Knowledge (XXG)

Proton exchange membrane electrolysis

Source 📝

1756:
the cathode, oxygen can be catalytically reacted with hydrogen on the platinum surface of the cathodic catalyst. At the anode, hydrogen and oxygen do not react at the iridium oxide catalyst. Thus, safety hazards due to explosive anodic mixtures hydrogen in oxygen can result. The supplied energy for the hydrogen production is lost, when hydrogen is lost due to the reaction with oxygen at the cathode and permeation from the cathode across the membrane to the anode corresponds. Hence, the ratio of the amount of lost and produced hydrogen determines the faradaic losses. At pressurized operation of the electrolyzer, the crossover and the correlated faradaic efficiency losses increase.
1313:. The calculation of cell voltage assuming no irreversibilities exist and all of the thermal energy is utilized by the reaction is referred to as the lower heating value (LHV). The alternative formulation, using the higher heating value (HHV) is calculated assuming that all of the energy to drive the electrolysis reaction is supplied by the electrical component of the required energy which results in a higher reversible cell voltage. When using the HHV the voltage calculation is referred to as the 1607: 1821: 1807: 603: 29: 1791:
higher overall electrical efficiency. The LHV must be used for alkaline electrolysers as the process within these electrolysers requires water in liquid form and uses alkalinity to facilitate the breaking of the bond holding the hydrogen and oxygen atoms together. The lower heat value must also be used for fuel cells, as steam is the output rather than input.
1782:
coupling these to energy sources such as wind and solar, the demand of the grid rarely matches the generation of renewable energy. This means energy produced from renewable sources such as wind and solar benefit by having a buffer, or a means of storing off-peak energy. As of 2021, the largest PEM electrolyzer is 20 MW.
1682:. Much of this heat energy is carried away with the reactant water supply and lost to the environment, however a small portion of this energy is then recaptured as heat energy in the electrolysis process. The amount of heat energy that can be recaptured is dependent on many aspects of system operation and cell design. 300:
An electrolyzer is an electrochemical device to convert electricity and water into hydrogen and oxygen, these gases can then be used as a means to store energy for later use. This use can range from electrical grid stabilization from dynamic electrical sources such as wind turbines and solar cells to
1764:
Hydrogen evolution due to pressurized electrolysis is comparable to an isothermal compression process, which is in terms of efficiency preferable compared to mechanical isotropic compression. However, the contributions of the aforementioned faradaic losses increase with operating pressures. Thus, in
1755:
Faradaic losses describe the efficiency losses that are correlated to the current, that is supplied without leading to hydrogen at the cathodic gas outlet. The produced hydrogen and oxygen can permeate across the membrane, referred to as crossover. Mixtures of both gases at the electrodes result. At
1449: 1794:
PEM electrolysis has an electrical efficiency of about 80% in working application, in terms of hydrogen produced per unit of electricity used to drive the reaction. The efficiency of PEM electrolysis is expected to reach 82-86% before 2030, while also maintaining durability as progress in this area
1262: 1790:
When determining the electrical efficiency of PEM electrolysis, the HHV can be used. This is because the catalyst layer interacts with water as steam. As the process operates at 80 °C for PEM electrolysers the waste heat can be redirected through the system to create the steam, resulting in a
263:
One of the largest advantages to PEM electrolysis is its ability to operate at high current densities. This can result in reduced operational costs, especially for systems coupled with very dynamic energy sources such as wind and solar, where sudden spikes in energy input would otherwise result in
330:
The actual value for open circuit voltage of an operating electrolyzer will lie between the 1.23 V and 1.48 V depending on how the cell/stack design utilizes the thermal energy inputs. This is however quite difficult to determine or measure because an operating electrolyzer also experiences other
1781:
The ability of the PEM electrolyzer to operate, not only under highly dynamic conditions but also in part-load and overload conditions is one of the reasons for the recently renewed interest in this technology. The demands of an electrical grid are relatively stable and predictable, however when
222:
in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure
251:
technology of that time, very efficient. In the late 1970s the alkaline electrolyzers were reporting performances around 0.215 A/cm at 2.06 V, thus prompting a sudden interest in the late 1970s and early 1980s in polymer electrolytes for water electrolysis. PEM water electrolysis technology is
1774: 237:
to be used as an energy carrier. With fast dynamic response times, large operational ranges, and high efficiencies, water electrolysis is a promising technology for energy storage coupled with renewable energy sources. In terms of sustainability and environmental impact, PEM electrolysis is
1090:
The thermal and electrical inputs shown above represent the minimum amount of energy that can be supplied by electricity in order to obtain an electrolysis reaction. Assuming that the maximum amount of heat energy (48.6 kJ/mol) is supplied to the reaction, the reversible cell voltage
264:
uncaptured energy. The polymer electrolyte allows the PEM electrolyzer to operate with a very thin membrane (~100-200 μm) while still allowing high pressures, resulting in low ohmic losses, primarily caused by the conduction of protons across the membrane (0.1 S/cm) and a
487:
The half reaction taking place on the cathode side of a PEM electrolyzer is commonly referred to as the Hydrogen Evolution Reaction (HER). Here the supplied electrons and the protons that have conducted through the membrane are combined to create gaseous hydrogen.
