Knowledge

Proton exchange membrane electrolysis

Source 📝

1767:
the cathode, oxygen can be catalytically reacted with hydrogen on the platinum surface of the cathodic catalyst. At the anode, hydrogen and oxygen do not react at the iridium oxide catalyst. Thus, safety hazards due to explosive anodic mixtures hydrogen in oxygen can result. The supplied energy for the hydrogen production is lost, when hydrogen is lost due to the reaction with oxygen at the cathode and permeation from the cathode across the membrane to the anode corresponds. Hence, the ratio of the amount of lost and produced hydrogen determines the faradaic losses. At pressurized operation of the electrolyzer, the crossover and the correlated faradaic efficiency losses increase.
1324:. The calculation of cell voltage assuming no irreversibilities exist and all of the thermal energy is utilized by the reaction is referred to as the lower heating value (LHV). The alternative formulation, using the higher heating value (HHV) is calculated assuming that all of the energy to drive the electrolysis reaction is supplied by the electrical component of the required energy which results in a higher reversible cell voltage. When using the HHV the voltage calculation is referred to as the 1618: 1832: 1818: 614: 40: 1802:
higher overall electrical efficiency. The LHV must be used for alkaline electrolysers as the process within these electrolysers requires water in liquid form and uses alkalinity to facilitate the breaking of the bond holding the hydrogen and oxygen atoms together. The lower heat value must also be used for fuel cells, as steam is the output rather than input.
1793:
coupling these to energy sources such as wind and solar, the demand of the grid rarely matches the generation of renewable energy. This means energy produced from renewable sources such as wind and solar benefit by having a buffer, or a means of storing off-peak energy. As of 2021, the largest PEM electrolyzer is 20 MW.
1693:. Much of this heat energy is carried away with the reactant water supply and lost to the environment, however a small portion of this energy is then recaptured as heat energy in the electrolysis process. The amount of heat energy that can be recaptured is dependent on many aspects of system operation and cell design. 311:
An electrolyzer is an electrochemical device to convert electricity and water into hydrogen and oxygen, these gases can then be used as a means to store energy for later use. This use can range from electrical grid stabilization from dynamic electrical sources such as wind turbines and solar cells to
1775:
Hydrogen evolution due to pressurized electrolysis is comparable to an isothermal compression process, which is in terms of efficiency preferable compared to mechanical isotropic compression. However, the contributions of the aforementioned faradaic losses increase with operating pressures. Thus, in
1766:
Faradaic losses describe the efficiency losses that are correlated to the current, that is supplied without leading to hydrogen at the cathodic gas outlet. The produced hydrogen and oxygen can permeate across the membrane, referred to as crossover. Mixtures of both gases at the electrodes result. At
1460: 1805:
PEM electrolysis has an electrical efficiency of about 80% in working application, in terms of hydrogen produced per unit of electricity used to drive the reaction. The efficiency of PEM electrolysis is expected to reach 82-86% before 2030, while also maintaining durability as progress in this area
1273: 1801:
When determining the electrical efficiency of PEM electrolysis, the HHV can be used. This is because the catalyst layer interacts with water as steam. As the process operates at 80 °C for PEM electrolysers the waste heat can be redirected through the system to create the steam, resulting in a
274:
One of the largest advantages to PEM electrolysis is its ability to operate at high current densities. This can result in reduced operational costs, especially for systems coupled with very dynamic energy sources such as wind and solar, where sudden spikes in energy input would otherwise result in
341:
The actual value for open circuit voltage of an operating electrolyzer will lie between the 1.23 V and 1.48 V depending on how the cell/stack design utilizes the thermal energy inputs. This is however quite difficult to determine or measure because an operating electrolyzer also experiences other
1792:
The ability of the PEM electrolyzer to operate, not only under highly dynamic conditions but also in part-load and overload conditions is one of the reasons for the recently renewed interest in this technology. The demands of an electrical grid are relatively stable and predictable, however when
233:
in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure
262:
technology of that time, very efficient. In the late 1970s the alkaline electrolyzers were reporting performances around 0.215 A/cm at 2.06 V, thus prompting a sudden interest in the late 1970s and early 1980s in polymer electrolytes for water electrolysis. PEM water electrolysis technology is
1785: 248:
to be used as an energy carrier. With fast dynamic response times, large operational ranges, and high efficiencies, water electrolysis is a promising technology for energy storage coupled with renewable energy sources. In terms of sustainability and environmental impact, PEM electrolysis is
1101:
The thermal and electrical inputs shown above represent the minimum amount of energy that can be supplied by electricity in order to obtain an electrolysis reaction. Assuming that the maximum amount of heat energy (48.6 kJ/mol) is supplied to the reaction, the reversible cell voltage
275:
uncaptured energy. The polymer electrolyte allows the PEM electrolyzer to operate with a very thin membrane (~100-200 μm) while still allowing high pressures, resulting in low ohmic losses, primarily caused by the conduction of protons across the membrane (0.1 S/cm) and a
498:
The half reaction taking place on the cathode side of a PEM electrolyzer is commonly referred to as the Hydrogen Evolution Reaction (HER). Here the supplied electrons and the protons that have conducted through the membrane are combined to create gaseous hydrogen.
