Knowledge (XXG)

Quantum microscopy

Source 📝

145:. In this state, the electron orbital is far from the centre nucleus. The Rydberg electron is in a dc field, which causes it to be above the classical ionization threshold, but below the field-free ionization energy. The electron wave ends up producing an interference pattern because the portion of the wave directed towards the 2D detector interferes with the portion directed away from the detector. This interference pattern shows a number of nodes that is consistent with the nodal structure of the Hydrogen atom orbital 199:
This interference pattern changes when the beams hit regions of different heights. The patterns can be resolved by analysing the interference pattern and phase difference. A standard optical microscope would be unlikely to detect something so small. The image is precise when measured with entangled photons, as each entangled photon gives information about the other. Therefore, they provide more information than independent photons, creating sharper images.
122:
trajectories produce a distinct pattern that can be detected by a two-dimensional flux detector and subsequently imaged. The images exhibit an outer ring that correspond to the indirect ionization process and an inner ring, which correspond to the direct ionization process. This oscillatory pattern can be interpreted as interference among the trajectories of the electrons moving from the atom to the detector.
242:. Squeezed states of light have noise characteristics that are reduced beneath the shot noise level in one quadrature (such as amplitude or phase) at the expense of increased noise in the orthogonal quadrature. This reduced noise can be used to improve signal-to-noise ratio. Squeezed states have been shown to allow a signal-to-noise ratio improvement of as much as a factor of thirty. 41:
the barrier also depends on this thickness. The distance between the tip and the sample affects the current measured by the tip. The tip is formed by a single atom that slowly moves across the surface at a distance of one atomic diameter. By observing the current, the distance can be kept fairly constant, allowing the tip to move up and down according to the structure of the sample.
72:, but became routine. An image of an atom's exact position or the movement of its electrons is almost impossible to measure because any direct observation of an atom disturbs its quantum coherence. As such, observing an atom's wave function and getting an image of its full quantum state requires many measurements to be made, which are then statistically averaged. The 250:
property of cells that is connected to their health, structural properties and local function. Later, the same microscope was employed as a photonic force microscope, tracking a granule as it diffused spatially. This allowed quantum enhanced resolution to be demonstrated, and for this to be achieved in a far-sub-diffraction limited microscope.
106:
wave function. Photodetachment is the removal of electrons from an atom using interactions with photons or other particles. Photodetachment microscopy made it possible to image the spatial distribution of the ejected electron. The microscope developed in 1996 was the first to image photodetachment rings of a negative
129:
atoms in the presence of a static electric field. This experiment was the first to reveal evidence of quasibound states. A quasibound state is a "state having a connectedness to true bound state through the variation of some physical parameter". This was done by photoionizing the Lithium atoms in the
84:
becomes large enough to be observed on a macroscopic scale. An atom in an electric field is ionized by a focused laser. The electron is drawn toward a position-sensitive detector, and the current is measured as a function of position. The application of an electric field during photoionization allows
40:
gives the probability that a particle will be detected on the far side and, for a sufficiently thin barrier, predicts some electrons will cross it. This creates a current across the tunnel. The number of electrons that tunnel is dependent on the thickness of the barrier, therefore the current through
35:
to directly image atoms. A STM can be used to study the three-dimensional structure of a sample, by scanning the surface with a sharp, metal, conductive tip close to the sample. Such an environment is conducive to quantum tunneling: a quantum mechanical effect that occurs when electrons move through
281:
Intuitively, antibunching can be thought of as detection of ‘missing’ events of two photons emitted from every particle that cannot simultaneously emit two photons. It is therefore used to produce an image that would have been produced using photons with half the wavelength of the detected photons.
253:
Squeezed light has also been used to improve nonlinear microscopy. Nonlinear microscopes use intense laser illumination, close to the levels at which biological damage can occur. This damage is a key barrier to improving their performance, preventing the intensity from being increased and therefore
198:
are the illumination source. Two beams of photons are beamed at adjacent spots on a flat sample. The interference pattern of the beams are measured after they are reflected. When the two beams hit the flat surface, they both travel the same length and produce a corresponding interference pattern.