271:
The polymer electrolyte membrane, due to its solid structure, exhibits a low gas crossover rate resulting in very high product gas purity. Maintaining a high gas purity is important for storage safety and for the direct usage in a fuel cell. The safety limits for
343:
The half reaction taking place on the anode side of a PEM electrolyzer is commonly referred to as the Oxygen Evolution Reaction (OER). Here the liquid water reactant is supplied to catalyst where the supplied water is oxidized to oxygen, protons and electrons.
708: 594:
The illustration below depicts a simplification of how PEM electrolysis works, showing the individual half-reactions together along with the complete reaction of a PEM electrolyzer. In this case the electrolyzer is coupled with a solar panel for the
246:
The use of a PEM for electrolysis was first introduced in the 1960s by General Electric, developed to overcome the drawbacks to the alkaline electrolysis technology. The initial performances yielded 1.0 A/cm at 1.88 V which was, compared to the
1562: 1325: 1138: 1465:, is typically compared through polarization curves, which are obtained by plotting cell voltages against current densities. The primary sources of increased voltage in a PEM electrolyzer (the same also applies for 321:
required for the decomposition of water is 285.9 kJ/mol. A portion of the required energy for a sustained electrolysis reaction is supplied by thermal energy and the remainder is supplied through electrical energy.
238:
considered as a promising technique for high purity and efficient hydrogen production since it emits only oxygen as a by-product without any carbon emissions. The IEA said in 2022 that more effort was needed.
472: 1677:
The energy loss due to the electrical resistance is not entirely lost. The voltage drop due to resistivity is associated with the conversion the electrical energy to heat energy through a process known as
893: 2387: 255:
A thorough review of the historical performance from the early research to that of today can be found in chronological order with many of the operating conditions in the 2013 review by Carmo et al.
1619:
Ohmic losses are an electrical overpotential introduced to the electrolysis process by the internal resistance of the cell components. This loss then requires an additional voltage to maintain the
585: 1477:
and mass transport losses. Due to the reversal of operation between a PEM fuel cell and a PEM electrolyzer, the degree of impact for these various losses is different between the two processes.
1081: 1726: 1123: 633: 1765:
order to produce compressed hydrogen, the in-situ compression during electrolysis and subsequent compression of the gas have to be pondered under efficiency considerations.
1668: 785: 738: 2492: 1487: 1599:
of a 25 cm single cell PEM electrolyzer under thermoneutral operation depicting the primary sources of voltage loss and their contributions for a range of
1307: 1287: 762: 2379: 1444:{\displaystyle V_{\textrm {th}}^{0}={\frac {\Delta H^{0}}{n\cdot F}}={\frac {285.9\ {\textrm {kJ/mol}}}{2\times 96,485\ {\textrm {C/mol}}}}=1.48{\textrm {V}}} 1257:{\displaystyle V_{\textrm {rev}}^{0}={\frac {\Delta G^{0}}{n\cdot F}}={\frac {237\ {\textrm {kJ/mol}}}{2\times 96,485\ {\textrm {C/mol}}}}=1.23{\textrm {V}}} 2025: 2432: 2013: 252:
similar to PEM fuel cell technology, where solid poly-sulfonated membranes, such as nafion, fumapem, were used as a electrolyte (proton conductor).
2351: 2467: 2324: 2284:
Schröder, V; Emonts B; Janßen H; Schulze HP (2004). "Explosion Limits of Hydrogen/Oxygen Mixtures at Initial Pressures up to 200 bar".
355: 1870: 2349:
Schalenbach, M; Carmo M; Fritz DL; Mergel J; Stolten D (2013). "Pressurized PEM water electrolysis: Efficiency and gas crossover".
2311:
Mergel, J; Carmo M; Fritz, D (2013). "Status on Technologies for Hydrogen Production by Water Electrolysis". In Stolten, D (ed.).
801: 1860: 318: 2235: 498: 2565: 616: 1575:. This essentially results in a curve that represents the power per square centimeter of cell area required to produce 2570: 1840: 1596: 2152:
LeRoy, RL; Janjua MB; Renaud R; Leuenberger U (1979). "Analysis of Time-Variation Effects in Water Electrolyzers".
1890: 2137:
Russell, JH; Nuttall LJ; Ficket AP (1973). "Hydrogen generation by solid polymer electrolyte water electrolysis".
912: 2560: 2521: 2032: 2189:"An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport" 1744: 310: 224: 1826: 703:{\displaystyle \Delta H=\underbrace {\Delta G} _{\textrm {elec.}}+\underbrace {T\Delta S} _{\textrm {heat}}} 1692: 1094: 1735:
The Ohmic losses due to the conduction of protons contribute to the loss of efficiency which also follows
234: 2402: 2555: 2456: 1875: 1314: 332: 248: 230: 219: 2188: 2250: 2200: 2161: 2069: 313:
to conduct protons from the anode to the cathode while insulating the electrodes electrically. Under
1946:
Carmo, M; Fritz D; Mergel J; Stolten D (2013). "A comprehensive review on PEM water electrolysis".
