Knowledge (XXG)

Quantitative susceptibility mapping

Source 📝

346:. Two recent methods based on physical principles, projection onto dipole fields (PDF) and sophisticated harmonic artifact reduction on phase data (SHARP), demonstrated improved contrast and higher precision on the estimated local field. Both methods model the background field as a magnetic field generated by an unknown background susceptibility distribution, and differentiate it from the local field using either the approximate orthogonality or the harmonic property. The background field can also be directly computed by solving the Laplace's equation with simplified boundary values, as demonstrated in the Laplacian boundary value (LBV) method. 315: 363: 96: 509: 490:
The underdetermined data in Fourier domain is only at the location of the cone and its immediate vicinity. For this region in k-space, spatial-frequencies of the dipole kernel are set to a predetermined non-zero value for the division. Investigation of more advanced strategies for recovering data in
436:
is that it provides not only the phase image but also the magnitude image. In principle, the contrast change, or equivalently the edge, on a magnitude image arises from the underlying change of tissue type, which is the same cause for the change of susceptibility. This observation is translated into
334:
Ideally, the background field can be directly measured with a separate reference scan, where the sample of interest is replaced by a uniform phantom with the same shape while keeping the scanner shimming identical. However, for clinical application, such an approach is impossible and post-processing
494:
Thresholded k-space division only requires a single angle acquisition, and benefits from the ease of implementation as well as the fast calculation speed. However, streaking artifacts are frequently present in the QSM and the susceptibility value is underestimated compared to COSMOS calculated QSM.
330:
induced by the local sources is inevitably contaminated by the field induced by other sources such as main field inhomogeneity (imperfect shimming) and the air-tissue interface, whose susceptibility difference is orders of magnitudes stronger than that of the local sources. Therefore, the
423:
also showed high degree of agreement with previous knowledge about brain anatomy. Three orientations are generally required for COSMOS, limiting the practicality for clinical applications. However, it may serve as a reference standard when available for calibrating other techniques.
74:
to susceptibility source inverse problem, and generates a three-dimensional susceptibility distribution. Due to its quantitative nature and sensitivity to certain kinds of material, potential QSM applications include standardized quantitative stratification of
1278:
De Rochefort, Ludovic; Nguyen, Thanh; Brown, Ryan; Spincemaille, Pascal; et al. (2008). "In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI".
265:. This Fourier expression provides an efficient way to predict the field perturbation when the susceptibility distribution is known. However, the field to source inverse problem involves division by zero at a pair of cone surfaces at the 781:
Schweser, Ferdinand; Deistung, Andreas; Lehr, Berengar Wendel; Reichenbach, Jürgen Rainer (2011). "Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?".
305:
inhomogeneity. Flow compensation may further improve the accuracy of susceptibility measurement in venous blood, but there are certain technical difficulties to devise a fully flow compensated multi-echo sequence.
481:
human brain, MEDI calculated QSM showed similar results compared to COSMOS without statistically significant difference. MEDI only requires a single angle acquisition, so it is a more practical solution to QSM.
1234:
Schweser, Ferdinand; Deistung, Andreas; Lehr, Berengar W.; Reichenbach, JüRgen R. (2010). "Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping".
873:"Calculation of susceptibility through multiple orientation sampling (COSMOS): A method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI" 273:
in the Fourier domain. Consequently, susceptibility is underdetermined at the spatial frequencies on the cone surface, which often leads to severe streaking artifacts in the reconstructed QSM.
660:
Salomir, Rares; De Senneville, Baudouin Denis; Moonen, Chrit TW (2003). "A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility".
263: 222: 1015:"Quantitative susceptibility mapping by regulating the field to source inverse problem with a sparse prior derived from the Maxwell Equation: validation and application to brain" 128: 463: 163: 294:
effects, although the optimal imaging parameters depend on the specific applications and the field strength. A multi-echo acquisition is beneficial for accurate
290:
gradient echo sequence can be used for data acquisition. In practice, high resolution imaging with a moderately long echo time is preferred to obtain sufficient
187: 526:
compared to water. Therefore, it is possible to use this diamagnetism to differentiate calcifications from iron deposits that usually demonstrate strong
401:
COSMOS assumes a model-free susceptibility distribution and keeps full fidelity to the measured data. This method has been validated extensively in
1014: 974:"Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: Validation and application to brain imaging" 398:
field is rotated and thus the cone. Consequently, data that cannot be calculated due to the cone becomes available at the new orientations.
825:
Zhou, Dong; Liu, Tian; Spincemaille, Pascal; Wang, Yi (2014). "Background field removal by solving the Laplacian boundary value problem".
