Knowledge (XXG)

Mesoscopic physics

Source đź“ť

662: 49: 675: 2929: 890:. When materials are this small, their electronic and optical properties deviate substantially from those of bulk materials. As the material is miniaturized towards nano-scale the confining dimension naturally decreases. The characteristics are no longer averaged by bulk, and hence continuous, but are at the level of quanta and thus discrete. In other words, the energy 923:
of a given specimen oscillates in an apparently random manner as a function of fluctuations in experimental parameters. However, the same pattern may be retraced if the experimental parameters are cycled back to their original values; in fact, the patterns observed are reproducible over a period of days. These are known as
922:
In the mesoscopic regime, scattering from defects – such as impurities – induces interference effects which modulate the flow of electrons. The experimental signature of mesoscopic interference effects is the appearance of reproducible fluctuations in physical quantities. For example, the conductance
913:
Because the electron energy levels of quantum dots are discrete rather than continuous, the addition or subtraction of just a few atoms to the quantum dot has the effect of altering the boundaries of the bandgap. Changing the geometry of the surface of the quantum dot also changes the bandgap energy,
804:
in semiconductor electronics. The mechanical, chemical, and electronic properties of materials change as their size approaches the nanoscale, where the percentage of atoms at the surface of the material becomes significant. For bulk materials larger than one micrometre, the percentage of atoms at the
805:
surface is insignificant in relation to the number of atoms in the entire material. The subdiscipline has dealt primarily with artificial structures of metal or semiconducting material which have been fabricated by the techniques employed for producing
905:
In addition, quantum confinement effects consist of isolated islands of electrons that may be formed at the patterned interface between two different semiconducting materials. The electrons typically are confined to disk-shaped regions termed
939:
such as crack formation in solids, phase separation, and rapid fluctuations in the liquid state or in biologically relevant environments; and the observation and study, at nanoscales, of the ultrafast dynamics of non-crystalline materials.
870:
exist at different energy levels or bands. In bulk materials these energy levels are described as continuous because the difference in energy is negligible. As electrons stabilize at various energy levels, most vibrate in
832:. Devices used in nanotechnology are examples of mesoscopic systems. Three categories of new electronic phenomena in such systems are interference effects, quantum confinement effects and charging effects. 706: 2852: 1760: 879:. This region is an energy range in which no electron states exist. A smaller amount have energy levels above the forbidden gap, and this is the conduction band. 1530: 754:, a mesoscopic object, by contrast, is affected by thermal fluctuations around the average, and its electronic behavior may require modeling at the level of 761:
A macroscopic electronic device, when scaled down to a meso-size, starts revealing quantum mechanical properties. For example, at the macroscopic level the
1849: 1247: 750:
objects contain many atoms. Whereas average properties derived from constituent materials describe macroscopic objects, as they usually obey the laws of
800:
Mesoscopic physics also addresses fundamental practical problems which occur when a macroscopic object is miniaturized, as with the miniaturization of
2602: 2840: 1728: 699: 661: 910:. The confinement of the electrons in these systems changes their interaction with electromagnetic radiation significantly, as noted above. 1163:"Mesoscopic physics." McGraw-Hill Encyclopedia of Science and Technology. The McGraw-Hill Companies, Inc., 2005. Answers.com 25 Jan 2010. 769:: the increases occur in discrete, or individual, whole steps. During research, mesoscopic devices are constructed, measured and observed 1882: 1218: 1185: 924: 2958: 2738: 1523: 692: 679: 1364: 974: â€“ increased resistance at small bias voltages of an electronic device comprising at least one low-capacitance tunnel junction 2819: 898:
asserts itself: there is a small and finite separation between energy levels. This situation of discrete energy levels is called
1676: 454: 950: 109: 2835: 1516: 629: 2953: 1813: 1429: 1037: 1404: 1178:
Quantum confinement VI : nanostructured materials and devices : proceedings of the international symposium
2963: 1644: 1617: 634: 259: 2911: 2323: 882:
The quantum confinement effect can be observed once the diameter of the particle is of the same magnitude as the
524: 199: 765:
of a wire increases continuously with its diameter. However, at the mesoscopic level, the wire's conductance is
1750: 1244: 820:) to 1 000 nm (the size of a typical bacterium): 100 nanometers is the approximate upper limit for a 723: 519: 514: 40: 2141: 604: 2879: 2514: 1875: 614: 209: 1325:
Barty, Anton; et al. (2008-06-22). "Ultrafast single-shot diffraction imaging of nanoscale dynamics".