1850: 1606: 1588: 596: 314: 302: 265: 1773: 1747:
is very dependent on the hydration, temperature, heat treatment, and ionic state of the membrane.
2266: 2095: 1996: 1865: 306: 1641: 335:, proton conductivity, mass transport through the cell and catalyst utilization to name a few. 2320: 2216: 2087: 1610:
Polarization curve depicting the various losses attributed to PEM electrolysis cell operation.
1571:
A PEM electrolysis system's performance can be compared by plotting overpotential versus cell
767: 741: 720: 2360: 2293: 2258: 2208: 2169: 2077: 1986: 1955: 1885: 1835: 1557:{\displaystyle V_{\textrm {cell}}=E+V_{\textrm {act}}+V_{\textrm {trans}}+V_{\textrm {ohm}}} 1310: 1628: 1600: 1592: 1572: 2254: 2204: 2187:
Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S. (2016-03-31).
2165: 2073: 1292: 1272: 747: 2549: 2099: 2000: 1975:"An analysis of PEM water electrolysis cells operating at elevated current densities" 1880: 1812: 1740: 1679: 1584: 1474: 1466: 281: 2270: 2364: 2212: 1991: 1974: 1959: 1845: 1620: 1855: 1820: 602: 2082: 2057: 1802: 1470: 1462: 28: 2220: 2091: 2316: 2113: 1806: 599:, however the solar panel could be replaced with any source of electricity. 2380:"World's largest green-hydrogen plant inaugurated in Canada by Air Liquide" 2297: 1736: 1624: 1576: 902:
The overall cell reaction with thermodynamic energy inputs then becomes:
620: 2433:"RWE's former, current and possible future energy storage applications" 788: 606:
Diagram of PEM electrolyzer cell and the basic principles of operation.
2262: 2236:"Ionic conductivity of an extruded Nafion 1100 EW series of membranes" 2173: 223:
operation currently plaguing the alkaline electrolyzer. It involves a
1580: 949: 989: 1772: 1605: 601: 467:{\displaystyle {\ce {2 H2O (l) -> O2 (g) + 4H+ (aq) + 4 e^-}}} 2026:"2014 - Development of water electrolysis in the European Union" 2493:"Cost reduction and performance increase of PEM electrolysers" 2439: 2139:
American Chemical Society Division of Fuel Chemistry Preprints
888:{\displaystyle {\ce {H2O (l) + \Delta H -> H2 + 1/2 O2}}} 2457:"ITM – Hydrogen Refuelling Infrastructure – February 2017" 2058:"Hydrogen production by PEM water electrolysis – A review" 1595:. The figure below is the result of a simulation from the 1069: 1042: 927: 881: 855: 816: 562: 404: 374: 1049: 861: 580:{\displaystyle {\ce {4H+ (aq) + 4 e^- -> 2H2 (g)}}} 1695: 1644: 1490: 1328: 1295: 1275: 1141: 1097: 915: 804: 770: 750: 723: 636: 501: 358: 2444:
Total Efficiency: 70%, or 86% (usage of waste heat)
2344: 2342: 2340: 2338: 2336: 202: 194: 186: 178: 170: 162: 154: 146: 138: 130: 122: 114: 106: 101: 93: 85: 77: 69: 59: 51: 43: 38: 21: 2234:Slade, S; Campbell SA; Ralph TR; Walsh FC (2002). 1720: 1662: 1556: 1443: 1301: 1281: 1256: 1117: 1075: 887: 779: 756: 732: 702: 579: 466: 1587:, the better the PEM electrolyzer the lower the 2522:"Report and Financial Statements 30 April 2016" 1760:Hydrogen compression during water electrolysis 1623:reaction, the prediction of this loss follows 2056:Shiva Kumar, S.; Himabindu, V. (2019-12-01). 