1328: 689:"Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility" 17: 437:
mathematics in MEDI, where edges in a QSM which do not exist in the corresponding magnitude image are sparsified by solving a weighted
530:. This may allow QSM to serve as a problem solving tool for the diagnosis of confounding hypointense findings on T2* weighted images. 339:, are useful for the background field removal, although they also tamper with the local field and degrade the quantitative accuracy. 83:, accurate gadolinium quantification in contrast enhanced MRI, and direct monitoring of targeted theranostic drug biodistribution in 538:
For exogenous susceptibility sources, the susceptibility value is theoretically linearly proportional to the concentration of the
331:
non-biological background field needs to be removed for clear visualization on phase images and precise quantification on QSM.
44: 1056:"Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: Comparison with COSMOS in human brain imaging" 326:
quantitative susceptibility mapping, only the local susceptibility sources inside the brain are of interest. However, the
354:
The field-to-source inverse problem can be solved by several methods with various associated advantages and limitations.
318:
Estimated local field maps using left) high-pass filtering method, right) projection onto dipole fields (PDF) method.
342:
More recent background field removal methods directly or indirectly exploit the fact that the background field is a
104: 231: 80: 1195:"Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field" 192: 291: 287: 131: 55: 578:
2nd International Workshop on MRI Phase Contrast & Quantitative Susceptibility Mapping, Cornell (2013)
600:
4th International Workshop on MRI Phase Contrast & Quantitative Susceptibility Mapping, Graz (2016)
589:
3rd International Workshop on MRI Phase Contrast & Quantitative Susceptibility Mapping, Duke (2014)
1288: 1244: 1097:"Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition" 567:
1st International Workshop on MRI Phase Contrast and Quantitative Susceptibility Mapping, Jena (2011)
1029: 76: 1054:
Liu, Tian; Liu, Jing; de Rochefort, Ludovic; Spincemaille, Pascal; et al. (September 2011).
954: 902: 850: 807: 736: 547: 367: 63: 512:
Differentiation between calcification and iron. From left to right are magnitude, phase and QSM.
24:
brain QSM acquired at 3 Tesla and reconstructed with morphology enabled dipole inversion (MEDI).
1304: 1260: 1216: 1175: 1126: 1077: 995: 946: 894: 842: 799: 763: 642: 613:"Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker" 566: 343: 110: 36: 871:
Liu, Tian; Spincemaille, Pascal; De Rochefort, Ludovic; Kressler, Bryan; et al. (2009).
730:
Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; et al. (2011).
1296: 1252: 1206: 1165: 1157: 1144:
Shmueli, Karin; De Zwart, Jacco A.; Van Gelderen, Peter; Li, Tie-Qiang; et al. (2009).
1116: 1108: 1067: 985: 936: 884: 834: 791: 753: 745: 710: 700: 669: 632: 624: 336: 295: 135: 21: 522:
and phantom experiments that cortical bones, whose major composition is calcification, are
441: 148: 1292: 1248: 370:
concentrations in vials. a) magnitude image; b) field map; c) QSM; d) linear regression.
1170: 1145: 1121: 1096: 758: 731: 637: 612: 539: 378:
from multiple orientations. COSMOS utilizes the fact that the zero cone surface in the
327: 172: 71: 1322: 1112: 958: 795: 732:"A novel background field removal method for MRI using projection onto dipole fields" 527: 379: 225: 906: 811: 854: 523: 420: 375: 84: 67: 972:
De Rochefort, Ludovic; Liu, Tian; Kressler, Bryan; Liu, Jing; et al. (2009).
925:"Susceptibility mapping in the human brain using threshold-based k-space division" 383: 266: 142: 1146:"Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data" 314: 224:. This spatial convolution can be expressed as a point-wise multiplication in 59: 16: 58:, which is useful for chemical identification and quantification of specific 358:
Calculation of susceptibility through multiple orientation sampling (COSMOS)
54:
intensity in QSM is linearly proportional to the underlying tissue apparent
1308: 1264: 1220: 1179: 1130: 1081: 999: 950: 898: 846: 803: 767: 646: 508: 403: 1193:
De Rochefort, Ludovic; Brown, Ryan; Prince, Martin R.; Wang, Yi (2008).
705: 688: 673: 413:
and phantom experiments. Quantitative susceptibility maps obtained from
70:
iron oxide (SPIO) nano-particles. QSM utilizes phase images, solves the
715: 518: 438: 415: 409: 1300: 1256: 1211: 1194: 1161: 1072: 1055: 990: 973: 941: 924: 889: 872: 628: 577: 362: 335:
based methods are preferred. Traditional heuristic methods, including
95: 838: 749: 693:
Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering
166: 588: 507: 361: 323: 313: 94: 51: 15: 390:
field. Therefore, if an object is rotated with respect to the B
433: 40: 366:
The first QSM image reconstructed using COSMOS to quantify
599: 923:
Wharton, Sam; Schäfer, Andreas; Bowtell, Richard (2010).
