Knowledge (XXG)

Motor coordination

Source 📝

329:
acknowledges that variability is always present in movement, and it categorizes it into two types: (1) bad variability and (2) good variability. Bad variability affects the important performance variable and causes large errors in the result of a motor task, and good variability keeps the performance task unchanged and leads to a successful outcome. An interesting example of the good variability was observed in the movements of the tongue, which are responsible for the speech production. The stiffness level to the tongue's body creates some variability (in terms of the acoustical parameters of speech, such as formants), but this variability does not impair the quality of speech. One of the possible explanations might be that the brain only works to decrease the bad variability that hinders the desired result, and it does so by increasing the good variability in the redundant domain.
325:, but instead uses them to ensure flexible and stable performance of motor tasks at the cost of motor variability. The Uncontrolled Manifold (UCM) Hypothesis provides a way to quantify a "muscle synergy" in this framework. This hypothesis defines "synergy" a little differently from that stated above; a synergy represents an organization of elemental variables (degrees of freedom) that stabilizes an important performance variable. Elemental variable is the smallest sensible variable that can be used to describe a system of interest at a selected level of analysis, and a performance variable refers to the potentially important variables produced by the system as a whole. For example, in a multi-joint reaching task, the angles and the positions of certain joints are the elemental variables, and the performance variables are the endpoint coordinates of the hand. 304:) signals of different muscles during movements. A reduced number of control elements (muscle synergies) are combined to form a continuum of muscle activation for smooth motor control during various tasks. Directionality of a movement has an effect on how the motor task is performed (i.e. walking forward vs. walking backward, each uses different levels of contraction in different muscles). Moreover, it is thought that the muscle synergies limited the number of 215:. It has subsequently been shown that the central nervous system is devoted to its coding. Importantly, control strategies for goal directed movement are task-dependent. This was shown by testing two different conditions: (1) subjects moved cursor in the hand to the target and (2) subjects move their free hand to the target. Each condition showed different trajectories: (1) straight path and (2) curved path. 291:
and one synergy can activate multiple muscles. Synergies are learned, rather than being hardwired, like motor programs, and are organized in a task-dependent manner. In other words, it is likely that a synergy is structured for a particular action and not for the possible activation levels of the components themselves. Work from
92:
worked to understand how coordination was developed in executing a skilled movement. In this work, he remarked that there was no one-to-one relationship between the desired movement and coordination patterns to execute that movement. This equivalence suggests that any desired action does not have a
290:
proposed the existence of muscle synergies as a neural strategy of simplifying the control of multiple degrees of freedom. A functional muscle synergy is defined as a pattern of co-activation of muscles recruited by a single neural command signal. One muscle can be part of multiple muscle synergies,
308:
by constraining the movements of certain joints or muscles (flexion and extension synergies). However, the biological reason for muscle synergies is debated. In addition to the understanding of muscle coordination, muscle synergies have also been instrumental in assessing motor impairments, helping
149:
In bimanual tasks (tasks involving two hands), it was found that the functional segments of the two hands are tightly synchronized. One of the postulated theories for this functionality is the existence of a higher, "coordinating schema" that calculates the time it needs to perform each individual
185:
control architecture. In this framework, the coordination between limbs is dictated by the relative phase of the oscillators representing the limbs. Specifically, an oscillator associated with a particular limb determines the progression of that limb through its movement cycle (e.g. step cycle in
295:
suggests that sensory feedback adapts synergies to fit behavioral constraints, but may differ in an experience-dependent manner. Synergies allow the components for a particular task to be controlled with a single signal, rather than independently. As the muscles of limb controlling movement are
328:
This hypothesis proposes that the controller (the brain) acts in the space of elemental variables (i.e. the rotations shared by the shoulder, elbow, and wrist in arm movements) and selects the feasible manifolds (i.e. sets of angular values corresponding to a final position). This hypothesis
186:
walking). In addition to driving the relative limb movement in a forward manner, sensory feedback can be incorporated into the CPG architecture. This feedback also dictates the coordination between the limbs by independently modifying the movement of the limb that the feedback is acting on.