282:
The polymer electrolyte membrane, due to its solid structure, exhibits a low gas crossover rate resulting in very high product gas purity. Maintaining a high gas purity is important for storage safety and for the direct usage in a fuel cell. The safety limits for
354:
The half reaction taking place on the anode side of a PEM electrolyzer is commonly referred to as the Oxygen Evolution Reaction (OER). Here the liquid water reactant is supplied to catalyst where the supplied water is oxidized to oxygen, protons and electrons.
719: 605:
The illustration below depicts a simplification of how PEM electrolysis works, showing the individual half-reactions together along with the complete reaction of a PEM electrolyzer. In this case the electrolyzer is coupled with a solar panel for the
257:
The use of a PEM for electrolysis was first introduced in the 1960s by General Electric, developed to overcome the drawbacks to the alkaline electrolysis technology. The initial performances yielded 1.0 A/cm at 1.88 V which was, compared to the
1573: 1336: 1149: 1476:, is typically compared through polarization curves, which are obtained by plotting cell voltages against current densities. The primary sources of increased voltage in a PEM electrolyzer (the same also applies for 332:
required for the decomposition of water is 285.9 kJ/mol. A portion of the required energy for a sustained electrolysis reaction is supplied by thermal energy and the remainder is supplied through electrical energy.
249:
considered as a promising technique for high purity and efficient hydrogen production since it emits only oxygen as a by-product without any carbon emissions. The IEA said in 2022 that more effort was needed.
483: 1688:
The energy loss due to the electrical resistance is not entirely lost. The voltage drop due to resistivity is associated with the conversion the electrical energy to heat energy through a process known as
904: 2398: 266:
A thorough review of the historical performance from the early research to that of today can be found in chronological order with many of the operating conditions in the 2013 review by Carmo et al.
1630:
Ohmic losses are an electrical overpotential introduced to the electrolysis process by the internal resistance of the cell components. This loss then requires an additional voltage to maintain the
596: 1488:
and mass transport losses. Due to the reversal of operation between a PEM fuel cell and a PEM electrolyzer, the degree of impact for these various losses is different between the two processes.
1092: 1737: 1134: 644: 1776:
order to produce compressed hydrogen, the in-situ compression during electrolysis and subsequent compression of the gas have to be pondered under efficiency considerations.
1679: 796: 749: 2503: 1498: 1610:
of a 25 cm single cell PEM electrolyzer under thermoneutral operation depicting the primary sources of voltage loss and their contributions for a range of
1318: 1298: 773: 2390: 1455:{\displaystyle V_{\textrm {th}}^{0}={\frac {\Delta H^{0}}{n\cdot F}}={\frac {285.9\ {\textrm {kJ/mol}}}{2\times 96,485\ {\textrm {C/mol}}}}=1.48{\textrm {V}}} 1268:{\displaystyle V_{\textrm {rev}}^{0}={\frac {\Delta G^{0}}{n\cdot F}}={\frac {237\ {\textrm {kJ/mol}}}{2\times 96,485\ {\textrm {C/mol}}}}=1.23{\textrm {V}}} 2036: 2443: 2024: 263:
similar to PEM fuel cell technology, where solid poly-sulfonated membranes, such as nafion, fumapem, were used as a electrolyte (proton conductor).
2362: 2478: 2335: 2295:
Schröder, V; Emonts B; Janßen H; Schulze HP (2004). "Explosion Limits of Hydrogen/Oxygen Mixtures at Initial Pressures up to 200 bar".
366: 1881: 2360:
Schalenbach, M; Carmo M; Fritz DL; Mergel J; Stolten D (2013). "Pressurized PEM water electrolysis: Efficiency and gas crossover".
2322:
Mergel, J; Carmo M; Fritz, D (2013). "Status on Technologies for Hydrogen Production by Water Electrolysis". In Stolten, D (ed.).
812: 1871: 329: 2246: 509: 2576: 627: 1586:. This essentially results in a curve that represents the power per square centimeter of cell area required to produce 2581: 1851: 1607: 2163:
LeRoy, RL; Janjua MB; Renaud R; Leuenberger U (1979). "Analysis of Time-Variation Effects in Water Electrolyzers".
1901: 2148:
Russell, JH; Nuttall LJ; Ficket AP (1973). "Hydrogen generation by solid polymer electrolyte water electrolysis".
923: 2571: 2532: 2043: 2200:"An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport" 1755: 321: 235: 1837: 714:{\displaystyle \Delta H=\underbrace {\Delta G} _{\textrm {elec.}}+\underbrace {T\Delta S} _{\textrm {heat}}} 1703: 1105: 1746:
The Ohmic losses due to the conduction of protons contribute to the loss of efficiency which also follows
245: 2413: 2566: 2467: 1886: 1325: 343: 259: 241: 230: 2199: 2261: 2211: 2172: 2080: 324:
to conduct protons from the anode to the cathode while insulating the electrodes electrically. Under
17: 1957:
Carmo, M; Fritz D; Mergel J; Stolten D (2013). "A comprehensive review on PEM water electrolysis".