105:
as long as the de Broglie Wavelength of these electrons was large enough. It was not until 1996 that anything resembling these ideas bore fruit. In 1996 a team of French researchers developed the first photodetachment microscope. It allowed for direct observation of the oscillatory structure of a
285:
In conventional fluorescence microscopes, antibunching information is ignored, as simultaneous detection of multiple photon emission requires temporal resolution higher than that of most commonly available cameras. However, improved detector technology enabled demonstrations of quantum enhanced
249:
to probe the interior of a living yeast cell. In experiments it was shown that squeezed light allowed more precise tracking of lipid granules that naturally occur within the cell, and that this provided a more accurate measurement of the local viscosity of the cell. Viscosity is an important
121:
corresponds to electrons ejected down-field towards the bottleneck in the Coulomb + dc electric field potential, whereas indirect ionization corresponds to electrons ejected away from the bottleneck in the Coulomb + dc electric field and only ionize upon further Coulomb interactions. These
92:
Multiple classical paths lead from the atom to any point in the classically allowed region on the detector, and waves travelling along these paths produce an interference pattern. An infinite set of trajectory families lead to a complicated interference pattern on the detector. As such,
305:
offers sub-wavelength resolution and incorporates bright quantum correlated illumination. Molecular bonds within a cell can be imaged with a 35 per cent improved SNR compared with conventional microscopy, corresponding to a 14% concentration sensitivity improvement.
1364:
Gatto Monticonei, D.; Katamadze, K.; Traina, p.; Moreva, E.; Forneris, J.; Ruo-Berchera, I.; Olivero, P.; Degiovanni, I.P.; Brida, G.; Genovese, M. (30 September 2014). "Beating the Abbe Diffraction Limit in Confocal Microscopy via Nonclassical Photon Statistics".
222:
that comes with two-photon scanning fluorescence microscopy. In addition, since the interaction region within entangled microscopy is controlled by two beams, image site selection is flexible, which provides enhanced axial and lateral resolution
79:
A photoionization microscope employs photoionization, along with quantum properties and principles, to measure atomic properties. The principle is to study the spatial distribution of electrons ejected from an atom in a situation in which the
93:
photoionization microscopy relies on the existence of interference between various trajectories by which the electron moves from the atom to the plane of observation, for example, of a hydrogen atom in parallel electric and magnetic fields.
254:
putting a hard limit on SNR. By using squeezed light in such a microscope, researchers have shown that this limit can be broken - that SNR beyond that achievable beneath photo-damage limits of regular microscopy can be achieved.
153:
The same team of researchers that imaged the hydrogen electron's wave function are attempting to image helium. They report considerable differences, since helium has two electrons, which may enable them to 'see' entanglement.
184:(SNR) for a given light intensity is limited by SQL, which is critical for measurements where the probe light intensity is limited in order to avoid damaging the sample. The SQL can be tackled using entangled particles. 1098:
Taylor, Michael A.; Janousek, Jiri; Daria, Vincent; Knittel, Joachim; Hage, Boris; Bachor, Hans-A.; Bowen, Warwick P. (4 February 2014). "Subdiffraction-Limited Quantum Imaging within a Living Cell".
1160:
Casacio, Catxere A.; Madsen, Lars S.; Terrasson, Alex; Waleed, Muhammad; Barnscheidt, Kai; Hage, Boris; Taylor, Michael A.; Bowen, Warwick P. (10 June 2021). "Quantum-enhanced nonlinear microscopy".
134:
because, contrary to the experiments done with Xenon, Lithium wave function microscopy images are sensitive to the presence of resonances. Therefore, the quasibound states were directly revealed.
1042:
Taylor, Michael A.; Janousek, Jiri; Daria, Vincent; Knittel, Joachim; Hage, Boris; Bachor, Hans-A.; Bowen, Warwick P. (March 2013). "Biological measurement beyond the quantum limit".