194:
Intra-limb coordination involves orchestrating the movement of the limb segments that make up a single limb. This coordination can be achieved by controlling/restricting the joint trajectories and/or torques of each limb segment as required to achieve the overall desired limb movement, as
1578:
More precisely, the movements of tongue were modeled by means of a biomechanical tongue model, BTM, controlled by an optimum internal model, which minimizes the length of the path traveled in the internal space during the production of the sequences of tasks (see Blagouchine &
101:
The complexity of motor coordination goes unnoticed in everyday tasks, such as in the task of picking up and pouring a bottle of water into a glass. This seemingly simple task is actually composed of multiple complex tasks. For instance, this task requires the following:
146:, occur at different walking speed ranges as to minimize the cost of transport. Like vertebrates, drosophila change their interleg coordination pattern in a speed-dependent manner. However, these coordination patterns follow a continuum rather than distinct gaits. 296:
linked, it is likely that the error and variability are also shared, providing flexibility and compensating for errors in the individual motor components. The current method of finding muscle synergies is to use statistical and/or coherence analyses on measured
87:
elements. Some examples of non-repeatable movements are when pointing or standing up from sitting. Actions and movements can be executed in multiple ways because synergies (as described below) can vary without changing the outcome. Early work from
195:
demonstrated by the joint-space model. Alternatively, intra-limb coordination can be accomplished by just controlling the trajectory of an end-effector, such as a hand. An example of such concept is the minimum-jerk model proposed by
1588: 124:
of proprioceptive and visual information. Additional levels of coordination are required depending on if the person intends to drink from the glass, give it to someone else, or simply put it on a table.
79:
Goal-directed and coordinated movement of body parts is inherently variable because there are many ways of coordinating body parts to achieve the intended movement goal. This is because the
1087:
Li, Y.; Levin, O.; Forner-Cordero, A.; Swinnen, SP. (Jun 2005). "Interactions between interlimb and intralimb coordination during the performance of bimanual multijoint movements".
138:
Inter-limb coordination is concerned about how movements are coordinated across limbs. In walking for instance, inter-limb coordination refers to the spatiotemporal patterns and
1500:
Alnajjar, F.; Ozaki, K.; Matti, I.; Hiroshi, Y.; Masanori, T.; Ikue, U.; Masaki, K.; Maxime, T.; Chikara, N.; Alvaro, C.G.; Kensuke, O.; Aiko, O.; Izumi, K.; Shingo, S. (2020).
226:
is associated with how eye movements are coordinated with and influence hand movements. Prior work implicated eye movement in the motor planning of goal-directed hand movement.
154:. There are several areas of the brain that are found to contribute to temporal coordination of the limbs needed for bimanual tasks, and these areas include the 207:, Carlo Terzuolo and Paolo Viviani showed that the angular velocity of a pen's tip varies with the two-thirds power of the path curvature (two-thirds 1179:
Torres-Oviedo, G.; MacPherson, JM.; Ting, LH. (Sep 2006). "Muscle synergy organization is robust across a variety of postural perturbations".
474:
Salter, Jennifer E.; Laurie R. Wishart; Timothy D. Lee; Dominic Simon (2004). "Perceptual and motor contributions to bimanual coordination".
942:
Lacquaniti, Francesco; Terzuolo, Carlo; Viviani, Paolo (1983). "The law relating the kinematic and figural aspects of drawing movements".
343: 388:
Domkin, D.; Laczko, J.; Jaric, S.; Johansson, H.; Latash, ML. (Mar 2002). "Structure of joint variability in bimanual pointing tasks".
203:, which suggests that the parameter the nervous system controls is the spatial path of the hand, ensuring that it is maximally smooth. 50:
parameters associated with each body part involved in the intended movement. The modifications of these parameters typically relies on
674:"Shared neural resources between left and right interlimb coordination skills: the neural substrate of abstract motor representations" 672:
Swinnen, SP.; Vangheluwe, S.; Wagemans, J.; Coxon, JP.; Goble, DJ.; Van Impe, A.; Sunaert, S.; Peeters, R.; Wenderoth, N. (Feb 2010).
1320:
d'Avella, A.; Saltiel, P.; Bizzi, E. (Mar 2003). "Combinations of muscle synergies in the construction of a natural motor behavior".
142:
associated with the movement of the legs. Prior work in vertebrates showed that distinct inter-limb coordination patterns, called
431:
Scholz, JP.; Schöner, G. (Jun 1999). "The uncontrolled manifold concept: identifying control variables for a functional task".