1861: 1617: 1599: 607: 325: 313: 276: 1784: 1758:
is very dependent on the hydration, temperature, heat treatment, and ionic state of the membrane.
2277: 2106: 2007: 1876: 317: 1652: 346:, proton conductivity, mass transport through the cell and catalyst utilization to name a few. 2331: 2227: 2098: 1621:
Polarization curve depicting the various losses attributed to PEM electrolysis cell operation.
1582:
A PEM electrolysis system's performance can be compared by plotting overpotential versus cell
778: 752: 731: 2371: 2304: 2269: 2219: 2180: 2088: 1997: 1966: 1896: 1846: 1568:{\displaystyle V_{\textrm {cell}}=E+V_{\textrm {act}}+V_{\textrm {trans}}+V_{\textrm {ohm}}} 1321: 1639: 1611: 1603: 1583: 2265: 2215: 2198:
Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S. (2016-03-31).
2176: 2084: 1303: 1283: 758: 2560: 2110: 2011: 1986:"An analysis of PEM water electrolysis cells operating at elevated current densities" 1891: 1823: 1751: 1690: 1595: 1485: 1477: 292: 2281: 2375: 2223: 2002: 1985: 1970: 1856: 1631: 1866: 1831: 613: 2093: 2068: 1813: 1481: 1473: 39: 2231: 2102: 2327: 2124: 1817: 610:, however the solar panel could be replaced with any source of electricity. 2391:"World's largest green-hydrogen plant inaugurated in Canada by Air Liquide" 2308: 1747: 1635: 1587: 913:
The overall cell reaction with thermodynamic energy inputs then becomes:
631: 2444:"RWE's former, current and possible future energy storage applications" 799: 617:
Diagram of PEM electrolyzer cell and the basic principles of operation.
2273: 2247:"Ionic conductivity of an extruded Nafion 1100 EW series of membranes" 2184: 234:
operation currently plaguing the alkaline electrolyzer. It involves a
1591: 960: 1000: 1783: 1616: 612: 478:{\displaystyle {\ce {2 H2O (l) -> O2 (g) + 4H+ (aq) + 4 e^-}}} 2037:"2014 - Development of water electrolysis in the European Union" 2504:"Cost reduction and performance increase of PEM electrolysers" 2450: 2150:
American Chemical Society Division of Fuel Chemistry Preprints
899:{\displaystyle {\ce {H2O (l) + \Delta H -> H2 + 1/2 O2}}} 2468:"ITM – Hydrogen Refuelling Infrastructure – February 2017" 2069:"Hydrogen production by PEM water electrolysis – A review" 1606:. The figure below is the result of a simulation from the 1080: 1053: 938: 892: 866: 827: 573: 415: 385: 1060: 872: 591:{\displaystyle {\ce {4H+ (aq) + 4 e^- -> 2H2 (g)}}} 1706: 1655: 1501: 1339: 1306: 1286: 1152: 1108: 926: 815: 781: 761: 734: 647: 512: 369: 2455:
Total Efficiency: 70%, or 86% (usage of waste heat)
2355: 2353: 2351: 2349: 2347: 213: 205: 197: 189: 181: 173: 165: 157: 149: 141: 133: 125: 117: 112: 104: 96: 88: 80: 70: 62: 54: 49: 32: 2245:Slade, S; Campbell SA; Ralph TR; Walsh FC (2002). 1731: 1673: 1567: 1454: 1312: 1292: 1267: 1128: 1086: 898: 790: 767: 743: 713: 590: 477: 1598:, the better the PEM electrolyzer the lower the 2533:"Report and Financial Statements 30 April 2016" 1771:Hydrogen compression during water electrolysis 1634:reaction, the prediction of this loss follows 2067:Shiva Kumar, S.; Himabindu, V. (2019-12-01). 