101:
The idea stemmed from an experiment proposed by Demkov and colleagues in the early 1980s. The researchers suggested that electron waves could be imaged when interacting with a static
19:
allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles. The first microscope to do so was the
44:
The STM works best with conducting materials in order to create a current. However, since its creation, various implementations allow for a larger variety of samples, such as
165:
makes precise measurements that cannot be achieved classically. Typically, entanglement of N particles is used to measure a phase with precision ∆φ = 1/N, called the
1256:
Cui, J.-M; Sun, F.-W; Chen, X.-D.; Gong, Z.-J.; Gou, G.-C. (9 April 2013). "Quantum Statistical Imaging of Particles without Restriction of the Diffraction Limit".
68:. The square of the wave function is the probability of a particle's location at any given moment. Direct imaging of a wave function used to be considered only a 191: 117:
by a team of Dutch researchers in 2001. The differences between direct and indirect ionization create different trajectories for the outbound electron. Direct
45: 301:
offer an SNR beyond the photo-damage limit (the amount of energy that can be delivered without damage to the sample) of conventional microscopy. A coherent
274:. Recording anti-bunching in a fluorescence image provides additional information that can be used to enhance the microscope's resolution beyond the 1505:
Stodolna, A. S.; Rouzée, A.; Lépine, F.; Cohen, S.; Robicheaux, F.; Gijsbertsen, A.; Jungmann, J. H.; Bordas, C.; Vrakking, M. J. J. (20 May 2013).
141:
and colleagues imaged the hydrogen atom's wave function by measuring an interference pattern on a 2D detector. The electrons are excited to their
211:. This is ideal for studying biological tissues and opaque materials. However, the light intensity must be lowered to avoid damaging the sample. 689: 836:
Stodolna, A.S; Rouzee, A; Lepine, F; Cohen, S; Robicheaux, F.; Gijsbertsen, A.; Jungmann, J.H; Bordas, C; Vrakking, M.J.J (2013).
187:
The microscope first imaged a relief pattern of a glass plate. In one test, the pattern was 17 nanometers higher than the plate.
1002: 380: 287: 20: 617:
Cohen, S.; Harb, M.M; Ollagnier, A.; Robicheaux, F.; Vrakking, M.J.J; Barillot, T; Le ́pine, F.; Bordas, C (3 May 2013).
1211:
Schwartz, O.; Oron, D. (16 March 2012). "Improved resolution in fluorescence microscopy using quantum correlations".
748:
Lepine, F.; Bordas, C.H; Nicole, C.; Vrakking, M.J.J (2004). "Atomic photoionization processes under magnification".
1559: 958:
Israel, Y.; Rosen, S.; Silberberg, Y. (2014). "Supersensitive Polarization Microscopy Using NOON States of Light".
266:, images of objects that contain fluorescent particles are recorded. Each such particle can emit not more than one 207:
Entanglement-enhancement principles can be used to improve the image. Researchers are thereby able to overcome the
64:
is central to quantum mechanics. It contains the maximum information that can be known about a single particle's
23:, which paved the way for development of the photoionization microscope and the quantum entanglement microscope. 282:
By detecting N-photon events, the resolution can be improved by up to a factor of N over the diffraction limit.
239: 130:
presence of a ≈1 kV/cm static electric field. This experiment was an important precursor to the imaging of the
263: 49: 37: 336:
Nicole, C; Offerhaus, H.L; Vrakking, M.J.J; LĂ©pine, F; Bordas, Ch. (2002). "Photoionization Microscopy".
1436:"Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera" 181: 166: 226:
In addition to biological tissues, high-precision optical phase measurements have applications such as
1564: 1518: 1447: 1384: 1330: 1275: 1230: 1169: 1117: 1061: 967: 911: 849: 802: 757: 714: 630: 580: 539: 492: 407: 345: 398:
Bordas, C; Lepine, F; Nicole, C; Vrakking, M.J.J (November 21, 2003). "Photoionization Microscopy".