111:(3) coordinating the muscles required for lifting and articulating the bottle so that the water can be poured into the glass. 322: 305: 254: 1216:"Central and Sensory Contributions to the Activation and Organization of Muscle Synergies during Natural Motor Behaviors" 120:
is also required in the above task. There is simultaneous coordination between hand and eye movement as dictated by the
211:) during drawing and handwriting. The two-thirds power law is compatible with the minimum-jerk model, but also with 105:(1) properly reaching for the water bottle and then configuring the hand in a way that enables grasping the bottle. 271: 212: 721:"A phase-reduced neuro-mechanical model for insect locomotion: feed-forward stability and proprioceptive feedback" 223: 117: 1614: 338: 182: 163: 121: 55: 1609: 790: 318: 258: 567: 235:
The following pages are recommended for understanding how coordination patterns are learned or adapted
1416:
Torres-Oviedo, G.; Ting, LH. (Oct 2007). "Muscle synergies characterizing human postural responses".
1364: 1276: 1041: 994: 732: 204: 167: 795: 613:
DeAngelis, Brian D; Zavatone-Veth, Jacob A; Clark, Damon A (2019-06-28). Calabrese, Ronald L (ed.).
725:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
1345: 1112: 967: 873: 816: 756: 701: 548: 499: 456: 413: 348: 151: 80: 720: 1591:
Control of a Speech Robot via an Optimum Neural-Network-Based Internal Model with Constraints.
1561: 1482: 1433: 1398: 1337: 1302: 1245: 1196: 1161: 1104: 1069: 1010: 959: 924: 865: 808: 748: 693: 654: 636: 595: 587: 540: 518: 491: 448: 405: 372: 287: 89: 63: 1030:"Neural representations of kinematic laws of motion: evidence for action-perception coupling" 371:
Bernstein N. (1967). The Coordination and Regulation of Movements. Pergamon Press. New York.
1551: 1513: 1472: 1464: 1425: 1388: 1380: 1329: 1292: 1284: 1235: 1227: 1188: 1151: 1143: 1096: 1059: 1049: 1002: 951: 914: 904: 855: 847: 800: 740: 685: 644: 626: 579: 530: 483: 440: 397: 309:
to identify deviations in typical movement patterns and underlying neurological disorders.
301: 297: 245: 1369:"Five basic muscle activation patterns account for muscle activity during human locomotion" 535: 159: 155: 84: 1280: 1045: 1028:
Dayan, E.; Casile, A.; Levit-Binnun, N.; Giese, MA.; Hendler, T.; Flash, T. (Dec 2007).
998: 736: 17: 1477: 1452: 1393: 1368: 1297: 1264: 1240: 1215: 1156: 1131: 1064: 1029: 919: 909: 892: 860: 851: 835: 649: 614: 240: 108:(2) applying the correct amount of grip force to grasp the bottle without crushing it. 59: 47: 38:
is the orchestrated movement of multiple body parts as required to accomplish intended
1540:"Synergies in health and disease: relations to adaptive changes in motor coordination" 1603: 955: 689: 673: 460: 250: 196: 1263:
Boonstra TW, Danna-Dos-Santos A, Xie HB, Roerdink M, Stins JF, Breakspear M (2015).
1116: 820: 705: 503: 417: 1539: 1502:"Self-Support Biofeedback Training for Recovery From Motor Impairment After Stroke" 1349: 1231: 971: 893:"The coordination of arm movements: an experimentally confirmed mathematical model" 877: 760: 583: 552: 292: 775: 1384: 487: 1518: 1501: 1265:"Muscle networks: Connectivity analysis of EMG activity during postural control" 200: 178: 39: 1468: 1147: 1100: 401: 171: 139: 31: 640: 591: 177:
Several studies have proposed that inter-limb coordination can be modeled by
1556: 1054: 1006: 208: 43: 1565: 1486: 1437: 1402: 1341: 1306: 1249: 1200: 1165: 1108: 1073: 752: 744: 697: 658: 544: 495: 452: 409: 1593:
IEEE Transactions on Robotics, vol. 26, no. 1, pp. 142—159, February 2010.
1429: 1192: 1014: 963: 928: 869: 812: 599: 444: 376: 114:(4) terminating the action by placing the empty bottle back on the table. 985:
Schwartz, A.B. (Jul 1994). "Direct cortical representation of drawing".
631: 804: 1288: 1333: 615:"The manifold structure of limb coordination in walking Drosophila" 83:(DOF) is large for most movements due to the many associated neuro- 776:"A theoretical model of phase transitions in human hand movements" 51: 1214:
Cheung, V.C.K.; d'Avella, A.; Tresch, MC.; Bizzi, E. (Jul 2004).