1952: 1950: 1948: 1946: 1944: 1942: 1940: 1938: 1087:{\displaystyle {\ce {H2O(l)->{H2}+1/2O2}}} 8: 1936: 1934: 1932: 1930: 1928: 1926: 1924: 1922: 1920: 1918: 1480:) can be categorized into three main areas, 1472:The performance of electrolysis cells, like 244:of water is an important technology for the 2513:. Fuel Cells and Hydrogen Joint Undertaking 2025:2012 - PEM water electrolysis fundamentals 2092: 2073:Materials Science for Energy Technologies 2001: 1717: 1705: 1654: 1558: 1557: 1543: 1542: 1528: 1527: 1507: 1506: 1500: 1446: 1445: 1430: 1429: 1403: 1402: 1393: 1370: 1360: 1351: 1345: 1344: 1338: 1305: 1285: 1259: 1258: 1243: 1242: 1216: 1215: 1206: 1183: 1173: 1164: 1158: 1157: 1151: 1120: 1114: 1113: 1107: 1079: 1074: 1052: 1047: 1042: 1033: 1018: 1014: 1005: 993: 978: 974: 965: 955: 944: 937: 932: 927: 925: 891: 886: 865: 860: 833: 826: 821: 816: 814: 780: 760: 733: 704: 703: 685: 674: 673: 658: 646: 576: 572: 567: 562: 550: 545: 528: 522: 517: 513: 511: 468: 463: 446: 440: 435: 418: 414: 409: 391: 384: 379: 374: 370: 368: 2363:International Journal of Hydrogen Energy 1990:International Journal of Hydrogen Energy 1959:International Journal of Hydrogen Energy 27:Technology for splitting water molecules 2395:Recharge | Latest renewable energy news 1914: 1754:effect. The proton conductivity of the 1638:and holds a linear relationship to the 775:is the temperature of the reaction and 2324:Transition to Renewable Energy Systems 2254:Journal of the Electrochemical Society 2165:Journal of the Electrochemical Society 44:Diagram of PEM electrolysis reactions. 29: 2297:Chemical Engineering & Technology 1788:PEM high pressure electrolyzer system 1732:{\displaystyle Q\propto I^{2}\cdot R} 1129:{\displaystyle V_{\textrm {rev}}^{0}} 33:Proton exchange membrane electrolysis 18:Proton exchange membrane electrolyzer 7: 2442:Bernholz, Jan (September 13, 2018). 2401:from the original on 25 March 2021. 2484:from the original on 17 April 2018 2389:Collins, Leigh (27 January 2021). 1363: 1176: 847: 782: 735: 691: 661: 648: 320:. The PEM electrolyzer utilizes a 291:are at standard conditions 4  174:Specific energy consumption system 25: 1882:Timeline of hydrogen technologies 166:Specific energy consumption stack 113:State-of-the-art Operating Ranges 1830: 1816: 89:Catalyst material on the cathode 71:Bipolar/separator plate material 38: 2414:"Hydrogen Status og muligheter" 1642:of the operating electrolyzer. 1300:is the number of electrons and 322:solid polymer electrolyte (SPE) 190:System hydrogen production rate 2376:10.1016/j.ijhydene.2013.09.013 2224:10.1016/j.jpowsour.2016.01.012 2003:10.1016/j.ijhydene.2018.11.179 1984:Villagra, A; Millet P (2019). 1971:10.1016/j.ijhydene.2013.01.151 1872:Photocatalytic water splitting 951: 945: 853: 840: 834: 583: 577: 556: 535: 529: 453: 447: 425: 419: 402: 398: 392: 81:Catalyst material on the anode 1: 1762:Faradaic losses and crossover 342:voltage losses from internal 628:second law of thermodynamics 622:Second law of thermodynamics 1852:Electrochemical engineering 206:Acceptable degradation rate 63:Style of membrane/diaphragm 2598: 2125:"Electrolysers – Analysis" 2094:10.1016/j.mset.2019.03.002 1902:High-pressure electrolysis 1674:{\displaystyle V=I\cdot R} 1140:Open circuit voltage (OCV) 108:Carbon paper/carbon fleece 37: 2204:Journal of Power Sources 1608:Forschungszentrum Jülich 791:{\displaystyle \Delta S} 744:{\displaystyle \Delta G} 236:proton-exchange membrane 224:Proton exchange membrane 76:platinum coated titanium 1838:Renewable energy portal 182:Cell voltage efficiency 2309:10.1002/ceat.200403174 1789: 1750:, however without the 1733: 1675: 1622: 1569: 1456: 1314: 1294: 1269: 1130: 1088: 1040: 900: 792: 769: 745: 715: 618: 608:production of hydrogen 592: 479: 344:electrical resistances 246:production of hydrogen 1887:Electrolysis of water 1806:continues at a pace. 1787: 1734: 1676: 1620: 1570: 1457: 1326:thermoneutral voltage 1315: 1295: 1270: 1131: 1089: 956: 901: 793: 770: 746: 716: 616: 593: 480: 260:alkaline electrolysis 231:electrolysis of water 74:Titanium or gold and 55:Type of Electrolysis: 1704: 1653: 1594:. Conversely to the 1499: 1337: 1304: 1284: 1150: 1106: 924: 813: 779: 759: 732: 645: 634:of the reaction is: 510: 367: 105:Cathode PTL material 2577:Hydrogen production 2370:(35): 14921–14933. 