2814: 2151: 1834: 1696: 1336: 782: 766: 762: 599: 539: 509: 459: 179: 69: 30:
This article is about the sub-discipline of condensed matter physics. For the branch of meteorology, see
2901: 1839: 1808: 1671: 1592: 1031: 639: 254: 239: 31: 1798: 1622: 1582: 1479: 1283: 1093: 965: 229: 119: 1341: 894:
becomes discrete, measured as quanta, rather than continuous as in bulk materials. As a result, the
2916: 1899: 1773: 1632: 1627: 1612: 1587: 1564: 1540: 1412: 1022: â€“ An electrically conducting wire in which quantum effects influence the transport properties 1013: 840: 751: 469: 279: 129: 2928: 2859: 1868: 1829: 1706: 1701: 1654: 1497: 1469: 1307: 1273: 1117: 1083: 1010: â€“ Branch of physics seeking to explain chaotic dynamical systems in terms of quantum theory 1001: 609: 584: 332: 323: 953: â€“ Electromagnetic quantum-mechanical effect in regions of zero magnetic and electric field 935:
Time-resolved experiments in mesoscopic dynamics: the observation and study, at nanoscales, of
866:
materials (larger than 10 nm) can be described by energy bands or electron energy levels.
2896: 2809: 2288: 2033: 1960: 1844: 1793: 1738: 1718: 1604: 1299: 1224: 1214: 1191: 1181: 1109: 1043: 797:. The applied science of mesoscopic physics deals with the potential of building nanodevices. 755: 747: 743: 579: 424: 314: 234: 726:
that deals with materials of an intermediate size. These materials range in size between the
2906: 2677: 2452: 2313: 2298: 1980: 1891: 1783: 1723: 1649: 1487: 1346: 1327: 1291: 1264:
Sánchez D, Büttiker M (2004). "Magnetic-field asymmetry of nonlinear mesoscopic transport".
1101: 1070:"Biological and synthetic membranes: What can be learned from a coarse-grained description?" 971: 727: 284: 249: 244: 204: 174: 144: 104: 64: 27:
Subdiscipline of condensed matter physics that deals with materials of an intermediate size
2874: 2799: 2783: 2723: 2133: 1950: 1803: 1713: 1659: 1559: 1400: 1251: 1074: 998: â€“ Field of science involving control of matter on atomic and (supra)molecular scales 852: 825: 806: 594: 544: 414: 169: 81: 1483: 1372: 1287: 1097: 816:
but the systems studied are normally in the range of 100 nm (the size of a typical
2933: 2847: 2804: 2540: 2328: 2101: 2023: 2018: 1940: 1733: 1688: 1666: 1554: 995: 844: 829: 794: 666: 644: 624: 619: 574: 494: 429: 327: 214: 59: 48: 2947: 2891: 2743: 2710: 2502: 2472: 2404: 2263: 2043: 1970: 1955: 1145: 1025: 1007: 980: 959: 887: 786: 549: 355: 336: 318: 219: 139: 1501: 1311: 1164: 1121: 742:. The lower limit can also be defined as being the size of individual atoms. At the 17: 2869: 2419: 2409: 2399: 2160: 2111: 2053: 1975: 1930: 1768: 1460: 1069: 1019: 907: 872: 848: 821: 569: 559: 529: 489: 484: 464: 309: 289: 149: 1295: 1105: 914:
owing again to the small size of the dot, and the effects of quantum confinement.
