Knowledge (XXG)

Real representation

Source 📝

198:, where representations are often viewed concretely in terms of matrices, a real representation is one in which the entries of the matrices representing the group elements are real numbers. These matrices can act either on real or complex column vectors. 513:
The indicator may take the values 1, 0 or −1. If the indicator is 1, then the representation is real. If the indicator is zero, the representation is complex (hermitian), and if the indicator is −1, the representation is quaternionic.
508: 409: 254: 96: 296: 138: 710: 670: 202: 205:, but the converse is not true: a representation which is isomorphic to its complex conjugate but which is not real is called a 436: 729: 642: 654: 302: 355: 527: 214: 646: 329: 206: 538: 312:
of its complex conjugate. This happens precisely when the representation admits a nondegenerate invariant
218: 61: 24: 32: 227: 69: 591: 309: 164: 583: 574: 265: 107: 706: 684: 666: 313: 658: 595: 579: 342: 680: 676: 542: 523: 176: 163:
is a representation on a complex vector space with an antilinear equivariant map given by
621:
form, so the significance of zero indicator is that there is no invariant nondegenerate
699: 531: 317: 54: 46: 305:
of real and quaternionic representations is neither real nor quaternionic in general.
723: 335: 541:
on odd-dimensional spaces are real, since they all appear as subrepresentations of
423: 39: 36: 20: 320:. Such representations are sometimes said to be complex or (pseudo-)hermitian. 662: 553: 188: 184: 58: 688: 587: 308:
A representation on a complex vector space can also be isomorphic to the
195: 526:
are real (and in fact rational), since we can build a complete set of
657:, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. 549: 201:
A real representation on a complex vector space is isomorphic to its
545:
of copies of the fundamental representation, which is real.
341:) for reality of irreducible representations in terms of 503:{\displaystyle {1 \over |G|}\sum _{g\in G}\chi (g^{2}).} 439: 358: 268: 230: 110: 72: 578:
8 is known in mathematics not only in the theory of
698: 502: 403: 290: 248: 132: 90: 548:Further examples of real representations are the 404:{\displaystyle \int _{g\in G}\chi (g^{2})\,d\mu } 16:Type of representation in representation theory 143:The two viewpoints are equivalent because if 45:, but it can also mean a representation on a 8: 430:) = 1. For a finite group, this is given by 418:is the character of the representation and 209:. An irreducible pseudoreal representation 147:is a real vector space acted on by a group 488: 466: 454: 446: 440: 438: 394: 385: 363: 357: 273: 267: 229: 115: 109: 71: 701:Linear Representations of Finite Groups 606: 171:is such a complex representation, then 221:, i.e., an antilinear equivariant map 651:Representation theory. A first course 7: 617:of a compact group has an invariant 14: 203:complex conjugate representation 572:= 1, 2, 3 ... This periodicity 494: 481: 455: 447: 391: 378: 249:{\displaystyle j\colon V\to V} 240: 91:{\displaystyle j\colon V\to V} 82: 1: 655:Graduate Texts in Mathematics 697:Serre, Jean-Pierre (1977), 613:Any complex representation 537:All representations of the 528:irreducible representations 215:quaternionic representation 746: 522:All representation of the 327: 663:10.1007/978-1-4612-0979-9 347:Frobenius-Schur indicator 330:Frobenius-Schur indicator 324:Frobenius-Schur indicator 291:{\displaystyle j^{2}=-1.} 217:: it admits an invariant 207:pseudoreal representation 133:{\displaystyle j^{2}=+1.