1941: 1939: 1937: 1935: 1933: 1931: 1929: 1927: 1076:{\displaystyle {\ce {H2O(l)->{H2}+1/2O2}}} 8: 1925: 1923: 1921: 1919: 1917: 1915: 1913: 1911: 1909: 1907: 1469:) can be categorized into three main areas, 1461:The performance of electrolysis cells, like 233:of water is an important technology for the 2502:. Fuel Cells and Hydrogen Joint Undertaking 2014:2012 - PEM water electrolysis fundamentals 2081: 2062:Materials Science for Energy Technologies 1990: 1706: 1694: 1643: 1547: 1546: 1532: 1531: 1517: 1516: 1496: 1495: 1489: 1435: 1434: 1419: 1418: 1392: 1391: 1382: 1359: 1349: 1340: 1334: 1333: 1327: 1294: 1274: 1248: 1247: 1232: 1231: 1205: 1204: 1195: 1172: 1162: 1153: 1147: 1146: 1140: 1109: 1103: 1102: 1096: 1068: 1063: 1041: 1036: 1031: 1022: 1007: 1003: 994: 982: 967: 963: 954: 944: 933: 926: 921: 916: 914: 880: 875: 854: 849: 822: 815: 810: 805: 803: 769: 749: 722: 693: 692: 674: 663: 662: 647: 635: 565: 561: 556: 551: 539: 534: 517: 511: 506: 502: 500: 457: 452: 435: 429: 424: 407: 403: 398: 380: 373: 368: 363: 359: 357: 2352:International Journal of Hydrogen Energy 1979:International Journal of Hydrogen Energy 1948:International Journal of Hydrogen Energy 16:Technology for splitting water molecules 2384:Recharge | Latest renewable energy news 1903: 1743:effect. The proton conductivity of the 1627:and holds a linear relationship to the 764:is the temperature of the reaction and 2313:Transition to Renewable Energy Systems 2243:Journal of the Electrochemical Society 2154:Journal of the Electrochemical Society 33:Diagram of PEM electrolysis reactions. 18: 2286:Chemical Engineering & Technology 1777:PEM high pressure electrolyzer system 1721:{\displaystyle Q\propto I^{2}\cdot R} 1118:{\displaystyle V_{\textrm {rev}}^{0}} 22:Proton exchange membrane electrolysis 7: 2431:Bernholz, Jan (September 13, 2018). 2390:from the original on 25 March 2021. 2473:from the original on 17 April 2018 2378:Collins, Leigh (27 January 2021). 1352: 1165: 836: 771: 724: 680: 650: 637: 309:. The PEM electrolyzer utilizes a 280:are at standard conditions 4  163:Specific energy consumption system 14: 1871:Timeline of hydrogen technologies 155:Specific energy consumption stack 102:State-of-the-art Operating Ranges 1819: 1805: 78:Catalyst material on the cathode 60:Bipolar/separator plate material 27: 2403:"Hydrogen Status og muligheter" 1631:of the operating electrolyzer. 1289:is the number of electrons and 311:solid polymer electrolyte (SPE) 179:System hydrogen production rate 2365:10.1016/j.ijhydene.2013.09.013 2213:10.1016/j.jpowsour.2016.01.012 1992:10.1016/j.ijhydene.2018.11.179 1973:Villagra, A; Millet P (2019). 1960:10.1016/j.ijhydene.2013.01.151 1861:Photocatalytic water splitting 940: 934: 842: 829: 823: 572: 566: 545: 524: 518: 442: 436: 414: 408: 391: 387: 381: 70:Catalyst material on the anode 1: 1751:Faradaic losses and crossover 331:voltage losses from internal 617:second law of thermodynamics 611:Second law of thermodynamics 1841:Electrochemical engineering 195:Acceptable degradation rate 52:Style of membrane/diaphragm 2587: 2114:"Electrolysers – Analysis" 2083:10.1016/j.mset.2019.03.002 1891:High-pressure electrolysis 1663:{\displaystyle V=I\cdot R} 1129:Open circuit voltage (OCV) 97:Carbon paper/carbon fleece 26: 2193:Journal of Power Sources 1597:Forschungszentrum Jülich 780:{\displaystyle \Delta S} 733:{\displaystyle \Delta G} 225:proton-exchange membrane 213:Proton exchange membrane 65:platinum coated titanium 1827:Renewable energy portal 171:Cell voltage efficiency 2298:10.1002/ceat.200403174 1778: 1739:, however without the 1722: 1664: 1611: 1558: 1445: 1303: 1283: 1258: 1119: 1077: 1029: 889: 781: 758: 734: 704: 607: 597:production of hydrogen 581: 468: 333:electrical resistances 235:production of hydrogen 1876:Electrolysis of water 1795:continues at a pace. 1776: 1723: 1665: 1609: 1559: 1446: 1315:thermoneutral voltage 1304: 1284: 1259: 1120: 1078: 945: 890: 782: 759: 735: 705: 605: 582: 469: 249:alkaline electrolysis 220:electrolysis of water 63:Titanium or gold and 44:Type of Electrolysis: 1693: 1642: 1583:. Conversely to the 1488: 1326: 1293: 1273: 1139: 1095: 913: 802: 768: 748: 721: 634: 623:of the reaction is: 499: 356: 94:Cathode PTL material 2566:Hydrogen production 2359:(35): 14921–14933. 