491:
this k-space region is also a topic of ongoing research.
1013:
Liu, J; Liu, T; de Rochefort, L; Khalidov, I (2010).
469:
MEDI has also been validated extensively in phantom,
444: 234: 195: 175: 151: 113: 457: 257: 216: 181: 157: 122: 301:field measurement without the contribution from B 918: 916: 99:A visualization of the cone in Fourier domain. 8: 258:{\displaystyle \Delta B=D\cdot \mathrm {X} } 866: 864: 428:Morphology enabled dipole inversion (MEDI) 145:of the volume susceptibility distribution 1210: 1169: 1120: 1071: 989: 940: 888: 757: 714: 704: 636: 449: 443: 250: 233: 194: 174: 150: 130:induced by non-ferromagnetic biomaterial 112: 1095:Li, Wei; Wu, Bing; Liu, Chunlei (2011). 394:field, then in the object's frame, the B 559: 504:Differentiating calcification from iron 217:{\displaystyle \delta B=d\otimes \chi } 374:COSMOS solves the inverse problem by 7: 687:Marques, J.P.; Bowtell, R. (2005). 29:Quantitative susceptibility mapping 486:Thresholded K-space division (TKD) 251: 235: 14: 43:(MRI) different from traditional 1113:10.1016/j.neuroimage.2010.11.088 1022:Proc. Intl. Soc. Mag. Reson. Med 796:10.1016/j.neuroimage.2010.10.070 534:Quantification of contrast agent 499:Potential clinical applications 45:susceptibility weighted imaging 1199:Magnetic Resonance in Medicine 1150:Magnetic Resonance in Medicine 1060:Magnetic Resonance in Medicine 978:Magnetic Resonance in Medicine 929:Magnetic Resonance in Medicine 877:Magnetic Resonance in Medicine 662:Concepts in Magnetic Resonance 617:Magnetic Resonance in Medicine 542:. This provides a new way for 1: 134:along the main polarization 466:norm minimization problem. 1345: 1329:Magnetic resonance imaging 41:magnetic resonance imaging 516:It has been confirmed in 350:Field-to-source inversion 81:neurodegenerative disease 62:including iron, calcium, 550:or SPIO concentrations. 310:Background field removal 123:{\displaystyle \delta B} 56:magnetic susceptibility 1028:: 4996. Archived from 513: 459: 432:A unique advantage of 371: 319: 259: 218: 183: 159: 124: 100: 25: 511: 460: 458:{\displaystyle l_{1}} 386:with respect to the B 365: 317: 260: 219: 184: 160: 158:{\displaystyle \chi } 125: 98: 19: 442: 232: 193: 173: 149: 111: 77:cerebral microbleeds 1293:2008MedPh..35.5328D 1249:2010MedPh..37.5165S 1035:on October 16, 2015 706:10.1002/cmr.b.20034 674:10.1002/cmr.b.10083 477:experiments. In an 337:high-pass filtering 35:) provides a novel 827:NMR in Biomedicine 737:NMR in Biomedicine 546:quantification of 514: 455: 372: 320: 286:In principle, any 255: 214: 179: 155: 120: 107:, the local field 101: 26: 1301:10.1118/1.3002309 1257:10.1118/1.3481505 1212:10.1002/mrm.21710 1162:10.1002/mrm.22135 1073:10.1002/mrm.22816 991:10.1002/mrm.22187 942:10.1002/mrm.22334 890:10.1002/mrm.21828 629:10.1002/mrm.25358 611:Wang, Yi (2014). 344:harmonic function 269:with respect to B 182:{\displaystyle d} 1336: 1313: 1312: 1275: 1269: 1268: 1231: 1225: 1224: 1214: 1190: 1184: 1183: 1173: 1141: 1135: 1134: 1124: 1092: 1086: 1085: 1075: 1051: 1045: 1044: 1042: 1040: 1034: 1019: 1010: 1004: 1003: 993: 969: 963: 962: 944: 920: 911: 910: 892: 868: 859: 858: 839:10.1002/nbm.3064 822: 816: 815: 790:(4): 2789–2807. 