2266:2002JElS..149A1556S 2216:2016JPS...309...56A 2177:1979JElS..126.1674L 2085:2019MSET....2..442S 1862:Hydrogen production 1356: 1169: 1136:can be calculated. 1125: 1082: 1055: 1039: 999: 940: 894: 868: 829: 575: 417: 387: 326:standard conditions 314:hydrogen production 277:compressed hydrogen 2582:Electrolytic cells 1877:Water purification 1790: 1729: 1671: 1623: 1565: 1452: 1340: 1322:Faraday's constant 1310: 1290: 1265: 1153: 1126: 1109: 1084: 1070: 1069: 1043: 998: 991: 928: 896: 882: 881: 856: 817: 788: 765: 741: 711: 710: 701: 680: 671: 619: 588: 563: 475: 405: 375: 318:fuel cell vehicles 227:(PEM) electrolysis 97:Anode PTL material 2540:www.itm-power.com 2511:www.fch.europa.eu 2475:level-network.com 2337:978-3-527-33239-7 2274:10.1149/1.1517281 2185:10.1149/1.2128775 1996:(20): 9708–9717. 1965:(12): 4901–4934. 1742: 1741: 1684: 1683: 1612:current densities 1578: 1577: 1561: 1546: 1531: 1510: 1486:activation losses 1465: 1464: 1449: 1437: 1433: 1428: 1406: 1401: 1388: 1348: 1313:{\displaystyle F} 1293:{\displaystyle n} 1278: 1277: 1262: 1250: 1246: 1241: 1219: 1214: 1201: 1161: 1117: 1097: 1096: 1073: 1068: 1046: 1038: 1036: 1031: 1025: 1017: 1013: 996: 985: 977: 973: 966: 964: 950: 943: 931: 909: 908: 885: 880: 859: 852: 839: 832: 820: 798:is the change in 768:{\displaystyle T} 755:of the reaction, 753:Gibbs free energy 724: 723: 707: 686: 684: 677: 659: 657: 601: 600: 582: 566: 549: 534: 521: 489: 488: 467: 452: 439: 424: 408: 397: 390: 378: 221: 220: 50:Typical Materials 16:(Redirected from 2589: 2572:Hydrogen economy 2551: 2550: 2548: 2546: 2537: 2529: 2523: 2522: 2520: 2518: 2508: 2500: 2494: 2493: 2491: 2489: 2483: 2472: 2464: 2458: 2457: 2448: 2439: 2433: 2432: 2430: 2428: 2423:. Bellona Norway 2418: 2412:Kruse, Bjørnar. 2409: 2403: 2402: 2386: 2380: 2379: 2357: 2342: 2341: 2319: 2313: 2312: 2292: 2286: 2285: 2251: 2242: 2236: 2235: 2195: 2189: 2188: 2160: 2154: 2153: 2145: 2139: 2138: 2136: 2135: 2121: 2115: 2114: 2096: 2064: 2058: 2057: 2055: 2054: 2048: 2042:. Archived from 2041: 2033: 2027: 2022: 2016: 2015: 2005: 1981: 1975: 1974: 1954: 1897:Hydrogen economy 1847:Electrochemistry 1840: 1835: 1834: 1826: 1821: 1820: 1780:System operation 1738: 1736: 1735: 1730: 1722: 1721: 1698: 1697: 1680: 1678: 1677: 1672: 1647: 1646: 1574: 1572: 1571: 1566: 1564: 1563: 1562: 1559: 1549: 1548: 1547: 1544: 1534: 1533: 1532: 1529: 1513: 1512: 1511: 1508: 1493: 1492: 1461: 1459: 1458: 1453: 1451: 1450: 1447: 1438: 1436: 1435: 1434: 1431: 1426: 1409: 1408: 1407: 1404: 1399: 1394: 1389: 1387: 1376: 1375: 1374: 1361: 1355: 1350: 1349: 1346: 1331: 1330: 1319: 1317: 1316: 1311: 1299: 1297: 1296: 1291: 1274: 1272: 1271: 1266: 1264: 1263: 1260: 1251: 1249: 1248: 1247: 1244: 1239: 1222: 1221: 1220: 1217: 1212: 1207: 1202: 1200: 1189: 1188: 1187: 1174: 1168: 1163: 1162: 1159: 1144: 1143: 1135: 1133: 1132: 1127: 1124: 1119: 1118: 1115: 1093: 1091: 1090: 1085: 1083: 1081: 1078: 1071: 1061: 1056: 1054: 1051: 1044: 1041: 1037: 1034: 1032: 1027: 1026: 1023: 1022: 1015: 1011: 1006: 1004: 997: 994: 992: 987: 986: 983: 982: 975: 971: 954: 948: 941: 939: 936: 929: 918: 917: 905: 903: 902: 897: 895: 893: 890: 883: 873: 867: 864: 857: 850: 843: 837: 830: 828: 825: 818: 807: 806: 797: 