36:
a barrier due to their wave-like properties. Tunneling depends on the thickness of the barrier; the
298: 271: 86: 69: 1416: 1374: 1299: 1265: 1220: 1193: 1133: 1107: 1077: 1051: 935: 901: 818: 792: 654: 508: 423: 227: 208: 110:
ion. These images revealed interference between two electron waves on their way to the detector.
1507:"Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States" 838:"Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States" 1536: 1473: 1408: 1346: 1317:
Schwartz, O.; Levitt, J.M.; Tenne, R.; Itzhakov, S.; Deutsch, Z.; Oron, D. (6 November 2013).
1291: 1185: 983: 927: 867: 730: 685: 646: 361: 275: 162: 32: 1526: 1463: 1455: 1400: 1392: 1338: 1283: 1238: 1177: 1125: 1069: 975: 919: 857: 810: 765: 722: 677: 638: 588: 547: 500: 459: 415: 353: 302: 230:
detection, measurement of materials properties, as well as medical and biological sensing.
481:"Photoionization microscopy of the hydrogen atom in parallel electric and magnetic fields" 246: 73: 569:"Photoionization microscopy for a hydrogen atom in parallel electric and magnetic fields" 528:"Photoionization microscopy for a hydrogen atom in parallel electric and magnetic fields" 1522: 1451: 1388: 1334: 1279: 1234: 1173: 1121: 1065: 971: 915: 892:
Ono, Takafumi; Okamoto, R.; Takeushi, S. (2013). "An entanglement-enhanced microscope".
853: 806: 761: 718: 634: 584: 543: 496: 411: 349: 1468: 1435: 219: 138: 102: 419: 1553: 1197: 512: 215: 177: 142: 131: 65: 61: 1303: 1137: 1081: 939: 822: 658: 618: 427: 1531: 1420: 1396: 1287: 979: 862: 837: 642: 357: 681: 726: 113:
The first attempts to use photoionization microscopy were performed on atoms of
81: 1242: 1181: 769: 593: 568: 552: 504: 1318: 1129: 195: 118: 1073: 567:
Deng, M.; Gao, W.; Lu, Rong; Delos, J. B.; You, L.; Liu, H. P. (2016-06-10).
705:
Blondel, C; Delsart, C; Dulieu, F (1996). "The Photodetachment Microscope".
125:
The next group to attempt photoionization microscopy used the excitation of
1540: 1477: 1412: 1350: 1295: 1189: 987: 931: 871: 734: 650: 365: 1506: 464: 447: 1459: 245:
The first biological quantum light microscope used squeezed light in an
1404: 923: 126: 107: 1342: 814: 479:
Wang, L; Yang, X.J; Liu, P.; Zhan, M.S; Delos, J.B (30 August 2010).
267: 783:
Moyer, Curt (2014). "A unified theory of quasi bound stark states".
176:
precision limit possible with N non-entangled particles, called the
76:
microscope directly visualizes atomic structure and quantum states.
527: 480: 278:, and was demonstrated for several types of fluorescent particles. 1379: 1270: 1225: 1112: 1056: 1020:
Teich, M.C.; Saleh, B.E.A. (1997). "Entangled-Photon Microscopy".
906: 797: 114: 1434:
Israel, Y.; Tenne, R.; Oron, D.; Silberberg, Y. (13 March 2017).