778: 772: 771: 761: 750:10.1002/nbm.1670 727: 721: 720: 718: 708: 684: 678: 677: 657: 651: 650: 640: 608: 602: 597: 591: 586: 580: 575: 569: 564: 464: 462: 461: 456: 454: 453: 382:is fixed at the 282:Data acquisition 264: 262: 261: 256: 254: 223: 221: 220: 215: 188: 186: 185: 180: 164: 162: 161: 156: 129: 127: 126: 121: 1344: 1343: 1339: 1338: 1337: 1335: 1334: 1333: 1319: 1318: 1317: 1316: 1287:(12): 5328–39. 1281:Medical Physics 1277: 1276: 1272: 1243:(10): 5165–78. 1237:Medical Physics 1233: 1232: 1228: 1192: 1191: 1187: 1143: 1142: 1138: 1094: 1093: 1089: 1053: 1052: 1048: 1038: 1036: 1032: 1017: 1012: 1011: 1007: 971: 970: 966: 935:(5): 1292–304. 922: 921: 914: 870: 869: 862: 824: 823: 819: 780: 779: 775: 729: 728: 724: 686: 685: 681: 659: 658: 654: 610: 609: 605: 598: 594: 587: 583: 576: 572: 565: 561: 556: 536: 506: 501: 488: 445: 440: 439: 430: 397: 393: 389: 360: 352: 312: 304: 299: 284: 279: 272: 230: 229: 191: 190: 171: 170: 147: 146: 139: 109: 108: 93: 22:volume rendered 12: 11: 5: 1342: 1340: 1332: 1331: 1321: 1320: 1315: 1314: 1270: 1226: 1185: 1156:(6): 1510–22. 1136: 1107:(4): 1645–56. 1087: 1046: 1005: 984:(1): 194–206. 964: 912: 883:(1): 196–204. 860: 817: 773: 744:(9): 1129–36. 722: 679: 652: 603: 592: 581: 570: 558: 557: 555: 552: 540:contrast agent 535: 532: 505: 502: 500: 497: 487: 484: 452: 448: 429: 426: 395: 391: 387: 380:Fourier domain 359: 356: 351: 348: 328:magnetic field 311: 308: 302: 297: 292:susceptibility 283: 280: 278: 275: 270: 253: 249: 246: 243: 240: 237: 226:Fourier domain 213: 210: 207: 204: 201: 198: 178: 154: 137: 132:susceptibility 119: 116: 92: 89: 72:magnetic field 13: 10: 9: 6: 4: 3: 2: 1341: 1330: 1327: 1326: 1324: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1274: 1271: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1230: 1227: 1222: 1218: 1213: 1208: 1205:(4): 1003–9. 1204: 1200: 1196: 1189: 1186: 1181: 1177: 1172: 1167: 1163: 1159: 1155: 1151: 1147: 1140: 1137: 1132: 1128: 1123: 1118: 1114: 1110: 1106: 1102: 1098: 1091: 1088: 1083: 1079: 1074: 1069: 1066:(3): 777–83. 1065: 1061: 1057: 1050: 1047: 1031: 1027: 1023: 1016: 1009: 1006: 1001: 997: 992: 987: 983: 979: 975: 968: 965: 960: 956: 952: 948: 943: 938: 934: 930: 926: 919: 917: 913: 908: 904: 900: 896: 891: 886: 882: 878: 874: 867: 865: 861: 856: 852: 848: 844: 840: 836: 832: 828: 821: 818: 813: 809: 805: 801: 797: 793: 789: 785: 777: 774: 769: 765: 760: 755: 751: 747: 743: 739: 738: 733: 726: 723: 717: 712: 707: 702: 698: 694: 690: 683: 680: 675: 671: 667: 663: 656: 653: 648: 644: 639: 634: 630: 626: 623:(1): 82–101. 622: 618: 614: 607: 604: 601: 596: 593: 590: 585: 582: 579: 574: 571: 568: 563: 560: 553: 551: 549: 545: 541: 533: 531: 529: 528:paramagnetism 525: 521: 520: 510: 503: 498: 496: 492: 485: 483: 480: 476: 472: 467: 465: 450: 446: 435: 427: 425: 422: 421:brain imaging 418: 417: 412: 411: 406: 405: 399: 385: 381: 377: 369: 364: 357: 355: 349: 347: 345: 340: 338: 332: 329: 325: 316: 309: 307: 300: 293: 289: 281: 276: 274: 268: 247: 244: 241: 238: 227: 211: 208: 205: 202: 199: 196: 176: 168: 152: 144: 141:field is the 140: 133: 117: 114: 106: 97: 90: 88: 86: 82: 78: 73: 69: 65: 61: 57: 53: 48: 46: 42: 39:mechanism in 38: 34: 30: 23: 18: 1284: 1280: 1273: 1240: 1236: 1229: 1202: 1198: 1188: 1153: 1149: 1139: 1104: 1100: 1090: 1063: 1059: 1049: 1037:. Retrieved 1030:the original 1025: 1021: 1008: 981: 977: 967: 932: 928: 880: 876: 833:(3): 312–9. 