2255:2002JElS..149A1556S 2205:2016JPS...309...56A 2166:1979JElS..126.1674L 2074:2019MSET....2..442S 1851:Hydrogen production 1345: 1158: 1125:can be calculated. 1114: 1071: 1044: 1028: 988: 929: 883: 857: 818: 564: 406: 376: 315:standard conditions 303:hydrogen production 266:compressed hydrogen 2571:Electrolytic cells 1866:Water purification 1779: 1718: 1660: 1612: 1554: 1441: 1329: 1311:Faraday's constant 1299: 1279: 1254: 1142: 1115: 1098: 1073: 1059: 1058: 1032: 987: 980: 917: 885: 871: 870: 845: 806: 777: 754: 730: 700: 699: 690: 669: 660: 608: 577: 552: 464: 394: 364: 307:fuel cell vehicles 216:(PEM) electrolysis 86:Anode PTL material 2529:www.itm-power.com 2500:www.fch.europa.eu 2464:level-network.com 2326:978-3-527-33239-7 2263:10.1149/1.1517281 2174:10.1149/1.2128775 1985:(20): 9708–9717. 1954:(12): 4901–4934. 1731: 1730: 1673: 1672: 1601:current densities 1567: 1566: 1550: 1535: 1520: 1499: 1475:activation losses 1454: 1453: 1438: 1426: 1422: 1417: 1395: 1390: 1377: 1337: 1302:{\displaystyle F} 1282:{\displaystyle n} 1267: 1266: 1251: 1239: 1235: 1230: 1208: 1203: 1190: 1150: 1106: 1086: 1085: 1062: 1057: 1035: 1027: 1025: 1020: 1014: 1006: 1002: 985: 974: 966: 962: 955: 953: 939: 932: 920: 898: 897: 874: 869: 848: 841: 828: 821: 809: 787:is the change in 757:{\displaystyle T} 744:of the reaction, 742:Gibbs free energy 713: 712: 696: 675: 673: 666: 648: 646: 590: 589: 571: 555: 538: 523: 510: 478: 477: 456: 441: 428: 413: 397: 386: 379: 367: 210: 209: 39:Typical Materials 2578: 2561:Hydrogen economy 2540: 2539: 2537: 2535: 2526: 2518: 2512: 2511: 2509: 2507: 2497: 2489: 2483: 2482: 2480: 2478: 2472: 2461: 2453: 2447: 2446: 2437: 2428: 2422: 2421: 2419: 2417: 2412:. Bellona Norway 2407: 2401:Kruse, Bjørnar. 2398: 2392: 2391: 2375: 2369: 2368: 2346: 2331: 2330: 2308: 2302: 2301: 2281: 2275: 2274: 2240: 2231: 2225: 2224: 2184: 2178: 2177: 2149: 2143: 2142: 2134: 2128: 2127: 2125: 2124: 2110: 2104: 2103: 2085: 2053: 2047: 2046: 2044: 2043: 2037: 2031:. Archived from 2030: 2022: 2016: 2011: 2005: 2004: 1994: 1970: 1964: 1963: 1943: 1886:Hydrogen economy 1836:Electrochemistry 1829: 1824: 1823: 1815: 1810: 1809: 1769:System operation 1727: 1725: 1724: 1719: 1711: 1710: 1687: 1686: 1669: 1667: 1666: 1661: 1636: 1635: 1563: 1561: 1560: 1555: 1553: 1552: 1551: 1548: 1538: 1537: 1536: 1533: 1523: 1522: 1521: 1518: 1502: 1501: 1500: 1497: 1482: 1481: 1450: 1448: 1447: 1442: 1440: 1439: 1436: 1427: 1425: 1424: 1423: 1420: 1415: 1398: 1397: 1396: 1393: 1388: 1383: 1378: 1376: 1365: 1364: 1363: 1350: 1344: 1339: 1338: 1335: 1320: 1319: 1308: 1306: 1305: 1300: 1288: 1286: 1285: 1280: 1263: 1261: 1260: 1255: 1253: 1252: 1249: 1240: 1238: 1237: 1236: 1233: 1228: 1211: 1210: 1209: 1206: 1201: 1196: 1191: 1189: 1178: 1177: 1176: 1163: 1157: 1152: 1151: 1148: 1133: 1132: 1124: 1122: 1121: 1116: 1113: 1108: 1107: 1104: 1082: 1080: 1079: 1074: 1072: 1070: 1067: 1060: 1050: 1045: 1043: 1040: 1033: 1030: 1026: 1023: 1021: 1016: 1015: 1012: 1011: 1004: 1000: 995: 993: 986: 983: 981: 976: 975: 972: 971: 964: 960: 943: 937: 930: 928: 925: 918: 907: 906: 894: 892: 891: 886: 884: 882: 879: 872: 862: 856: 853: 846: 839: 832: 826: 819: 817: 814: 807: 796: 795: 786: 784: 783: 