238:
Researchers have developed quantum light microscopes based on
381:"The First Image Ever of a Hydrogen Atom's Orbital Structure" 190:
Quantum entanglement microscopes are a form of confocal-type
31:
The scanning tunneling microscope (STM) uses the concept of
674:
Springer Handbook of Atomic, Molecular, and Optical Physics
619:"Wave Function Microscopy of Quasibound Atomic States" 448:"Viewpoint: A New Look at the Hydrogen Wave Function" 286:
super-resolution using fast detector arrays, such as
1155: 1153: 1151: 1149: 1147: 1319:"Superresolution Microscopy with Quantum Emitters" 1093: 1091: 1003:"World's First Entanglement-Enhanced Microscope" 270:at a time, a quantum-mechanical effect known as 1037: 1035: 258:Quantum enhanced fluorescence super-resolution 194:. Entangled photon pairs and more generally, 192:differential interference contrast microscope 8: 46:spin polarized scanning tunneling microscopy 887: 885: 883: 881: 214:Entangled-photon microscopy can avoid the 1530: 1467: 1378: 1269: 1224: 1111: 1055: 953: 951: 949: 905: 861: 796: 592: 551: 463: 331: 329: 327: 325: 323: 321: 319: 1497: 672:Pegg, David (2006). "Photodetachment". 612: 610: 608: 606: 604: 441: 439: 437: 315: 7: 234:Biological quantum light microscopes 446:Smeenk, Christopher (2013-05-20). 14: 1022:Ceskoslovensky Casopis Pro Fyziku 420:10.1238/Physica.Topical.110a00068 294:Quantum enhanced Raman microscopy 379:Dvorsky, George (24 May 2013). 1532:10.1103/PhysRevLett.110.213001 1397:10.1103/PhysRevLett.113.143602 1288:10.1103/PhysRevLett.110.153901 980:10.1103/PhysRevLett.112.103604 863:10.1103/PhysRevLett.110.213001 643:10.1103/PhysRevLett.110.183001 1: 358:10.1103/PhysRevLett.88.133001 288:single-photon avalanche diode 21:scanning tunneling microscope 682:10.1007/978-0-387-26308-3_60 727:10.1103/PhysRevLett.77.3755 1581: 1243:10.1103/PhysRevA.85.033812 1182:10.1038/s41586-021-03528-w 770:10.1103/PhysRevA.70.033417 594:10.1103/PhysRevA.93.063411 553:10.1103/physreva.93.063411 505:10.1103/PhysRevA.82.022514 169:. This exceeds the ∆φ = 1/ 1130:10.1103/PhysRevX.4.011017 1074:10.1038/nphoton.2012.346 240:squeezed states of light 1511:Physical Review Letters 1367:Physical Review Letters 1258:Physical Review Letters 960:Physical Review Letters 842:Physical Review Letters 750:Physical Review Letters 707:Physical Review Letters 623:Physical Review Letters 526:Deng, M. (2016-06-10). 338:Physical Review Letters 264:fluorescence microscope 97:History and development 50:atomic force microscopy 178:standard quantum limit 132:hydrogen wave function 1440:Nature Communications 1007:MIT Technology Review 894:Nature Communications 182:signal-to-noise ratio 89:along one dimension. 82:De Broglie wavelength 676:. pp. 891–899. 