143: 93:
particular coordination of neurons, muscles, and kinematics.
42:, like walking. This coordination is achieved by adjusting 836:"Invariant characteristics of a pointing movement in man" 568:"Optimization and gaits in the locomotion of vertebrates" 719:
Proctor, J.; Kukillaya, R. P.; Holmes, P. (2010-11-13).
27:
Directed movement of body parts to accomplish an action
162:, the mesial motor cortices, more specifically the 1130:Liesker, H.; Brenner, E.; Smeets, JB. (Aug 2009). 265:Quantifying inter-limb and intra-limb coordination 1132:"Combining eye and hand in search is suboptimal" 367: 365: 363: 1533: 1531: 1529: 166:(SMA), the cingulate motor cortex (CMC), the 8: 1453:"The case for and against muscle synergies" 1555: 1517: 1476: 1392: 1296: 1239: 1155: 1063: 1053: 918: 908: 859: 794: 648: 630: 534: 54:from one or more sensory modalities (see 834:Soechting, J.F.; Lacquaniti, F. (1981). 774:Haken, H.; Kelso, JA.; Bunz, H. (1985). 359: 1589:Iaroslav Blagouchine and Eric Moreau. 278:Related theories of motor coordination 536:10.1152/physiologyonline.1998.13.2.70 517:Weiss, P.; Jeannerod, M. (Apr 1998). 317:Another hypothesis proposes that the 7: 1538:Latash, ML.; Anson, JG. (Aug 2006). 344:Developmental coordination disorder 1451:Tresch, MC.; Jarc, A. (Dec 2009). 910:10.1523/JNEUROSCI.05-07-01688.1985 852:10.1523/JNEUROSCI.01-07-00710.1981 25: 891:Flash, T.; Hogan, N. (Jul 1985). 519:"Getting a Grasp on Coordination" 321:does not eliminate the redundant 230:Learning of coordination patterns 690:10.1016/j.neuroimage.2009.10.052 313:Uncontrolled manifold hypothesis 150:task and coordinates it using a 1363:Ivanenko, Y.P.; Poppele, R.E.; 566:Alexander, R. M. (1989-10-01). 183:central pattern generator (CPG) 1232:10.1523/jneurosci.4904-04.2005 584:10.1152/physrev.1989.69.4.1199 1: 1385:10.1113/jphysiol.2003.057174 956:10.1016/0001-6918(83)90027-6 488:10.1016/j.neulet.2004.03.071 1519:10.1109/ACCESS.2020.2987095 129:Types of motor coordination 1631: 1469:10.1016/j.conb.2009.09.002 272:study of animal locomotion 213:central pattern generators 1148:10.1007/s00221-009-1928-9 1101:10.1007/s00221-004-2206-5 402:10.1007/s00221-001-0944-1 339:Perceptual control theory 179:coupled phase oscillators 122:multi-sensory integration 1034:Proc Natl Acad Sci U S A 164:supplementary motor area 75:Large degrees of freedom 56:multisensory integration 18:Psychomotor coordination 1055:10.1073/pnas.0710033104 1007:10.1126/science.8036499 181:, a key component of a 745:10.1098/rsta.2010.0134 319:central nervous system 259:sensory-motor coupling 1557:10.1093/ptj/86.8.1151 1430:10.1152/jn.01360.2006 1193:10.1152/jn.00810.2005 572:Physiological Reviews 445:10.1007/s002210050738 224:Eye–hand coordination 118:Hand-eye coordination 476:Neuroscience Letters 333:Other relevant pages 205:Francesco Lacquaniti 168:primary motor cortex 1457:Curr Opin Neurobiol 1281:2015NatSR...517830B 1046:2007PNAS..10420582D 999:1994Sci...265..540S 737:2010RSPTA.368.5087P 731:(1930): 5087–5104. 632:10.7554/eLife.46409 1512:(6): 72138–72157. 