795: 794: 789: 774: 772: 771: 766: 750: 748: 747: 742: 720: 718: 717: 712: 709: 708: 705: 702: 697: 679: 678: 675: 672: 667: 639: 638: 597: 595: 594: 589: 587: 586: 580: 574: 571: 564: 555: 554: 547: 538: 532: 527: 526: 519: 504: 503: 494:Cathode reaction 484: 482: 481: 476: 474: 473: 472: 465: 456: 450: 445: 444: 437: 428: 422: 416: 413: 406: 401: 395: 388: 386: 383: 376: 360: 359: 118:Cell temperature 58:PEM Electrolysis 42: 30: 21: 2597: 2596: 2592: 2591: 2590: 2588: 2587: 2586: 2557: 2556: 2555: 2554: 2544: 2542: 2535: 2531: 2530: 2526: 2516: 2514: 2506: 2502: 2501: 2497: 2487: 2485: 2481: 2470: 2466: 2465: 2461: 2446: 2441: 2440: 2436: 2426: 2424: 2416: 2411: 2410: 2406: 2388: 2387: 2383: 2359: 2358: 2345: 2338: 2321: 2320: 2316: 2294: 2293: 2289: 2249: 2244: 2243: 2239: 2197: 2196: 2192: 2162: 2161: 2157: 2147: 2146: 2142: 2133: 2131: 2123: 2122: 2118: 2066: 2065: 2061: 2052: 2050: 2046: 2039: 2035: 2034: 2030: 2023: 2019: 1983: 1982: 1978: 1956: 1955: 1916: 1911: 1906: 1836: 1829: 1822: 1815: 1812: 1799: 1782: 1773: 1764: 1713: 1702: 1701: 1651: 1650: 1640:current density 1628: 1604:current density 1584:current density 1553: 1538: 1523: 1502: 1497: 1496: 1470: 1410: 1395: 1377: 1366: 1362: 1335: 1334: 1302: 1301: 1282: 1281: 1223: 1208: 1190: 1179: 1175: 1148: 1147: 1142: 1104: 1103: 1007: 967: 922: 921: 811: 810: 802:of the system. 777: 776: 757: 756: 730: 729: 687: 660: 643: 642: 624: 546: 518: 508: 507: 496: 464: 436: 365: 364: 352: 339: 309: 302: 298: 290: 286: 272: 255: 214:System lifetime 158:Part-load range 134:Current density 75: 45: 28: 23: 22: 15: 12: 11: 5: 2595: 2593: 2585: 2584: 2579: 2574: 2569: 2559: 2558: 2553: 2552: 2524: 2495: 2459: 2453:. p. 10. 2434: 2404: 2381: 2343: 2336: 2314: 2303:(8): 847–851. 2287: 2237: 2190: 2155: 2140: 2116: 2079:(3): 442–454. 2059: 2028: 2017: 1976: 1913: 1912: 1910: 1907: 1905: 1904: 1899: 1894: 1889: 1884: 1879: 1874: 1869: 1864: 1859: 1854: 1849: 1843: 1842: 1841: 1827: 1811: 1808: 1798: 1797:PEM efficiency 1795: 1781: 1778: 1772: 1769: 1763: 1760: 1744: 1743: 1740: 1739: 1728: 1725: 1720: 1716: 1712: 1709: 1686: 1685: 1682: 1681: 1670: 1667: 1664: 1661: 1658: 1627: 1624: 1580: 1579: 1576: 1575: 1556: 1552: 1541: 1537: 1526: 1522: 1519: 1516: 1505: 1478:PEM fuel cells 1469: 1468:Voltage losses 1466: 1463: 1462: 1444: 1441: 1425: 1422: 1419: 1416: 1413: 1398: 1392: 1386: 1383: 1380: 1373: 1369: 1365: 1359: 1354: 1343: 1309: 1289: 1276: 1275: 1257: 1254: 1238: 1235: 1232: 1229: 1226: 1211: 1205: 1199: 1196: 1193: 1186: 1182: 1178: 1172: 1167: 1156: 1141: 1138: 1123: 1112: 1099: 1098: 1095: 1094: 1077: 1067: 1064: 1059: 1050: 1030: 1021: 1010: 1003: 990: 981: 970: 963: 959: 953: 947: 935: 911: 910: 907: 906: 889: 879: 876: 871: 863: 855: 849: 846: 842: 836: 824: 787: 784: 764: 740: 737: 726: 725: 722: 721: 700: 696: 693: 690: 683: 670: 666: 663: 656: 653: 650: 623: 620: 603: 602: 599: 598: 585: 579: 570: 561: 558: 553: 544: 541: 537: 531: 525: 516: 495: 492: 491: 490: 487: 486: 471: 462: 459: 455: 449: 443: 434: 431: 427: 421: 412: 404: 400: 394: 382: 373: 351: 350:Anode reaction 348: 338: 335: 316:as a fuel for 308: 305: 300: 296: 288: 284: 271: 268: 254: 251: 219: 218: 215: 211: 210: 207: 203: 202: 199: 198:Lifetime stack 195: 194: 191: 187: 186: 183: 179: 178: 177:4.5-7.5 kWh/Nm 175: 171: 170: 169:4.2-5.6 kWh/Nm 167: 163: 162: 159: 155: 154: 151: 147: 146: 143: 139: 138: 135: 131: 130: 127: 126:Stack pressure 123: 122: 119: 115: 114: 110: 109: 106: 102: 101: 98: 94: 93: 90: 86: 85: 82: 78: 77: 72: 68: 67: 64: 60: 59: 56: 52: 51: 47: 46: 43: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2594: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2564: 2562: 2541: 2534: 2528: 2525: 2512: 2505: 2499: 2496: 2480: 2476: 2469: 2463: 2460: 2456: 2452: 2445: 2438: 2435: 2422: 2415: 2408: 2405: 2400: 2396: 2392: 2385: 2382: 2377: 2373: 2369: 2365: 2364: 2356: 2354: 2352: 2350: 2348: 2344: 2339: 2333: 2329: 2325: 2318: 2315: 2310: 2306: 2302: 2298: 2291: 2288: 2283: 2279: 2275: 2271: 2267: 2263: 2260:(12): A1556. 