} 175:can be recovered as the 552:representations of the 504: 405: 292: 250: 219:quaternionic structure 134: 92: 730:Representation theory 505: 406: 293: 251: 135: 93: 25:representation theory 437: 356: 266: 228: 108: 70: 705:, Springer-Verlag, 592:spin representation 310:dual representation 165:complex conjugation 29:real representation 584:algebraic topology 568:+1 dimensions for 500: 477: 401: 288: 246: 130: 88: 53:with an invariant 712:978-0-387-90190-9 672:978-0-387-97495-8 580:Clifford algebras 462: 460: 334:A criterion (for 314:sesquilinear form 213:is necessarily a 167:. Conversely, if 737: 715: 704: 692: 630: 623:complex bilinear 611: 596:Bott periodicity 524:symmetric groups 509: 507: 506: 501: 493: 492: 476: 461: 459: 458: 450: 441: 410: 408: 407: 402: 390: 389: 374: 373: 345:is based on the 343:character theory 297: 295: 294: 289: 278: 277: 259:which satisfies 255: 253: 252: 247: 139: 137: 136: 131: 120: 119: 101:which satisfies 97: 95: 94: 89: 745: 744: 740: 739: 738: 736: 735: 734: 720: 719: 713: 696: 673: 643:Fulton, William 641: 638: 633: 612: 608: 604: 543:tensor products 539:rotation groups 520: 484: 445: 435: 434: 381: 359: 354: 353: 332: 326: 269: 264: 263: 226: 225: 177:fixed point set 111: 106: 105: 68: 67: 62:equivariant map 17: 12: 11: 5: 743: 741: 733: 732: 722: 721: 718: 717: 711: 694: 671: 637: 634: 632: 631: 605: 603: 600: 582:, but also in 532:Young tableaux 519: 516: 511: 510: 499: 496: 491: 487: 483: 480: 475: 472: 469: 465: 457: 453: 449: 444: 412: 411: 400: 397: 393: 388: 384: 380: 377: 372: 369: 366: 362: 336:compact groups 328:Main article: 325: 322: 318:hermitian form 299: 298: 287: 284: 281: 276: 272: 257: 256: 245: 242: 239: 236: 233: 141: 140: 129: 126: 123: 118: 114: 99: 98: 87: 84: 81: 78: 75: 55:real structure 33:representation 15: 13: 10: 9: 6: 4: 3: 2: 742: 731: 728: 727: 725: 714: 708: 703: 702: 695: 690: 686: 682: 678: 674: 668: 664: 660: 656: 652: 648: 644: 640: 639: 635: 628: 624: 620: 616: 610: 607: 601: 599: 597: 593: 589: 585: 581: 577: 576: 571: 567: 563: 559: 555: 551: 546: 544: 540: 535: 533: 529: 525: 517: 515: 497: 489: 485: 478: 473: 470: 467: 463: 451: 442: 433: 432: 431: 429: 425: 421: 417: 398: 395: 386: 382: 375: 370: 367: 364: 360: 352: 351: 350: 348: 344: 340: 337: 331: 323: 321: 319: 315: 311: 306: 304: 285: 282: 279: 274: 270: 262: 261: 260: 243: 237: 234: 231: 224: 223: 222: 220: 216: 212: 208: 204: 199: 197: 192: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 127: 124: 121: 116: 112: 104: 103: 102: 85: 79: 76: 73: 66: 65: 64: 63: 60: 56: 52: 49:vector space 48: 44: 41: 38: 34: 31:is usually a 30: 26: 22: 700: 650: 626: 622: 618: 614: 609: 573: 569: 565: 561: 557: 547: 536: 521: 512: 427: 424:Haar measure 419: 415: 413: 346: 338: 333: 307: 300: 258: 210: 200: 193: 180: 172: 168: 160: 156: 152: 151:(say), then 148: 144: 142: 100: 50: 42: 40:vector space 28: 21:mathematical 18: 647:Harris, Joe 560:−1, 8 554:spin groups 349:defined by 57:, i.e., an 636:References 303:direct sum 189:eigenvalue 185:eigenspace 59:antilinear 689:246650103 619:hermitian 588:KO-theory 479:χ 471:∈ 464:∑ 399:μ 376:χ 368:∈ 361:∫ 316:, e.g. a 283:− 241:→ 235:: 83:→ 77:: 23:field of 724:Category 649:(1991). 625:form on 518:Examples 681:1153249 564:, and 8 426:with μ( 422:is the 196:physics 159:⊗ 47:complex 19:In the 709:  687:  679:  669:  590:; see 575:modulo 550:spinor 530:using 416:χ 414:where 602:Notes 586:, in 187:with 183:(the 35:on a 707:ISBN 685:OCLC 667:ISBN 594:and 556:in 8 191:1). 37:real 659:doi 194:In 179:of 726:: 683:. 677:MR 675:. 665:. 653:. 645:; 598:. 534:. 301:A 286:1. 155:= 128:1. 27:a 716:. 693:. 691:. 661:: 629:. 627:V 615:V 570:k 566:k 562:k 558:k 498:. 495:) 490:2 486:g 482:( 474:G 468:g 456:| 452:G 448:| 443:1 428:G 420:μ 396:d 392:) 387:2 383:g 379:( 371:G 365:g 339:G 280:= 275:2 271:j 244:V 238:V 232:j 211:V 181:j 173:U 169:V 161:C 157:U 153:V 149:G 145:U 125:+ 122:= 117:2 113:j 86:V 80:V 74:j 51:V 43:U

Index

mathematical
representation theory
representation
real
vector space
complex
real structure
antilinear
equivariant map
complex conjugation
fixed point set
eigenspace
eigenvalue
physics
complex conjugate representation
pseudoreal representation
quaternionic representation
quaternionic structure
direct sum
dual representation
sesquilinear form
hermitian form
Frobenius-Schur indicator
compact groups
character theory
Haar measure
symmetric groups
irreducible representations
Young tableaux
rotation groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.