805:10.1007/BF00336922 349:Sensory processing 323:degrees of freedom 306:degrees of freedom 152:feedback mechanism 81:degrees of freedom 36:motor coordination 1289:10.1038/srep17830 944:Acta Psychologica 288:Nikolai Bernstein 90:Nikolai Bernstein 16:(Redirected from 1622: 1615:Physical fitness 1595: 1586: 1580: 1576: 1570: 1569: 1559: 1535: 1524: 1523: 1521: 1497: 1491: 1490: 1480: 1448: 1442: 1441: 1413: 1407: 1406: 1396: 1360: 1354: 1353: 1317: 1311: 1310: 1300: 1260: 1254: 1253: 1243: 1211: 1205: 1204: 1176: 1170: 1169: 1159: 1127: 1121: 1120: 1084: 1078: 1077: 1067: 1057: 1025: 1019: 1018: 982: 976: 975: 950:(1–3): 115–130. 939: 933: 932: 922: 912: 888: 882: 881: 863: 831: 825: 824: 798: 780: 771: 765: 764: 716: 710: 709: 669: 663: 662: 652: 634: 610: 604: 603: 578:(4): 1199–1227. 563: 557: 556: 538: 523:News Physiol Sci 514: 508: 507: 471: 465: 464: 428: 422: 421: 385: 379: 369: 302:electromyography 283:Muscle synergies 246:Motor adaptation 52:sensory feedback 21: 1630: 1629: 1625: 1624: 1623: 1621: 1620: 1619: 1600: 1599: 1598: 1587: 1583: 1577: 1573: 1537: 1536: 1527: 1499: 1498: 1494: 1450: 1449: 1445: 1415: 1414: 1410: 1362: 1361: 1357: 1319: 1318: 1314: 1262: 1261: 1257: 1226:(27): 6419–34. 1213: 1212: 1208: 1178: 1177: 1173: 1129: 1128: 1124: 1086: 1085: 1081: 1040:(51): 20582–7. 1027: 1026: 1022: 993:(5171): 540–2. 984: 983: 979: 941: 940: 936: 903:(7): 1688–703. 890: 889: 885: 833: 832: 828: 796:10.1.1.170.2683 778: 773: 772: 768: 718: 717: 713: 671: 670: 666: 612: 611: 607: 565: 564: 560: 516: 515: 511: 473: 472: 468: 430: 429: 425: 387: 386: 382: 370: 361: 357: 335: 315: 285: 280: 275: 267: 237: 232: 221: 192: 160:parietal cortex 156:premotor cortex 136: 131: 99: 85:musculoskeletal 77: 72: 28: 23: 22: 15: 12: 11: 5: 1628: 1626: 1618: 1617: 1612: 1602: 1601: 1597: 1596: 1581: 1571: 1550:(8): 1151–60. 1525: 1492: 1443: 1424:(4): 2144–56. 1418:J Neurophysiol 1408: 1365:Lacquaniti, F. 1355: 1334:10.1038/nn1010 1312: 1255: 1206: 1187:(3): 1530–46. 1181:J Neurophysiol 1171: 1142:(4): 395–401. 1122: 1079: 1020: 977: 934: 883: 826: 766: 711: 684:(3): 2570–80. 664: 605: 558: 509: 482:(2): 102–107. 466: 439:(3): 289–306. 423: 380: 358: 356: 353: 352: 351: 346: 341: 334: 331: 314: 311: 284: 281: 279: 276: 274: 268: 266: 263: 262: 261: 255:Internal model 248: 243: 241:Motor learning 236: 233: 231: 228: 220: 217: 191: 188: 170:(M1), and the 135: 132: 130: 127: 98: 95: 76: 73: 71: 68: 60:proprioception 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1627: 1616: 1613: 1611: 1610:Motor control 1608: 1607: 1605: 1594: 1592: 1585: 1582: 1575: 1572: 1567: 1563: 1558: 1553: 1549: 1545: 1541: 1534: 1532: 1530: 1526: 1520: 1515: 1511: 1507: 1503: 1496: 1493: 1488: 1484: 1479: 1474: 1470: 1466: 1462: 1458: 1454: 1447: 1444: 1439: 1435: 1431: 1427: 1423: 1419: 1412: 1409: 1404: 1400: 1395: 1390: 1386: 1382: 1379:(1): 267–82. 1378: 1374: 1370: 1366: 1359: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1316: 1313: 1308: 1304: 1299: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1256: 1251: 1247: 1242: 1237: 1233: 1229: 1225: 1221: 1217: 1210: 1207: 1202: 1198: 1194: 1190: 1186: 1182: 1175: 1172: 1167: 1163: 1158: 1153: 1149: 1145: 1141: 1137: 1136:Exp Brain Res 1133: 1126: 1123: 1118: 1114: 1110: 1106: 1102: 1098: 1095:(4): 515–26. 