778: 763: 761: 760: 755: 739: 737: 736: 731: 709: 707: 706: 701: 698: 697: 694: 691: 686: 668: 667: 664: 661: 656: 628: 627: 586: 584: 583: 578: 576: 575: 569: 563: 560: 553: 544: 543: 536: 527: 521: 516: 515: 508: 493: 492: 483:Cathode reaction 473: 471: 470: 465: 463: 462: 461: 454: 445: 439: 434: 433: 426: 417: 411: 405: 402: 395: 390: 384: 377: 375: 372: 365: 349: 348: 107:Cell temperature 47:PEM Electrolysis 31: 19: 2586: 2585: 2581: 2580: 2579: 2577: 2576: 2575: 2546: 2545: 2544: 2543: 2533: 2531: 2524: 2520: 2519: 2515: 2505: 2503: 2495: 2491: 2490: 2486: 2476: 2474: 2470: 2459: 2455: 2454: 2450: 2435: 2430: 2429: 2425: 2415: 2413: 2405: 2400: 2399: 2395: 2377: 2376: 2372: 2348: 2347: 2334: 2327: 2310: 2309: 2305: 2283: 2282: 2278: 2238: 2233: 2232: 2228: 2186: 2185: 2181: 2151: 2150: 2146: 2136: 2135: 2131: 2122: 2120: 2112: 2111: 2107: 2055: 2054: 2050: 2041: 2039: 2035: 2028: 2024: 2023: 2019: 2012: 2008: 1972: 1971: 1967: 1945: 1944: 1905: 1900: 1895: 1825: 1818: 1811: 1804: 1801: 1788: 1771: 1762: 1753: 1702: 1691: 1690: 1640: 1639: 1629:current density 1617: 1593:current density 1573:current density 1542: 1527: 1512: 1491: 1486: 1485: 1459: 1399: 1384: 1366: 1355: 1351: 1324: 1323: 1291: 1290: 1271: 1270: 1212: 1197: 1179: 1168: 1164: 1137: 1136: 1131: 1093: 1092: 996: 956: 911: 910: 800: 799: 791:of the system. 766: 765: 746: 745: 719: 718: 676: 649: 632: 631: 613: 535: 507: 497: 496: 485: 453: 425: 354: 353: 341: 328: 298: 291: 287: 279: 275: 261: 244: 203:System lifetime 147:Part-load range 123:Current density 64: 34: 17: 12: 11: 5: 2584: 2582: 2574: 2573: 2568: 2563: 2558: 2548: 2547: 2542: 2541: 2513: 2484: 2448: 2442:. p. 10. 2423: 2393: 2370: 2332: 2325: 2303: 2292:(8): 847–851. 2276: 2226: 2179: 2144: 2129: 2105: 2068:(3): 442–454. 2048: 2017: 2006: 1965: 1902: 1901: 1899: 1896: 1894: 1893: 1888: 1883: 1878: 1873: 1868: 1863: 1858: 1853: 1848: 1843: 1838: 1832: 1831: 1830: 1816: 1800: 1797: 1787: 1786:PEM efficiency 1784: 1770: 1767: 1761: 1758: 1752: 1749: 1733: 1732: 1729: 1728: 1717: 1714: 1709: 1705: 1701: 1698: 1675: 1674: 1671: 1670: 1659: 1656: 1653: 1650: 1647: 1616: 1613: 1569: 1568: 1565: 1564: 1545: 1541: 1530: 1526: 1515: 1511: 1508: 1505: 1494: 1467:PEM fuel cells 1458: 1457:Voltage losses 1455: 1452: 1451: 1433: 1430: 1414: 1411: 1408: 1405: 1402: 1387: 1381: 1375: 1372: 1369: 1362: 1358: 1354: 1348: 1343: 1332: 1298: 1278: 1265: 1264: 1246: 1243: 1227: 1224: 1221: 1218: 1215: 1200: 1194: 1188: 1185: 1182: 1175: 1171: 1167: 1161: 1156: 1145: 1130: 1127: 1112: 1101: 1088: 1087: 1084: 1083: 1066: 1056: 1053: 1048: 1039: 1019: 1010: 999: 992: 979: 970: 959: 952: 948: 942: 936: 924: 900: 899: 896: 895: 878: 868: 865: 860: 852: 844: 838: 835: 831: 825: 813: 776: 773: 753: 729: 726: 715: 714: 711: 710: 689: 685: 682: 679: 672: 659: 655: 652: 645: 642: 639: 612: 609: 592: 591: 588: 587: 574: 568: 559: 550: 547: 542: 533: 530: 526: 520: 514: 505: 484: 481: 480: 479: 476: 475: 460: 451: 448: 444: 438: 432: 423: 420: 416: 410: 401: 393: 389: 383: 371: 362: 340: 339:Anode reaction 337: 327: 324: 305:as a fuel for 297: 294: 289: 285: 277: 273: 260: 257: 243: 240: 208: 207: 204: 200: 199: 196: 192: 191: 188: 187:Lifetime stack 184: 183: 180: 176: 175: 172: 168: 167: 166:4.5-7.5 kWh/Nm 164: 160: 159: 158:4.2-5.6 kWh/Nm 156: 152: 151: 148: 144: 143: 140: 136: 135: 132: 128: 127: 124: 120: 119: 116: 115:Stack pressure 112: 111: 108: 104: 103: 99: 98: 95: 91: 90: 87: 83: 82: 79: 75: 74: 71: 67: 66: 61: 57: 56: 53: 49: 48: 45: 41: 40: 36: 35: 32: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 2583: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2553: 2551: 2530: 2523: 2517: 2514: 2501: 2494: 2488: 2485: 2469: 2465: 2458: 2452: 2449: 2445: 2441: 2434: 2427: 2424: 2411: 2404: 2397: 2394: 2389: 2385: 2381: 2374: 2371: 2366: 2362: 2358: 2354: 2353: 2345: 2343: 2341: 2339: 2337: 2333: 2328: 2322: 2318: 2314: 2307: 2304: 2299: 2295: 2291: 2287: 2280: 2277: 2272: 2268: 2264: 2260: 2256: 2252: 2249:(12): A1556. 