465:10.1103/Physics.6.58 299:Quantum correlations 158:Quantum entanglement 38:Schrödinger equation 1523:2013PhRvL.110u3001S 1460:10.1038/ncomms14786 1452:2017NatCo...814786I 1389:2014PhRvL.113n3602G 1335:2013NanoL..13.5832S 1280:2013PhRvL.110o3901C 1235:2012PhRvA..85c3812S 1174:2021Natur.594..201C 1122:2014PhRvX...4a1017T 1066:2013NaPho...7..229T 972:2014PhRvL.112j3604I 916:2013NatCo...4.2426O 854:2013PhRvL.110u3001S 807:2014AIPA....4b7109M 762:2004PhRvA..70c3417L 719:1996PhRvL..77.3755B 635:2013PhRvL.110r3001C 585:2016PhRvA..93f3411D 544:2016PhRvA..93f3411D 497:2010PhRvA..82b2514W 412:2004PhST..110...68B 350:2002PhRvL..88m3001N 272:photon antibunching 70:gedanken experiment 924:10.1038/ncomms3426 228:gravitational wave 209:Rayleigh criterion 27:Scanning tunneling 17:Quantum microscopy 1560:Quantum mechanics 1343:10.1021/nl402552m 1213:Physical Review A 1168:(7862): 201–206. 1100:Physical Review X 815:10.1063/1.4865998 713:(18): 3755–3758. 691:978-0-387-20802-2 573:Physical Review A 532:Physical Review A 485:Physical Review A 276:diffraction limit 203:Future directions 163:Quantum metrology 149:Future directions 33:quantum tunneling 1572: 1545: 1544: 1534: 1502: 1482: 1481: 1471: 1431: 1425: 1424: 1382: 1361: 1355: 1354: 1314: 1308: 1307: 1273: 1253: 1247: 1246: 1228: 1208: 1202: 1201: 1157: 1142: 1141: 1115: 1095: 1086: 1085: 1059: 1044:Nature Photonics 1039: 1030: 1029: 1017: 1011: 1010: 998: 992: 991: 955: 944: 943: 909: 889: 876: 875: 865: 833: 827: 826: 800: 780: 774: 773: 745: 739: 738: 702: 696: 695: 669: 663: 662: 614: 599: 598: 596: 564: 558: 557: 555: 523: 517: 516: 476: 470: 469: 467: 443: 432: 431: 395: 389: 388: 376: 370: 369: 333: 303:Raman microscope 175: 174: 167:Heisenberg limit 1580: 1579: 1575: 1574: 1573: 1571: 1570: 1569: 1550: 1549: 1548: 1504: 1503: 1499: 1491: 1486: 1485: 1433: 1432: 1428: 1363: 1362: 1358: 1316: 1315: 1311: 1255: 1254: 1250: 1210: 1209: 1205: 1159: 1158: 1145: 1097: 1096: 1089: 1041: 1040: 1033: 1019: 1018: 1014: 1000: 999: 995: 957: 956: 947: 891: 890: 879: 835: 834: 830: 782: 781: 777: 747: 746: 742: 704: 703: 699: 692: 671: 670: 666: 616: 615: 602: 566: 565: 561: 525: 524: 520: 478: 477: 473: 445: 444: 435: 400:Physica Scripta 397: 396: 392: 378: 377: 373: 335: 334: 317: 312: 296: 260: 247:optical tweezer 236: 205: 172: 170: 160: 151: 99: 74:photoionization 58: 56:Photoionization 29: 12: 11: 5: 1578: 1576: 1568: 1567: 1562: 1552: 1551: 1547: 1546: 1517:(21): 213001. 1496: 1495: 1494: 1490: 1489:External links 1487: 1484: 1483: 1426: 1373:(14): 143602. 1356: 1329:(12): 5832–6. 1309: 1264:(15): 153901. 1248: 1203: 1143: 1087: 1050:(3): 229–233. 1031: 1012: 1001:Orcutt, Matt. 993: 966:(10): 103604. 945: 877: 848:(21): 213001. 828: 775: 740: 697: 690: 664: 629:(18): 183001. 600: 559: 518: 471: 433: 390: 371: 344:(13): 133001. 314: 313: 311: 308: 295: 292: 259: 256: 235: 232: 220:photobleaching 204: 201: 159: 156: 150: 147: 139:Aneta Stodolna 103:electric field 98: 95: 85:confining the 57: 54: 28: 25: 13: 10: 9: 6: 4: 3: 2: 1577: 1566: 1563: 1561: 1558: 1557: 1555: 1542: 1538: 1533: 1528: 1524: 1520: 1516: 1512: 1508: 1501: 1498: 1493: 1492: 1488: 1479: 1475: 1470: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1430: 1427: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1381: 1376: 1372: 1368: 1360: 1357: 1352: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1313: 1310: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1272: 1267: 1263: 1259: 1252: 1249: 1244: 1240: 1236: 1232: 1227: 1222: 1219:(3): 033812. 