Knowledge (XXG)

Quaternionic representation

Source 📝

513:, must be matrix algebras over the real numbers or the quaternions. Thus a real or pseudoreal representation is a direct sum of irreducible real representations and irreducible quaternionic representations. It is real if no quaternionic representations occur in the decomposition. 321: 605: 440: 97: 482: 139: 533:
of quaternions themselves under left multiplication. By restricting this to the unit quaternions, we obtain a quaternionic representation of the
801: 761: 244: 621:
of Spin(5). An example of a non-unitary quaternionic representation would be the two dimensional irreducible representation of Spin(5,1).
663:
Among the compact real forms of the simple Lie groups, irreducible quaternionic representations only exist for the Lie groups of type
394: 554: 832: 733: 487:
A representation which is isomorphic to its complex conjugate, but which is not a real representation, is sometimes called a
378:) and in this case quaternionic representations are also known as symplectic representations. Such representations, amongst 745: 737: 379: 383: 363: 165: 510: 656:, 1). These representations have the same type of real or quaternionic structure as the spinors of Spin( 817: 347: 55: 35: 173: 43: 413: 70: 618: 390: 327: 185: 192: 451: 108: 797: 775: 757: 749: 177: 771: 767: 405: 62: 17: 790: 398: 397:. Here a real representation is taken to be a complex representation with an invariant 47: 27:
Representation of a group or algebra in terms of an algebra with quaternionic structure
826: 371: 219: 534: 526: 375: 529:. There is an obvious one-dimensional quaternionic vector space, namely the space 525:
in three dimensions. Each (proper) rotation is represented by a quaternion with
331: 31: 753: 499: 402: 181: 59: 779: 522: 748:, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. 649: 316:{\displaystyle \rho (gh)=\rho (g)\rho (h){\text{ for all }}g,h\in G.} 548:) also happens to be a unitary quaternionic representation because 498:
can be understood by viewing them as representations of the real
210:), the group of invertible quaternion-linear transformations of 505:. Such a representation will be a direct sum of central simple 521:
A common example involves the quaternionic representation of
184:). From this point of view, quaternionic representation of a 214:. In particular, a quaternionic matrix representation of 600:{\displaystyle \rho (g)^{\dagger }\rho (g)=\mathbf {1} } 648:
is an integer. In physics, one often encounters the
557: 454: 416: 247: 111: 73: 789: 599: 476: 434: 315: 133: 91: 624:More generally, the spin representations of Spin( 494:Real and pseudoreal representations of a group 8: 389:Quaternionic representations are similar to 358:admits an invariant complex symplectic form 592: 571: 556: 459: 453: 415: 290: 246: 116: 110: 72: 792:Linear Representations of Finite Groups 742:Representation theory. A first course 393:in that they are isomorphic to their 7: 25: 334:can be defined in a similar way. 144:Together with the imaginary unit 593: 395:complex conjugate representation 326:Quaternionic representations of 617:Another unitary example is the 350:and the quaternionic structure 338:Properties and related concepts 238:(e) is the identity matrix and 586: 580: 568: 561: 435:{\displaystyle j\colon V\to V} 426: 287: 281: 275: 269: 260: 251: 92:{\displaystyle j\colon V\to V} 83: 1: 746:Graduate Texts in Mathematics 354:is a unitary operator, then 788:Serre, Jean-Pierre (1977), 382:, can be picked out by the 380:irreducible representations 40:quaternionic representation 849: 754:10.1007/978-1-4612-0979-9 509:-algebras, which, by the 489:pseudoreal representation 477:{\displaystyle j^{2}=+1.} 384:Frobenius-Schur indicator 370:is a representation of a 364:symplectic representation 166:quaternionic vector space 134:{\displaystyle j^{2}=-1.} 18:Pseudoreal representation 628:) are quaternionic when 511:Artin-Wedderburn theorem 164:with the structure of a 818:Symplectic vector space 660: − 1). 