1180:. Cahay, M., Electrochemical Society. Pennington, N.J.: Electrochemical Society. 2884: 2652: 2555: 2550: 2467: 2462: 2392: 2346: 2303: 2268: 2227: 2119: 2083: 1945: 986: 774: 589: 564: 534: 479: 474: 406: 1492: 1455: 2626: 2520: 2510: 2492: 2382: 2283: 2218: 1935: 1788: 1778: 883: 863: 801: 770: 739: 499: 341: 134: 1350: 1113: 2768: 2758: 2728: 2621: 2587: 2580: 2457: 2447: 2442: 2414: 2182: 1965: 1639: 1508: 1376:(The research appears in the online edition of the journal Nature Photonics) 1228: 1195: 554: 504: 377: 224: 124: 1303: 1004: â€“ Perpetual electric current, not requiring an external power sources 2864: 2692: 2647: 2631: 2592: 2565: 2278: 2273: 2253: 2223: 2213: 2208: 2058: 2048: 2038: 2028: 2003: 1998: 1925: 1438: 1278: 1211:
Quantum theory of the optical and electronic properties of semiconductors
1088: 891: 876: 867: 856: 735: 114: 2773: 2763: 2733: 2687: 2682: 2657: 2575: 2560: 2487: 2482: 2387: 2372: 2318: 2293: 2258: 2187: 2169: 1908: 1860: 936: 895: 778: 434: 419: 382: 373: 368: 2753: 2748: 2377: 2364: 2355: 2177: 2091: 1990: 1743: 1034: â€“ Use of both classical and quantum physics to analyze a system 387: 363: 94: 1371:. United Press International. 2008-06-25. p. 01. Archived from 1474: 824:. Thus, mesoscopic physics has a close connection to the fields of 2778: 2718: 2570: 2429: 2308: 2248: 2203: 2096: 2074: 1917: 817: 790: 392: 89: 2545: 2477: 2437: 2013: 2008: 731: 1864: 1512: 983: â€“ Materials whose granular size lies between 1 and 100 nm 968: â€“ Movement of charge carriers with negligible scattering 99: 1142:
McGraw-Hill Dictionary of Scientific and Technical Terms
991:
Pages displaying short descriptions of redirect targets
989: â€“ Molecular-scale artificial or biological device 955:
Pages displaying short descriptions of redirect targets
843:
effects describe electrons in terms of energy levels,
1068:
Muller, M.; Katsov, K.; Schick, M. (November 2006).
1048:
Pages displaying wikidata descriptions as a fallback
976:
Pages displaying wikidata descriptions as a fallback
2828: 2792: 2709: 2670: 2640: 2614: 2601: 2533: 2501: 2428: 2363: 2354: 2345: 2241: 2196: 2168: 2159: 2150: 2132: 2110: 2082: 2073: 1989: 1916: 1907: 1898: 1822: 1759: 1687: 1603: 1575: 1547: 1040: â€“ Relativistic interaction in quantum physics 1165:http://www.answers.com/topic/mesoscopic-physics-1 962: â€“ Scattering phenomenon in wave dynamics 1876: 1524: 1213:(3rd ed.). Singapore: World Scientific. 700: 8: 1365:"Study gains images at ultra-fast timescale" 2611: 2607: 2360: 2351: 2165: 2156: 2079: 1913: 1904: 1883: 1869: 1861: 1531: 1517: 1509: 875:below a forbidden energy level, named the 707: 693: 47: 36: 1491: 1473: 1340: 1277: 1087: 1016: â€“ Electromagnetic effect in physics 777:in order to advance understanding of the 1456:"Mesoscopic transport and quantum chaos" 1209:Hartmut, Haug; Koch, Stephan W. (1994). 