2248: 2244: 2237: 2230: 2227: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2183: 2180: 2175: 2171: 2167: 2163: 2159: 2155: 2148: 2145: 2140: 2133: 2130: 2119: 2115: 2109: 2106: 2101: 2097: 2093: 2089: 2084: 2079: 2075: 2071: 2067: 2063: 2059: 2052: 2049: 2038:on 2015-03-31 2034: 2027: 2021: 2018: 2015: 2010: 2007: 2002: 1998: 1993: 1988: 1984: 1980: 1976: 1969: 1966: 1961: 1957: 1953: 1949: 1942: 1940: 1938: 1936: 1934: 1932: 1930: 1928: 1926: 1924: 1922: 1920: 1918: 1916: 1914: 1912: 1910: 1908: 1904: 1897: 1892: 1889: 1887: 1884: 1882: 1881:PEM fuel cell 1879: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1833: 1828: 1822: 1817: 1814: 1813:Energy portal 1808: 1803: 1798: 1796: 1792: 1785: 1783: 1775: 1768: 1766: 1759: 1757: 1750: 1748: 1746: 1742: 1741:Joule heating 1738: 1715: 1712: 1707: 1703: 1699: 1696: 1689: 1688: 1685: 1684: 1683: 1681: 1680:Joule heating 1657: 1654: 1651: 1648: 1645: 1638: 1637: 1634: 1633: 1632: 1630: 1626: 1622: 1614: 1608: 1604: 1602: 1598: 1594: 1590: 1586: 1585:PEM fuel cell 1582: 1578: 1574: 1543: 1539: 1528: 1524: 1513: 1509: 1506: 1503: 1492: 1484: 1483: 1480: 1479: 1478: 1476: 1472: 1468: 1464: 1456: 1431: 1428: 1412: 1409: 1406: 1403: 1400: 1385: 1379: 1373: 1370: 1367: 1360: 1356: 1346: 1341: 1330: 1322: 1321: 1318: 1316: 1312: 1296: 1276: 1244: 1241: 1225: 1222: 1219: 1216: 1213: 1198: 1192: 1186: 1183: 1180: 1173: 1169: 1159: 1154: 1143: 1135: 1134: 1128: 1126: 1110: 1099: 1064: 1054: 1051: 1046: 1037: 1017: 1008: 997: 990: 977: 968: 957: 950: 946: 922: 909: 908: 905: 904: 903: 876: 866: 863: 858: 850: 833: 811: 798: 797: 794: 793: 792: 790: 774: 751: 743: 727: 687: 683: 677: 670: 657: 653: 643: 640: 630: 629: 626: 625: 624: 622: 618: 610: 604: 600: 598: 557: 548: 540: 531: 528: 512: 503: 495: 494: 491: 490: 489: 482: 474: 458: 449: 446: 430: 421: 418: 399: 369: 360: 351: 350: 347: 346: 345: 338: 336: 334: 325: 323: 320: 316: 312: 308: 304: 295: 293: 283: 269: 267: 258: 256: 253: 250: 241: 239: 236: 232: 228: 226: 221: 217: 214: 205: 201: 197: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 149: 145: 141: 139:Power density 137: 133: 129: 126:0.6-10.0 A/cm 125: 121: 117: 113: 109: 105: 100: 96: 92: 88: 84: 80: 76: 72: 68: 62: 58: 55:Solid polymer 54: 50: 46: 42: 37: 30: 25: 20: 2556:Electrolysis 2532:. Retrieved 2528: 2516: 2504:. Retrieved 2499: 2487: 2475:. Retrieved 2463: 2451: 2443: 2426: 2414:. Retrieved 2410:bellona.org/ 2409: 2396: 2383: 2373: 2356: 2350: 2315:. Weinheim: 2312: 2306: 2289: 2285: 2279: 2246: 2242: 2229: 2196: 2192: 2182: 2160:(10): 1674. 2157: 2153: 2147: 2138: 2132: 2121:. Retrieved 2117: 2108: 2065: 2061: 2051: 2040:. Retrieved 2033:the original 2020: 2009: 1982: 1978: 1968: 1951: 1947: 1846:Electrolysis 1793: 1789: 1780: 1763: 1754: 1734: 1676: 1621:electrolysis 1618: 1615:Ohmic losses 1589:cell voltage 1570: 1471:Ohmic losses 1460: 1268: 1089: 901: 716: 614: 593: 486: 352: 342: 329: 299: 270: 262: 254: 245: 231:Electrolysis 229: 215: 212: 211: 190:<20,000 h 131:Cell voltage 1856:Gas cracker 1591:at a given 1024:electricity 615:As per the 198:<14 μV/h 142:to 4.4 W/cm 134:1.75-2.20 V 2550:Categories 2123:2023-04-30 2042:2014-12-03 1898:References 1463:fuel cells 301:localized 259:Advantages 118:<30 bar 2317:Wiley-VCH 2221:0378-7753 2199:: 56–65. 