544:: Spin(3) → GL(1, 366:. This always holds if 148:and the antilinear map 636:, 4 + 8 632:equals 3 + 8 601: 478: 436: 348:unitary representation 317: 135: 93: 56:quaternionic structure 833:Representation theory 640:, and 5 + 8 602: 479: 437: 318: 136: 94: 36:representation theory 555: 540:This representation 452: 414: 391:real representations 245: 226:(g) to each element 109: 71: 796:, Springer-Verlag, 619:spin representation 292: for all  644:dimensions, where 597: 474: 432: 313: 193:group homomorphism 131: 89: 54:with an invariant 803:978-0-387-90190-9 763:978-0-387-97495-8 362:, and hence is a 293: 16:(Redirected from 840: 806: 795: 783: 606: 604: 603: 598: 596: 576: 575: 483: 481: 480: 475: 464: 463: 445:which satisfies 441: 439: 438: 433: 322: 320: 319: 314: 294: 291: 178:division algebra 140: 138: 137: 132: 121: 120: 102:which satisfies 98: 96: 95: 90: 21: 848: 847: 843: 842: 841: 839: 838: 837: 823: 822: 814: 804: 787: 764: 734:Fulton, William 732: 729: 722: 715: 704: 695: 684: 673: 567: 553: 552: 519: 455: 450: 449: 412: 411: 406:equivariant map 340: 243: 242: 222:of quaternions 112: 107: 106: 69: 68: 63:equivariant map 28: 23: 22: 15: 12: 11: 5: 846: 844: 836: 835: 825: 824: 821: 820: 813: 810: 809: 808: 802: 785: 762: 728: 725: 720: 709: 700: 689: 678: 667: 608: 607: 595: 591: 588: 585: 582: 579: 574: 570: 566: 563: 560: 518: 515: 485: 484: 473: 470: 467: 462: 458: 443: 442: 431: 428: 425: 422: 419: 399:real structure 339: 336: 324: 323: 312: 309: 306: 303: 300: 297: 289: 286: 283: 280: 277: 274: 271: 268: 265: 262: 259: 256: 253: 250: 152: :=  142: 141: 130: 127: 124: 119: 115: 100: 99: 88: 85: 82: 79: 76: 44:representation 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 845: 834: 831: 830: 828: 819: 816: 815: 811: 805: 799: 794: 793: 786: 781: 777: 773: 769: 765: 759: 755: 751: 747: 743: 739: 735: 731: 730: 726: 724: 719: 713: 708: 703: 699: 693: 688: 682: 677: 671: 666: 661: 659: 655: 651: 647: 643: 639: 635: 631: 627: 622: 620: 615: 613: 589: 583: 577: 572: 564: 558: 551: 550: 549: 547: 543: 538: 536: 532: 528: 524: 516: 514: 512: 508: 504: 501: 500:group algebra 497: 492: 490: 471: 468: 465: 460: 456: 448: 447: 446: 429: 423: 420: 417: 410: 409: 408: 407: 404: 400: 396: 392: 387: 385: 381: 377: 373: 372:compact group 369: 365: 361: 357: 353: 349: 345: 337: 335: 333: 329: 310: 307: 304: 301: 298: 295: 284: 278: 272: 266: 263: 257: 254: 248: 241: 240: 239: 237: 233: 229: 225: 221: 220:square matrix 217: 213: 209: 205: 201: 197: 194: 190: 187: 183: 179: 175: 171: 167: 163: 159: 155: 151: 147: 128: 125: 122: 117: 113: 105: 104: 103: 86: 80: 77: 74: 67: 66: 65: 64: 61: 57: 53: 50:vector space 49: 45: 41: 37: 33: 19: 791: 741: 717: 711: 706: 701: 697: 691: 686: 680: 675: 669: 664: 662: 657: 653: 645: 641: 637: 633: 629: 625: 623: 616: 614:in Spin(3). 611: 609: 545: 541: 539: 535:spinor group 530: 520: 506: 502: 495: 493: 488: 486: 444: 388: 376:finite group 367: 359: 355: 351: 343: 341: 332:Lie algebras 325: 235: 231: 227: 223: 215: 211: 207: 203: 199: 195: 188: 169: 161: 157: 153: 149: 145: 143: 101: 51: 39: 32:mathematical 29: 738:Harris, Joe 401:, i.e., an 328:associative 202:→ GL( 182:quaternions 58:, i.e., an 727:References 403:antilinear 234:such that 218:assigns a 172:becomes a 60:antilinear 780:246650103 578:ρ 573:† 559:ρ 537:Spin(3). 527:unit norm 523:rotations 427:→ 421:: 305:∈ 279:ρ 267:ρ 249:ρ 176:over the 126:− 84:→ 78:: 34:field of 827:Category 812:See also 740:(1991). 652:of Spin( 610:for all 517:Examples 374:(e.g. a 772:1153249 650:spinors 206:,  168:(i.e., 160:equips 48:complex 800:  778:  770:  760:  716:, and 542:ρ 360:ω 236:ρ 224:ρ 196:φ 174:module 346:is a 191:is a 186:group 46:on a 42:is a 798:ISBN 776:OCLC 758:ISBN 330:and 38:, a 750:doi 342:If 230:of 180:of 30:In 829:: 774:. 768:MR 766:. 756:. 744:. 736:; 723:. 714:+2 705:, 696:, 694:+2 685:, 683:+1 674:, 672:+1 491:. 472:1. 386:. 198:: 156:, 154:ij 129:1. 807:. 784:. 782:. 752:: 721:7 718:E 712:k 710:4 707:D 702:k 698:C 692:k 690:4 687:B 681:k 679:4 676:B 670:k 668:4 665:A 658:d 654:d 646:k 642:k 638:k 634:k 630:d 626:d 612:g 594:1 590:= 587:) 584:g 581:( 569:) 565:g 562:( 546:H 531:H 507:R 503:R 496:G 469:+ 466:= 461:2 457:j 430:V 424:V 418:j 368:V 356:V 352:j 344:V 311:. 308:G 302:h 299:, 296:g 288:) 285:h 282:( 276:) 273:g 270:( 264:= 261:) 258:h 255:g 252:( 232:G 228:g 216:g 212:V 208:H 204:V 200:G 189:G 170:V 162:V 158:j 150:k 146:i 123:= 118:2 114:j 87:V 81:V 75:j 52:V 20:)

Index

Pseudoreal representation
mathematical
representation theory
representation
complex
quaternionic structure
antilinear
equivariant map
quaternionic vector space
module
division algebra
quaternions
group
group homomorphism
square matrix
associative
Lie algebras
unitary representation
symplectic representation
compact group
finite group
irreducible representations
Frobenius-Schur indicator
real representations
complex conjugate representation
real structure
antilinear
equivariant map
group algebra
Artin-Wedderburn theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.