1159: 1157: 1155: 1135: 1133: 1131: 746:are bulk materials. Both mesoscopic and 1240: 1238: 1060: 39: 1729:Atomic, molecular, and optical physics 1430:"Mesoscopic physics: an introduction" 1028: â€“ Matrix-valued random variable 7: 1046: â€“ quantum physical phenomenon 1369:Science Online. Facts On File, Inc 925:universal conductance fluctuations 25: 1254:. 2008 Evident Technologies, Inc. 931:Time-resolved mesoscopic dynamics 812:There is no rigid definition for 2927: 2820:Timeline of particle discoveries 674: 673: 660: 1850:Timeline of physics discoveries 1: 1454:Jalabert, Rodolfo A. (2016). 1296:10.1103/PhysRevLett.93.106802 1106:10.1016/j.physrep.2006.08.003 738:) and of materials measuring 2836:History of subatomic physics 1405:"Chaos in Quantum Billiards" 1814:Quantum information science 1146:McGraw-Hill Companies, Inc. 836:Quantum confinement effects 2980: 1645:Classical electromagnetism 1493:10.4249/scholarpedia.30946 260:Spin gapless semiconductor 29: 2925: 2610: 200:Electronic band structure 2959:Condensed matter physics 2853:mathematical formulation 2448:Eta and eta prime mesons 1751:Condensed matter physics 1351:10.1038/nphoton.2008.128 951:Aharonov–Bohm nano rings 937:condensed phase dynamics 724:condensed matter physics 110:Bose–Einstein condensate 41:Condensed matter physics 2515:Double-charm tetraquark 1140:"Sci-Tech Dictionary". 1835:Nobel Prize in Physics 1697:Relativistic mechanics 1038:Spin–orbit interaction 855:, and electron energy 722:is a subdiscipline of 2912:Wave–particle duality 2902:Relativistic particle 2039:Electron antineutrino 1840:Philosophy of physics 1335:(7): 415–419 (2008). 1032:Semiclassical physics 255:Topological insulator 32:mesoscale meteorology 2142:Faddeev–Popov ghosts 1892:Particles in physics 1799:Mathematical physics 1428:Harmans, C. (2003). 966:Ballistic conduction 918:Interference effects 273:Electronic phenomena 120:Fermionic condensate 18:Quantum size effects 2917:Particle chauvinism 2860:Subatomic particles 1774:Atmospheric physics 1613:Classical mechanics 1541:branches of physics 1484:2016SchpJ..1130946J 1413:Universiteit Leiden 1288:2004PhRvL..93j6802S 1098:2006PhR...434..113M 1014:Quantum Hall effect 900:quantum confinement 841:Quantum confinement 752:classical mechanics 280:Quantum Hall effect 2954:Mesoscopic physics 1830:History of physics 1250:2010-02-01 at the 1002:Persistent current 886:of the electron's 862:Electrons in bulk 814:mesoscopic physics 730:for a quantity of 720:Mesoscopic physics 667:Physics portal 2964:Quantum mechanics 2941: 2940: 2897:Massless particle 2705: 2704: 2701: 2700: 2666: 2665: 2529: 2528: 2341: 2340: 2337: 2336: 2289:Magnetic monopole 2237: 2236: 2128: 2127: 2069: 2068: 2049:Muon antineutrino 2034:Electron neutrino 1858: 1857: 1845:Physics education 1794:Materials science 1761:Interdisciplinary 1719:Quantum mechanics 1176:Cahay, M (2001). 