1094: 1090: 1089:Exp Brain Res 1083: 1080: 1075: 1071: 1066: 1061: 1056: 1051: 1047: 1043: 1039: 1035: 1031: 1024: 1021: 1016: 1012: 1008: 1004: 1000: 996: 992: 988: 981: 978: 973: 969: 965: 961: 957: 953: 949: 945: 938: 935: 930: 926: 921: 916: 911: 906: 902: 898: 894: 887: 884: 879: 875: 871: 867: 862: 857: 853: 849: 846:(7): 710–20. 845: 841: 837: 830: 827: 822: 818: 814: 810: 806: 802: 797: 792: 789:(5): 347–56. 788: 784: 777: 770: 767: 762: 758: 754: 750: 746: 742: 738: 734: 730: 726: 722: 715: 712: 707: 703: 699: 695: 691: 687: 683: 679: 675: 668: 665: 660: 656: 651: 646: 642: 638: 633: 628: 624: 620: 616: 609: 606: 601: 597: 593: 589: 585: 581: 577: 573: 569: 562: 559: 554: 550: 546: 542: 537: 532: 528: 524: 520: 513: 510: 505: 501: 497: 493: 489: 485: 481: 477: 470: 467: 462: 458: 454: 450: 446: 442: 438: 434: 433:Exp Brain Res 427: 424: 419: 415: 411: 407: 403: 399: 395: 391: 390:Exp Brain Res 384: 381: 378: 374: 368: 366: 364: 360: 354: 350: 347: 345: 342: 340: 337: 336: 332: 330: 326: 324: 320: 312: 310: 307: 303: 299: 294: 289: 282: 277: 273: 269: 264: 260: 256: 252: 251:Motor control 249: 247: 244: 242: 239: 238: 234: 229: 227: 225: 218: 216: 214: 210: 206: 202: 198: 197:Neville Hogan 189: 187: 184: 180: 175: 173: 169: 165: 161: 157: 153: 147: 145: 141: 133: 128: 126: 123: 119: 115: 112: 109: 106: 103: 96: 94: 91: 86: 82: 74: 69: 67: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1590: 1584: 1574: 1547: 1543: 1509: 1505: 1495: 1463:(6): 601–7. 1460: 1456: 1446: 1421: 1417: 1411: 1376: 1372: 1367:(Apr 2004). 1358: 1328:(3): 300–8. 1325: 1322:Nat Neurosci 1321: 1315: 1272: 1268: 1258: 1223: 1219: 1209: 1184: 1180: 1174: 1139: 1135: 1125: 1092: 1088: 1082: 1037: 1033: 1023: 990: 986: 980: 947: 943: 937: 900: 896: 886: 843: 839: 829: 786: 782: 769: 728: 724: 714: 681: 677: 667: 622: 618: 608: 575: 571: 561: 529:(2): 70–75. 526: 522: 512: 479: 475: 469: 436: 432: 426: 396:(1): 11–23. 393: 389: 383: 327: 316: 293:Emilio Bizzi 286: 222: 193: 176: 148: 137: 116: 113: 110: 107: 104: 100: 78: 35: 29: 1506:IEEE Access 783:Biol Cybern 201:Tamar Flash 158:(PMC), the 58:), such as 1604:Categories 1220:J Neurosci 897:J Neurosci 840:J Neurosci 678:NeuroImage 625:: e46409. 355:References 190:Intra-limb 172:cerebellum 140:kinematics 134:Inter-limb 97:Complexity 70:Properties 32:physiology 1544:Phys Ther 1373:J Physiol 1275:: 17830. 791:CiteSeerX 641:2050-084X 592:0031-9333 461:206924808 377:301528509 270:Refer to 209:power law 44:kinematic 1579:Moreau). 