2259: 2255: 2248: 2241: 2238: 2233: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2194: 2191: 2186: 2182: 2178: 2174: 2170: 2166: 2159: 2156: 2151: 2144: 2141: 2130: 2126: 2120: 2117: 2112: 2108: 2104: 2100: 2095: 2090: 2086: 2082: 2078: 2074: 2070: 2063: 2060: 2049:on 2015-03-31 2045: 2038: 2032: 2029: 2026: 2021: 2018: 2013: 2009: 2004: 1999: 1995: 1991: 1987: 1980: 1977: 1972: 1968: 1964: 1960: 1953: 1951: 1949: 1947: 1945: 1943: 1941: 1939: 1937: 1935: 1933: 1931: 1929: 1927: 1925: 1923: 1921: 1919: 1915: 1908: 1903: 1900: 1898: 1895: 1893: 1892:PEM fuel cell 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1844: 1839: 1833: 1828: 1825: 1824:Energy portal 1819: 1814: 1809: 1807: 1803: 1796: 1794: 1786: 1779: 1777: 1770: 1768: 1761: 1759: 1757: 1753: 1752:Joule heating 1749: 1726: 1723: 1718: 1714: 1710: 1707: 1700: 1699: 1696: 1695: 1694: 1692: 1691:Joule heating 1668: 1665: 1662: 1659: 1656: 1649: 1648: 1645: 1644: 1643: 1641: 1637: 1633: 1625: 1619: 1615: 1613: 1609: 1605: 1601: 1597: 1596:PEM fuel cell 1593: 1589: 1585: 1554: 1550: 1539: 1535: 1524: 1520: 1517: 1514: 1503: 1495: 1494: 1491: 1490: 1489: 1487: 1483: 1479: 1475: 1467: 1442: 1439: 1423: 1420: 1417: 1414: 1411: 1396: 1390: 1384: 1381: 1378: 1371: 1367: 1357: 1352: 1341: 1333: 1332: 1329: 1327: 1323: 1307: 1287: 1255: 1252: 1236: 1233: 1230: 1227: 1224: 1209: 1203: 1197: 1194: 1191: 1184: 1180: 1170: 1165: 1154: 1146: 1145: 1139: 1137: 1121: 1110: 1075: 1065: 1062: 1057: 1048: 1028: 1019: 1008: 1001: 988: 979: 968: 961: 957: 933: 920: 919: 916: 915: 914: 887: 877: 874: 869: 861: 844: 822: 809: 808: 805: 804: 803: 801: 785: 762: 754: 738: 698: 694: 688: 681: 668: 664: 654: 651: 641: 640: 637: 636: 635: 633: 629: 621: 615: 611: 609: 568: 559: 551: 542: 539: 523: 514: 506: 505: 502: 501: 500: 493: 485: 469: 460: 457: 441: 432: 429: 410: 380: 371: 362: 361: 358: 357: 356: 349: 347: 345: 336: 334: 331: 327: 323: 319: 315: 306: 304: 294: 280: 278: 269: 267: 264: 261: 252: 250: 247: 243: 239: 237: 232: 228: 225: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 160: 156: 152: 150:Power density 148: 144: 140: 137:0.6-10.0 A/cm 136: 132: 128: 124: 120: 116: 111: 107: 103: 99: 95: 91: 87: 83: 79: 73: 69: 66:Solid polymer 65: 61: 57: 53: 48: 41: 36: 31: 19: 2567:Electrolysis 2543:. Retrieved 2539: 2527: 2515:. Retrieved 2510: 2498: 2486:. Retrieved 2474: 2462: 2454: 2437: 2425:. Retrieved 2421:bellona.org/ 2420: 2407: 2394: 2384: 2367: 2361: 2326:. Weinheim: 2323: 2317: 2300: 2296: 2290: 2257: 2253: 2240: 2207: 2203: 2193: 2171:(10): 1674. 2168: 2164: 2158: 2149: 2143: 2132:. Retrieved 2128: 2119: 2076: 2072: 2062: 2051:. Retrieved 2044:the original 2031: 2020: 1993: 1989: 1979: 1962: 1958: 1857:Electrolysis 1804: 1800: 1791: 1774: 1765: 1745: 1687: 1632:electrolysis 1629: 1626:Ohmic losses 1600:cell voltage 1581: 1482:Ohmic losses 1471: 1279: 1100: 912: 727: 625: 604: 497: 363: 353: 340: 310: 281: 273: 265: 256: 242:Electrolysis 240: 226: 223: 222: 201:<20,000 h 142:Cell voltage 1867:Gas cracker 1602:at a given 1035:electricity 626:As per the 209:<14 μV/h 153:to 4.4 W/cm 145:1.75-2.20 V 2561:Categories 2134:2023-04-30 2053:2014-12-03 1909:References 1474:fuel cells 312:localized 270:Advantages 129:<30 bar 2328:Wiley-VCH 2232:0378-7753 2210:: 56–65. 