830: 826: 820: 787: 783: 776: 741: 735: 725: 696: 692: 682: 665: 661: 655: 620: 616: 606: 595: 584: 573: 562: 543: 537: 517: 515: 493: 489: 478: 474: 470: 468: 431: 414: 408: 402: 400: 376:oversampling 373: 353: 341: 333: 321: 285: 102: 85:nanomedicine 68:paramagnetic 66:, and super 49: 32: 28: 27: 1039:January 26, 716:2066/195319 524:diamagnetic 384:magic angle 267:magic angle 143:convolution 1101:NeuroImage 784:NeuroImage 554:References 548:gadolinium 368:gadolinium 277:Techniques 91:Background 64:gadolinium 60:biomarkers 959:206278637 699:: 65–78. 668:: 26–34. 322:In human 248:⋅ 236:Δ 212:χ 209:⊗ 197:δ 165:with the 153:χ 115:δ 1323:Category 1309:19175092 1265:21089750 1221:18816834 1180:19859937 1131:21224002 1082:21465541 1000:19953507 951:20432300 907:41444063 899:19097205 847:24395595 812:19593094 804:21040794 768:21387445 647:25044035 471:in vitro 404:in vitro 37:contrast 1289:Bibcode 1245:Bibcode 1171:4275127 1122:3062654 855:1815936 759:3628923 638:4297605 544:in vivo 519:in vivo 479:in vivo 475:ex vivo 416:in vivo 410:ex vivo 169:kernel 1307:  1263:  1219:  1178:  1168:  1129:  1119:  1080:  998:  957:  949:  905:  897:  853:  845:  810:  802:  766:  756:  645:  635:  419:human 167:dipole 1033:(PDF) 1018:(PDF) 955:S2CID 903:S2CID 851:S2CID 808:S2CID 324:brain 52:voxel 1305:PMID 1261:PMID 1217:PMID 1176:PMID 1127:PMID 1078:PMID 1041:2011 996:PMID 947:PMID 895:PMID 843:PMID 800:PMID 764:PMID 643:PMID 473:and 79:and 50:The 1297:doi 1253:doi 1207:doi 1166:PMC 1158:doi 1117:PMC 1109:doi 1068:doi 986:doi 937:doi 885:doi 835:doi 792:doi 754:PMC 746:doi 711:hdl 701:doi 697:25B 670:doi 666:19B 633:PMC 625:doi 434:MRI 105:MRI 103:In 33:QSM 1325:: 1303:. 1295:. 1285:35 1283:. 1259:. 1251:. 1241:37 1239:. 1215:. 1203:60 1201:. 1197:. 1174:. 1164:. 1154:62 1152:. 1148:. 1125:. 1115:. 1105:55 1103:. 1099:. 1076:. 1064:66 1062:. 1058:. 1026:18 1024:. 1020:. 994:. 982:63 980:. 976:. 953:. 945:. 933:63 931:. 927:. 915:^ 901:. 893:. 881:61 879:. 875:. 863:^ 849:. 841:. 831:27 829:. 806:. 798:. 788:54 786:. 762:. 752:. 742:24 740:. 734:. 709:. 695:. 691:. 664:. 641:. 631:. 621:73 619:. 615:. 407:, 288:3D 228:: 189:: 87:. 47:. 20:A 1311:. 1299:: 1291:: 1267:. 1255:: 1247:: 1223:. 1209:: 1182:. 1160:: 1133:. 1111:: 1084:. 1070:: 1043:. 1002:. 988:: 961:. 939:: 909:. 887:: 857:. 837:: 814:. 794:: 770:. 748:: 719:. 713:: 703:: 676:. 672:: 649:. 627:: 451:1 447:l 396:0 392:0 388:0 303:1 298:0 296:B 271:0 252:X 245:D 242:= 239:B 206:d 203:= 200:B 177:d 138:0 136:B 118:B 31:(

Index


volume rendered
contrast
magnetic resonance imaging
susceptibility weighted imaging
voxel
magnetic susceptibility
biomarkers
gadolinium
paramagnetic
magnetic field
cerebral microbleeds
neurodegenerative disease
nanomedicine

MRI
susceptibility
B0
convolution
dipole
Fourier domain
magic angle
3D
susceptibility
B0

brain
magnetic field
high-pass filtering
harmonic function

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.