1218: 1214: 1207: 1204: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1156: 1154: 1152: 1150: 1148: 1144: 1139: 1135: 1131: 1127: 1123: 1119: 1114: 1109: 1106:(1): 011017. 1105: 1101: 1094: 1092: 1088: 1083: 1079: 1075: 1071: 1067: 1063: 1058: 1053: 1049: 1045: 1038: 1036: 1032: 1027: 1023: 1016: 1013: 1008: 1004: 997: 994: 989: 985: 981: 977: 973: 969: 965: 961: 954: 952: 950: 946: 941: 937: 933: 929: 925: 921: 917: 913: 908: 903: 899: 895: 888: 886: 884: 882: 878: 873: 869: 864: 859: 855: 851: 847: 843: 839: 832: 829: 824: 820: 816: 812: 808: 804: 799: 794: 791:(2): 027109. 790: 786: 779: 776: 771: 767: 763: 759: 756:(3): 033417. 755: 751: 744: 741: 736: 732: 728: 724: 720: 716: 712: 708: 701: 698: 693: 687: 683: 679: 675: 668: 665: 660: 656: 652: 648: 644: 640: 636: 632: 628: 624: 620: 613: 611: 609: 607: 605: 601: 595: 590: 586: 582: 579:(6): 063411. 578: 574: 570: 563: 560: 554: 549: 545: 541: 538:(6): 063411. 537: 533: 529: 522: 519: 514: 510: 506: 502: 498: 494: 491:(2): 022514. 490: 486: 482: 475: 472: 466: 461: 457: 453: 449: 442: 440: 438: 434: 429: 425: 421: 417: 413: 409: 405: 401: 394: 391: 386: 382: 375: 372: 367: 363: 359: 355: 351: 347: 343: 339: 332: 330: 328: 326: 324: 322: 320: 316: 309: 307: 304: 300: 293: 291: 289: 283: 279: 277: 273: 269: 265: 257: 255: 251: 248: 243: 241: 233: 231: 229: 224: 221: 217: 216:phototoxicity 212: 210: 202: 200: 197: 193: 188: 185: 183: 179: 168: 164: 157: 155: 148: 146: 144: 143:Rydberg state 140: 135: 133: 128: 123: 120: 116: 111: 109: 104: 96: 94: 90: 88: 87:electron flux 83: 77: 75: 71: 67: 66:quantum state 63: 62:wave function 55: 53: 51: 48:(SPSTM), and 47: 42: 39: 34: 26: 24: 22: 18: 1514: 1510: 1500: 1443: 1439: 1429: 1370: 1366: 1359: 1326: 1323:Nano Letters 1322: 1312: 1261: 1257: 1251: 1216: 1212: 1206: 1165: 1161: 1103: 1099: 1047: 1043: 1025: 1021: 1015: 1006: 996: 963: 959: 897: 893: 845: 841: 831: 788: 785:AIP Advances 784: 778: 753: 749: 743: 710: 706: 700: 673: 667: 626: 622: 576: 572: 562: 535: 531: 521: 488: 484: 474: 455: 451: 403: 399: 393: 384: 374: 341: 337: 297: 284: 280: 261: 252: 244: 237: 225: 213: 206: 189: 186: 161: 152: 136: 124: 112: 100: 91: 78: 59: 43: 30: 16: 15: 1565:Microscopes 1405:2318/149810 196:NOON states 180:(SQL). The 1554:Categories 310:References 119:ionization 1446:: 14786. 1380:1406.3251 1271:1210.2477 1226:1101.5013 1198:235395587 1113:1305.1353 1057:1206.6928 907:1401.8075 798:1306.6619 513:121584448 406:: 68–72. 137:In 2013, 1541:23745864 1478:28287167 1413:25325642 1351:24195698 1304:36890440 1296:25167270 1190:34108694 1138:88506197 1082:21016247 988:24679294 940:11495685 932:24026165 900:: 2426. 872:23745864 823:96399535 735:10062300 659:17922355 651:23683194 428:32159559 366:11955092 290:arrays. 