2111:141506732 2103:2589-2991 2012:104308293 1748:Ohm's law 1724:⋅ 1711:∝ 1666:⋅ 1636:Ohm's law 1415:× 1382:⋅ 1364:Δ 1228:× 1195:⋅ 1177:Δ 1029:⏞ 989:⏟ 854:⟶ 848:Δ 783:Δ 736:Δ 699:⏟ 692:Δ 669:⏟ 662:Δ 649:Δ 557:⟶ 552:− 470:− 403:⟶ 337:Reactions 2545:17 April 2517:17 April 2488:17 April 2479:Archived 2427:22 April 2399:Archived 2282:14851298 1810:See also 1588:hydrogen 958:→ 632:enthalpy 330:enthalpy 279:output. 100:Titanium 92:Platinum 2262:Bibcode 2212:Bibcode 2173:Bibcode 2081:Bibcode 800:entropy 751:is the 307:Science 253:History 229:is the 217:10-20 y 193:30 Nm/h 121:50-80°C 84:Iridium 2334:  2280:  2230:  2109:  2101:  2010:  1592:oxygen 1427:  1405:kJ/mol 1400:  1280:where 1240:  1218:kJ/mol 1213:  1012:  972:  728:Where 185:57-69% 2536:(PDF) 2507:(PDF) 2482:(PDF) 2471:(PDF) 2447:(PDF) 2417:(PDF) 2278:S2CID 2250:(PDF) 2107:S2CID 2047:(PDF) 2040:(PDF) 2008:S2CID 1545:trans 1432:C/mol 1397:285.9 1245:C/mol 1009:237.2 676:elec. 293:mol-% 161:0-10% 2547:2018 2519:2018 2490:2018 2429:2018 2332:ISBN 2228:ISSN 2099:ISSN 1590:and 1509:cell 1443:1.48 1256:1.23 995:heat 969:48.6 706:heat 630:the 328:the 299:in O 287:in O 2451:RWE 2372:doi 2305:doi 2270:doi 2258:149 2220:doi 2208:309 2181:doi 2169:126 2129:IEA 2089:doi 1998:doi 1967:doi 1756:PEM 1560:ohm 1530:act 1424:485 1320:is 1237:485 1210:237 1160:rev 1116:rev 1024:mol 984:mol 238:. 2563:: 2538:. 2509:. 2477:. 2473:. 2449:. 2419:. 2397:. 2393:. 2368:38 2366:. 2346:^ 2330:. 2301:27 2299:. 2276:. 2268:. 2256:. 2252:. 2226:. 2218:. 2206:. 2202:. 2179:. 2167:. 2127:. 2105:. 2097:. 2087:. 2075:. 2071:. 2006:. 1994:44 1992:. 1988:. 1963:38 1961:. 1917:^ 1614:. 1484:, 1418:96 1347:th 1328:. 1231:96 1016:kJ 976:kJ 533:aq 451:aq 303:. 2549:. 2521:. 2492:. 2431:. 2378:. 2374:: 2340:. 2311:. 2307:: 2284:. 2272:: 2264:: 2234:. 2222:: 2214:: 2187:. 2183:: 2175:: 2152:. 2137:. 2113:. 2091:: 2083:: 2077:2 2056:. 2014:. 2000:: 1973:. 1969:: 1727:R 1719:2 1715:I 1708:Q 1669:R 1663:I 1660:= 1657:V 1555:V 1551:+ 1540:V 1536:+ 1525:V 1521:+ 1518:E 1515:= 1504:V 1448:V 1440:= 1421:, 1412:2 1391:= 1385:F 1379:n 1372:0 1368:H 1358:= 1353:0 1342:V 1308:F 1288:n 1261:V 1253:= 1234:, 1225:2 1204:= 1198:F 1192:n 1185:0 1181:G 1171:= 1166:0 1155:V 1122:0 1111:V 1076:2 1072:O 1066:2 1063:1 1058:+ 1049:2 1045:H 1020:/ 1002:+ 980:/ 962:+ 952:) 949:l 946:( 942:O 934:2 930:H 888:2 884:O 878:2 875:1 870:+ 862:2 858:H 851:H 845:+ 841:) 838:l 835:( 831:O 823:2 819:H 786:S 763:T 739:G 695:S 689:T 682:+ 665:G 655:= 652:H 584:) 581:g 578:( 569:2 565:H 560:2 548:e 543:4 540:+ 536:) 530:( 524:+ 520:H 515:4 466:e 461:4 458:+ 454:) 448:( 442:+ 438:H 433:4 430:+ 426:) 423:g 420:( 411:2 407:O 399:) 396:l 393:( 389:O 381:2 377:H 372:2 301:2 297:2 295:H 289:2 285:2 283:H 20:)

Index

Proton exchange membrane electrolyzer

electrolysis of water
proton-exchange membrane
Electrolysis
production of hydrogen
alkaline electrolysis
compressed hydrogen
mol-%
hydrogen production
fuel cell vehicles
solid polymer electrolyte (SPE)
standard conditions
enthalpy
electrical resistances
production of hydrogen

second law of thermodynamics
enthalpy
Gibbs free energy
entropy
Faraday's constant
thermoneutral voltage
fuel cells
PEM fuel cells
Ohmic losses
activation losses
current density
hydrogen
oxygen

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.