. 3328:^ 3303:30 3267:. 3212:^ 3198:. 3188:46 3186:. 3163:. 3153:46 3151:. 3121:. 3111:45 3109:. 3105:. 3076:. 3072:. 3049:. 3039:43 3037:. 3033:. 3007:. 2997:57 2995:. 2981:^ 2967:. 2957:46 2955:. 2939:^ 2923:. 2911:. 2905:. 2860:. 2852:. 2844:. 2830:. 2807:. 2799:. 2791:. 2781:10 2779:. 2775:. 2750:. 2742:. 2732:85 2730:. 2726:. 2703:. 2695:. 2685:85 2683:. 2679:. 2602:. 2592:66 2590:. 2586:. 2564:^ 2548:. 2518:^ 2486:^ 2446:^ 2430:. 2391:^ 2366:^ 2348:. 2344:. 2318:. 2314:. 2283:. 2273:86 2271:. 2267:. 2237:. 2233:. 2207:. 2203:. 2177:. 2173:. 2102:1 2069:1 2064:− 2047:4 2040:n 2013:1 2008:− 1991:4 1984:p 1979:) 1947:) 1869:1 1864:− 1847:4 1842:= 1802:06 1790:2 1666:2 1643:1 1620:1 1597:2 1550:. 1539:= 1529:− 1500:− 1488:. 1450:92 1035:/2 993:74 842:. 820:52 628:= 559:= 493:, 288:45 228:76 221:= 202:30 178:63 130:/2 86:. 5296:. 5282:. 5268:. 5246:. 5216:: 5208:: 5178:. 5158:: 5150:: 5140:: 5117:. 5088:. 5082:. 5055:. 5051:: 5043:: 5018:. 5014:: 5006:: 4981:. 4959:: 4949:: 4927:. 4892:. 4880:: 4872:: 4847:. 4835:: 4827:: 4793:1 4771:. 4741:. 4735:: 4727:: 4698:. 4686:: 4678:: 4668:: 4643:. 4613:. 4577:. 4573:: 4565:: 4559:8 4533:. 4489:. 4447:. 4443:: 4435:: 4410:. 4406:: 4398:: 4373:. 4369:: 4361:: 4336:. 4304:. 4292:: 4284:: 4259:. 4219:. 4182:. 4157:. 4123:. 4119:: 4111:: 4086:. 4075:: 4067:: 4033:. 4011:. 3986:. 3982:: 3974:: 3948:. 3929:: 3921:: 3891:. 3855:. 3814:. 3780:. 3747:. 3709:. 3671:. 3641:. 3611:. 3577:. 3547:. 3517:. 3487:. 3457:. 3423:. 3401:. 3397:: 3389:: 3366:. 3322:. 3278:. 3252:. 3206:. 3202:: 3194:: 3171:. 3167:: 3159:: 3136:. 3125:: 3117:: 3088:. 3078:8 3057:. 3053:: 3045:: 3015:. 3011:: 3003:: 2975:. 2971:: 2963:: 2933:. 2927:: 2919:: 2890:. 2868:. 2856:: 2848:: 2838:: 2815:. 2795:: 2787:: 2758:. 2746:: 2738:: 2711:. 2699:: 2691:: 2664:. 2639:. 2617:. 2606:: 2598:: 2558:. 2512:. 2480:. 2440:. 2426:: 2418:/ 2360:. 2330:. 2300:. 2287:: 2279:: 2249:. 2219:. 2189:. 2108:3 2105:/ 2084:u 2081:μ 2075:3 2072:/ 2062:d 2059:μ 2053:3 2050:/ 2028:d 2025:μ 2019:3 2016:/ 2006:u 2003:μ 1997:3 1994:/ 1965:N 1952:( 1933:N 1920:( 1901:u 1898:μ 1894:d 1891:μ 1887:, 1884:u 1881:μ 1875:3 1872:/ 1862:d 1859:μ 1853:3 1850:/ 1840:n 1837:μ 1787:/ 1784:3 1780:+ 1756:, 1745:q 1741:m 1737:2 1724:q 1720:e 1710:= 1705:q 1679:e 1672:3 1669:/ 1662:+ 1656:e 1649:3 1646:/ 1639:+ 1633:e 1626:3 1623:/ 1616:+ 1610:e 1603:3 1600:/ 1593:+ 1546:N 1543:μ 1536:N 1533:μ 1527:n 1524:μ 1517:N 1514:μ 1507:N 1504:μ 1498:p 1495:μ 1435:g 1425:g 1331:N 1328:μ 1324:N 1321:μ 1254:Å 1219:2 1216:/ 1213:3 1203:2 1200:/ 1197:1 1183:2 1180:/ 1177:1 1132:n 1129:γ 1074:p 1052:n 1045:T 1043:/ 1037:π 1033:γ 1019:× 1006:p 997:× 984:n 964:. 956:p 952:m 948:2 944:e 939:g 936:= 925:N 917:g 911:= 883:. 879:I 872:= 852:γ 829:p 826:g 811:n 808:g 804:g 799:ħ 793:2 790:/ 787:1 777:I 767:g 763:g 759:g 749:I 741:μ 725:, 721:I 709:N 701:g 695:= 680:g 674:g 635:N 632:μ 626:n 623:μ 566:N 563:μ 557:n 554:μ 447:N 444:μ 436:N 429:p 418:ħ 410:e 396:, 388:p 384:m 380:2 372:e 366:= 361:N 342:p 339:m 314:× 304:n 292:× 276:p 257:B 254:μ 246:N 243:μ 239:. 237:N 234:μ 219:n 216:μ 211:B 208:μ 187:N 184:μ 166:p 163:μ 128:ħ 60:n 57:μ 53:p 50:μ 20:)

Index

Proton–gyromagnetic ratio
magnetic dipole moments
proton
neutron
nucleus
atom
nucleons
magnets
nuclear force
Coulomb force
Otto Stern
University of Hamburg
Luis Alvarez
Felix Bloch
proton nuclear magnetic resonance
elementary particles
spin
electric charge
spin ħ/2
quark model
hadron

CODATA
nuclear magneton
Bohr magneton
physical constants
SI units
torque
magnetic field
spin magnetic moment

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.