2100:141506732 2092:2589-2991 2001:104308293 1737:Ohm's law 1713:⋅ 1700:∝ 1655:⋅ 1625:Ohm's law 1404:× 1371:⋅ 1353:Δ 1217:× 1184:⋅ 1166:Δ 1018:⏞ 978:⏟ 843:⟶ 837:Δ 772:Δ 725:Δ 688:⏟ 681:Δ 658:⏟ 651:Δ 638:Δ 546:⟶ 541:− 459:− 392:⟶ 326:Reactions 2534:17 April 2506:17 April 2477:17 April 2468:Archived 2416:22 April 2388:Archived 2271:14851298 1799:See also 1577:hydrogen 947:→ 621:enthalpy 319:enthalpy 268:output. 89:Titanium 81:Platinum 2251:Bibcode 2201:Bibcode 2162:Bibcode 2070:Bibcode 789:entropy 740:is the 296:Science 242:History 218:is the 206:10-20 y 182:30 Nm/h 110:50-80°C 73:Iridium 2323:  2269:  2219:  2098:  2090:  1999:  1581:oxygen 1416:  1394:kJ/mol 1389:  1269:where 1229:  1207:kJ/mol 1202:  1001:  961:  717:Where 174:57-69% 2525:(PDF) 2496:(PDF) 2471:(PDF) 2460:(PDF) 2436:(PDF) 2406:(PDF) 2267:S2CID 2239:(PDF) 2096:S2CID 2036:(PDF) 2029:(PDF) 1997:S2CID 1534:trans 1421:C/mol 1386:285.9 1234:C/mol 998:237.2 665:elec. 282:mol-% 150:0-10% 2536:2018 2508:2018 2479:2018 2418:2018 2321:ISBN 2217:ISSN 2088:ISSN 1579:and 1498:cell 1432:1.48 1245:1.23 984:heat 958:48.6 695:heat 619:the 317:the 288:in O 276:in O 2440:RWE 2361:doi 2294:doi 2259:doi 2247:149 2209:doi 2197:309 2170:doi 2158:126 2118:IEA 2078:doi 1987:doi 1956:doi 1745:PEM 1549:ohm 1519:act 1413:485 1309:is 1226:485 1199:237 1149:rev 1105:rev 1013:mol 973:mol 227:. 2552:: 2527:. 2498:. 2466:. 2462:. 2438:. 2408:. 2386:. 2382:. 2357:38 2355:. 2335:^ 2319:. 2290:27 2288:. 2265:. 2257:. 2245:. 2241:. 2215:. 2207:. 2195:. 2191:. 2168:. 2156:. 2116:. 2094:. 2086:. 2076:. 2064:. 2060:. 1995:. 1983:44 1981:. 1977:. 1952:38 1950:. 1906:^ 1603:. 1473:, 1407:96 1336:th 1317:. 1220:96 1005:kJ 965:kJ 522:aq 440:aq 292:. 2538:. 2510:. 2481:. 2420:. 2367:. 2363:: 2329:. 2300:. 2296:: 2273:. 2261:: 2253:: 2223:. 2211:: 2203:: 2176:. 2172:: 2164:: 2141:. 2126:. 2102:. 2080:: 2072:: 2066:2 2045:. 2003:. 1989:: 1962:. 1958:: 1716:R 1708:2 1704:I 1697:Q 1658:R 1652:I 1649:= 1646:V 1544:V 1540:+ 1529:V 1525:+ 1514:V 1510:+ 1507:E 1504:= 1493:V 1437:V 1429:= 1410:, 1401:2 1380:= 1374:F 1368:n 1361:0 1357:H 1347:= 1342:0 1331:V 1297:F 1277:n 1250:V 1242:= 1223:, 1214:2 1193:= 1187:F 1181:n 1174:0 1170:G 1160:= 1155:0 1144:V 1111:0 1100:V 1065:2 1061:O 1055:2 1052:1 1047:+ 1038:2 1034:H 1009:/ 991:+ 969:/ 951:+ 941:) 938:l 935:( 931:O 923:2 919:H 877:2 873:O 867:2 864:1 859:+ 851:2 847:H 840:H 834:+ 830:) 827:l 824:( 820:O 812:2 808:H 775:S 752:T 728:G 684:S 678:T 671:+ 654:G 644:= 641:H 573:) 570:g 567:( 558:2 554:H 549:2 537:e 532:4 529:+ 525:) 519:( 513:+ 509:H 504:4 455:e 450:4 447:+ 443:) 437:( 431:+ 427:H 422:4 419:+ 415:) 412:g 409:( 400:2 396:O 388:) 385:l 382:( 378:O 370:2 366:H 361:2 290:2 286:2 284:H 278:2 274:2 272:H

Index


electrolysis of water
proton-exchange membrane
Electrolysis
production of hydrogen
alkaline electrolysis
compressed hydrogen
mol-%
hydrogen production
fuel cell vehicles
solid polymer electrolyte (SPE)
standard conditions
enthalpy
electrical resistances
production of hydrogen

second law of thermodynamics
enthalpy
Gibbs free energy
entropy
Faraday's constant
thermoneutral voltage
fuel cells
PEM fuel cells
Ohmic losses
activation losses
current density
hydrogen
oxygen
PEM fuel cell

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.