1519:Bibcode 1469:5355801 1448:Bibcode 1421:2683461 1385:Bibcode 1331:Bibcode 1276:Bibcode 1231:Bibcode 1170:Bibcode 1118:Bibcode 1062:Bibcode 968:Bibcode 912:Bibcode 850:Bibcode 803:Bibcode 758:Bibcode 715:Bibcode 631:Bibcode 581:Bibcode 540:Bibcode 493:Bibcode 452:Physics 408:Bibcode 346:Bibcode 171:√ 127:Lithium 108:Bromine 52:(AFM). 1539:  1476:  1466:  1419:  1411:  1349:  1302:  1294:  1196:  1188:  1162:Nature 1136:  1080:  1028:: 3–8. 986:  938:  930:  870:  821:  733:  688:  657:  649:  511:  458:: 58. 426:  364:  268:photon 1417:S2CID 1375:arXiv 1300:S2CID 1266:arXiv 1221:arXiv 1194:S2CID 1134:S2CID 1108:arXiv 1078:S2CID 1052:arXiv 936:S2CID 902:arXiv 819:S2CID 793:arXiv 655:S2CID 509:S2CID 424:S2CID 262:In a 115:Xenon 1537:PMID 1474:PMID 1409:PMID 1347:PMID 1292:PMID 1186:PMID 984:PMID 928:PMID 868:PMID 731:PMID 686:ISBN 647:PMID 404:T110 362:PMID 218:and 60:The 1527:doi 1515:110 1464:PMC 1456:doi 1401:hdl 1393:doi 1371:113 1339:doi 1284:doi 1262:110 1239:doi 1178:doi 1166:594 1126:doi 1070:doi 976:doi 964:112 920:doi 858:doi 846:110 811:doi 766:doi 723:doi 678:doi 639:doi 627:110 589:doi 548:doi 501:doi 460:doi 416:doi 385:io9 354:doi 1556:: 1535:. 1525:. 1513:. 1509:. 1472:. 1462:. 1454:. 1442:. 1438:. 1415:. 1407:. 1399:. 1391:. 1383:. 1369:. 1345:. 1337:. 1327:13 1325:. 1321:. 1298:. 1290:. 1282:. 1274:. 1260:. 1237:. 1229:. 1217:85 1215:. 1192:. 1184:. 1176:. 1164:. 1146:^ 1132:. 1124:. 1116:. 1102:. 1090:^ 1076:. 1068:. 1060:. 1046:. 1034:^ 1026:47 1024:. 1005:. 982:. 974:. 962:. 948:^ 934:. 926:. 918:. 910:. 896:. 880:^ 866:. 856:. 844:. 840:. 817:. 809:. 801:. 787:. 764:. 754:70 752:. 729:. 721:. 711:77 709:. 684:. 653:. 645:. 637:. 625:. 621:. 603:^ 587:. 577:93 575:. 571:. 546:. 536:93 534:. 530:. 507:. 499:. 489:82 487:. 483:. 454:. 450:. 436:^ 422:. 414:. 402:. 383:. 360:. 352:. 342:88 340:. 318:^ 1543:. 1529:: 1521:: 1480:. 1458:: 1450:: 1444:8 1423:. 1403:: 1395:: 1387:: 1377:: 1353:. 1341:: 1333:: 1306:. 1286:: 1278:: 1268:: 1245:. 1241:: 1233:: 1223:: 1200:. 1180:: 1172:: 1140:. 1128:: 1120:: 1110:: 1104:4 1084:. 1072:: 1064:: 1054:: 1048:7 1009:. 990:. 978:: 970:: 942:. 922:: 914:: 904:: 898:4 874:. 860:: 852:: 825:. 813:: 805:: 795:: 789:4 772:. 768:: 760:: 737:. 725:: 717:: 694:. 680:: 661:. 641:: 633:: 597:. 591:: 583:: 556:. 550:: 542:: 515:. 503:: 495:: 468:. 462:: 456:6 430:. 418:: 410:: 387:. 368:. 356:: 348:: 173:N

Index

scanning tunneling microscope
quantum tunneling
Schrödinger equation
spin polarized scanning tunneling microscopy
atomic force microscopy
wave function
quantum state
gedanken experiment
photoionization
De Broglie wavelength
electron flux
electric field
Bromine
Xenon
ionization
Lithium
hydrogen wave function
Aneta Stodolna
Rydberg state
Quantum metrology
Heisenberg limit
standard quantum limit
signal-to-noise ratio
differential interference contrast microscope
NOON states
Rayleigh criterion
phototoxicity
photobleaching
gravitational wave
squeezed states of light

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