1044:Weak localization 756:quantum mechanics 744:microscopic scale 717: 716: 425:Granular material 193:Electronic phases 16:(Redirected from 2971: 2931: 2907:Virtual particle 2678:Mesonic molecule 2612: 2608: 2453:Bottom eta meson 2361: 2352: 2324:W′ and Z′ bosons 2314:Sterile neutrino 2299:Majorana fermion 2166: 2157: 2080: 2059:Tau antineutrino 1914: 1905: 1885: 1878: 1871: 1862: 1784:Chemical physics 1724:Particle physics 1650:Classical optics 1533: 1526: 1519: 1510: 1505: 1495: 1477: 1450: 1448: 1446: 1434: 1424: 1422: 1420: 1409: 1401:Beenakker, Carlo 1387: 1386: 1384: 1383: 1377: 1361: 1355: 1354: 1344: 1328:Nature Photonics 1322: 1316: 1315: 1281: 1279:cond-mat/0404387 1261: 1255: 1242: 1233: 1232: 1206: 1200: 1199: 1173: 1167: 1161: 1150: 1149: 1137: 1126: 1125: 1091: 1089:cond-mat/0609295 1082:(5–6): 113–176. 1065: 1049: 992: 977: 972:Coulomb blockade 956: 853:conduction bands 709: 702: 695: 682: 677: 676: 669: 665: 664: 285:Spin Hall effect 175:Phase transition 145:Luttinger liquid 82:States of matter 65:Phase transition 51: 37: 21: 2979: 2978: 2974: 2973: 2972: 2970: 2969: 2968: 2944: 2943: 2942: 2937: 2921: 2875:Nuclear physics 2824: 2788: 2724:Davydov soliton 2697: 2662: 2636: 2597: 2525: 2497: 2424: 2333: 2233: 2192: 2146: 2124: 2106: 2065: 1985: 1894: 1889: 1859: 1854: 1818: 1804:Medical physics 1755: 1714:Nuclear physics 1683: 1677:Non-equilibrium 1599: 1571: 1543: 1537: 1453: 1444: 1442: 1437:OpenCourseWare 1432: 1427: 1418: 1416: 1407: 1399: 1396: 1391: 1390: 1381: 1379: 1375: 1363: 1362: 1358: 1342:10.1.1.712.8451 1324: 1323: 1319: 1266:Phys. Rev. Lett 1263: 1262: 1258: 1252:Wayback Machine 1243: 1236: 1221: 1208: 1207: 1203: 1188: 1175: 1174: 1170: 1162: 1153: 1139: 1138: 1129: 1075:Physics Reports 1067: 1066: 1062: 1057: 1052: 1047: 990: 975: 954: 946: 933: 920: 845:potential wells 838: 826:nanofabrication 807:microelectronic 795:superconductors 713: 672: 659: 658: 651: 650: 649: 449: 441: 440: 439: 415:Amorphous solid 409: 399: 398: 397: 376: 358: 348: 347: 346: 335: 333:Antiferromagnet 326: 324:Superparamagnet 317: 304: 303:Magnetic phases 296: 295: 294: 274: 266: 265: 264: 194: 186: 185: 184: 170:Order parameter 164: 163:Phase phenomena 156: 155: 154: 84: 74: 35: 28: 23: 22: 15: 12: 11: 5: 2977: 2975: 2967: 2966: 2961: 2956: 2946: 2945: 2939: 2938: 2934:Physics portal 2926: 2923: 2922: 2920: 2919: 2914: 2909: 2904: 2899: 2894: 2889: 2888: 2887: 2877: 2872: 2867: 2862: 2857: 2856: 2855: 2848:Standard Model 2845: 2844: 2843: 2832: 2830: 2826: 2825: 2823: 2822: 2817: 2815:Quasiparticles 2812: 2807: 2802: 2796: 2794: 2790: 2789: 2787: 2786: 2781: 2776: 2771: 2766: 2761: 2756: 2751: 2746: 2741: 2736: 2731: 2726: 2721: 2715: 2713: 2711:Quasiparticles 2707: 2706: 2703: 2702: 2699: 2698: 2696: 2695: 2690: 2685: 2680: 2674: 2672: 2668: 2667: 2664: 2663: 2661: 2660: 2655: 2650: 2644: 2642: 2638: 2637: 2635: 2634: 2629: 2624: 2618: 2616: 2605: 2599: 2598: 2596: 2595: 2590: 2585: 2584: 2583: 2578: 2573: 2568: 2563: 2558: 2548: 2543: 2537: 2535: 2531: 2530: 2527: 2526: 2524: 2523: 2518: 2507: 2505: 2503:Exotic hadrons 2499: 2498: 2496: 2495: 2490: 2485: 2480: 2475: 