1566:16879049 1487:19828310 1438:17652413 1403:14724214 1342:12563264 1307:26634293 1250:16000633 1201:16775203 1166:19590859 1117:22090590 1109:15657696 1074:18079289 821:14960818 753:20921014 706:17227329 698:19874897 659:31250807 545:11390765 504:17336096 496:15172094 453:10382616 418:16726586 410:11907686 219:Eye-hand 1478:2818278 1394:1664897 1350:2437859 1298:4669476 1277:Bibcode 1269:Sci Rep 1241:6725265 1157:2721960 1065:2154474 1042:Bibcode 1015:8036499 995:Bibcode 987:Science 972:5144040 964:6666647 929:4020415 920:6565116 878:7978546 870:7346580 861:6564198 813:3978150 761:8511489 733:Bibcode 650:6598772 600:2678167 553:2465996 48:kinetic 40:actions 1564:  1485:  1475:  1436:  1401:  1391:  1348:  1340:  1305:  1295:  1248:  1238:  1199:  1164:  1154:  1115:  1107:  1072:  1062:  1013:  970:  962:  927:  917:  876:  868:  858:  819:  811:  793:  759:  751:  704:  696:  657:  647:  639:  598:  590:  551:  543:  502:  494:  459:  451:  416:  408:  375:  257:, and 64:vision 1346:S2CID 1113:S2CID 968:S2CID 874:S2CID 817:S2CID 779:(PDF) 757:S2CID 702:S2CID 619:eLife 549:S2CID 500:S2CID 457:S2CID 414:S2CID 144:gaits 1562:PMID 1483:PMID 1434:PMID 1399:PMID 1338:PMID 1303:PMID 1246:PMID 1197:PMID 1162:PMID 1105:PMID 1070:PMID 1011:PMID 960:PMID 925:PMID 866:PMID 809:PMID 749:PMID 694:PMID 655:PMID 637:ISSN 596:PMID 588:ISSN 541:PMID 492:PMID 449:PMID 406:PMID 373:OCLC 199:and 62:and 46:and 1552:doi 1514:doi 1473:PMC 1465:doi 1426:doi 1389:PMC 1381:doi 1377:556 1330:doi 1293:PMC 1285:doi 1236:PMC 1228:doi 1189:doi 1152:PMC 1144:doi 1140:197 1097:doi 1093:163 1060:PMC 1050:doi 1038:104 1003:doi 991:265 952:doi 915:PMC 905:doi 856:PMC 848:doi 801:doi 741:doi 729:368 686:doi 645:PMC 627:doi 580:doi 531:doi 484:doi 480:363 441:doi 437:126 398:doi 394:143 298:EMG 30:In 1606:: 1560:. 1548:86 1546:. 1542:. 1528:^ 1508:. 1504:. 1481:. 1471:. 1461:19 1459:. 1455:. 1432:. 1422:98 1420:. 1397:. 1387:. 1375:. 1371:. 1344:. 1336:. 1324:. 1301:. 1291:. 1283:. 1271:. 1267:. 1244:. 1234:. 1224:25 1222:. 1218:. 1195:. 1185:96 1183:. 1160:. 1150:. 1138:. 1134:. 1111:. 1103:. 1091:. 1068:. 1058:. 1048:. 1036:. 1032:. 1009:. 1001:. 989:. 966:. 958:. 948:54 946:. 923:. 913:. 899:. 895:. 872:. 864:. 854:. 842:. 838:. 815:. 807:. 799:. 787:51 785:. 781:. 755:. 747:. 739:. 727:. 723:. 700:. 692:. 682:49 680:. 676:. 653:. 643:. 635:. 621:. 617:. 594:. 586:. 576:69 574:. 570:. 547:. 539:. 527:13 525:. 521:. 498:. 490:. 478:. 455:. 447:. 435:. 412:. 404:. 392:. 362:^ 253:, 174:. 66:. 34:, 1568:. 1554:: 1522:. 1516:: 1510:8 1489:. 1467:: 1440:. 1428:: 1405:. 1383:: 1352:. 1332:: 1326:6 1309:. 1287:: 1279:: 1273:5 1252:. 1230:: 1203:. 1191:: 1168:. 1146:: 1119:. 1099:: 1076:. 1052:: 1044:: 1017:. 1005:: 997:: 974:. 954:: 931:. 907:: 901:5 880:. 850:: 844:1 823:. 803:: 763:. 743:: 735:: 708:. 688:: 661:. 629:: 623:8 602:. 582:: 555:. 533:: 506:. 486:: 463:. 443:: 420:. 400:: 300:( 20:)

Index

Psychomotor coordination
physiology
actions
kinematic
kinetic
sensory feedback
multisensory integration
proprioception
vision
degrees of freedom
musculoskeletal
Nikolai Bernstein
Hand-eye coordination
multi-sensory integration
kinematics
gaits
feedback mechanism
premotor cortex
parietal cortex
supplementary motor area
primary motor cortex
cerebellum
coupled phase oscillators
central pattern generator (CPG)
Neville Hogan
Tamar Flash
Francesco Lacquaniti
power law
central pattern generators
Eye–hand coordination

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.