2470: 2465: 2460: 2455: 2450: 2445: 2440: 2434: 2432: 2426: 2425: 2423: 2422: 2417: 2412: 2407: 2402: 2397: 2396: 2395: 2390: 2385: 2380: 2369: 2367: 2358: 2349: 2343: 2342: 2339: 2338: 2335: 2334: 2332: 2331: 2329:X and Y bosons 2326: 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2271: 2266: 2261: 2256: 2251: 2245: 2243: 2239: 2238: 2235: 2234: 2232: 2231: 2221: 2216: 2211: 2206: 2200: 2198: 2194: 2193: 2191: 2190: 2185: 2180: 2174: 2172: 2163: 2154: 2148: 2147: 2145: 2144: 2138: 2136: 2130: 2129: 2126: 2125: 2123: 2122: 2116: 2114: 2108: 2107: 2105: 2104: 2102:W and Z bosons 2099: 2094: 2088: 2086: 2077: 2071: 2070: 2067: 2066: 2064: 2063: 2062: 2061: 2056: 2051: 2046: 2041: 2036: 2026: 2021: 2016: 2011: 2006: 2001: 1995: 1993: 1987: 1986: 1984: 1983: 1978: 1973: 1968: 1963: 1958: 1956:Strange (quark 1953: 1948: 1943: 1938: 1933: 1928: 1922: 1920: 1911: 1902: 1896: 1895: 1890: 1888: 1887: 1880: 1873: 1865: 1856: 1855: 1853: 1852: 1847: 1842: 1837: 1832: 1826: 1824: 1820: 1819: 1817: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1776: 1771: 1765: 1763: 1757: 1756: 1754: 1753: 1748: 1747: 1746: 1741: 1736: 1726: 1721: 1716: 1711: 1710: 1709: 1704: 1693: 1691: 1685: 1684: 1682: 1681: 1680: 1679: 1674: 1667:Thermodynamics 1664: 1663: 1662: 1657: 1647: 1642: 1637: 1636: 1635: 1630: 1625: 1620: 1609: 1607: 1601: 1600: 1598: 1597: 1596: 1595: 1585: 1579: 1577: 1573: 1572: 1570: 1569: 1568: 1567: 1557: 1551: 1549: 1545: 1544: 1538: 1536: 1535: 1528: 1521: 1513: 1507: 1506: 1451: 1425: 1395: 1394:External links 1392: 1389: 1388: 1356: 1317: 1272:(10): 106802. 1256: 1234: 1220:978-9810220020 1219: 1201: 1187:978-1566773522 1186: 1168: 1151: 1127: 1059: 1058: 1056: 1053: 1051: 1050: 1041: 1035: 1029: 1023: 1017: 1011: 1005: 999: 996:Nanotechnology 993: 984: 978: 969: 963: 957: 947: 945: 942: 932: 929: 919: 916: 837: 834: 830:nanotechnology 787:semiconductors 771:experimentally 715: 714: 712: 711: 704: 697: 689: 686: 685: 684: 683: 670: 653: 652: 648: 647: 642: 637: 632: 627: 622: 617: 612: 607: 602: 597: 592: 587: 582: 577: 572: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 517: 512: 507: 502: 497: 492: 487: 482: 477: 472: 467: 462: 457: 451: 450: 447: 446: 443: 442: 438: 437: 432: 430:Liquid crystal 427: 422: 417: 411: 410: 405: 404: 401: 400: 396: 395: 390: 385: 380: 371: 366: 360: 359: 356:Quasiparticles 354: 353: 350: 349: 345: 344: 339: 330: 321: 315:Superdiamagnet 312: 306: 305: 302: 301: 298: 297: 293: 292: 287: 282: 276: 275: 272: 271: 268: 267: 263: 262: 257: 252: 247: 242: 240:Thermoelectric 237: 235:Superconductor 232: 227: 222: 217: 215:Mott insulator 212: 207: 202: 196: 195: 192: 191: 188: 187: 183: 182: 177: 172: 166: 165: 162: 161: 158: 157: 153: 152: 147: 142: 137: 132: 127: 122: 117: 112: 107: 102: 97: 92: 86: 85: 80: 79: 76: 75: 73: 72: 67: 62: 56: 53: 52: 44: 43: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2976: 2965: 2962: 2960: 2957: 2955: 2952: 2951: 2949: 2936: 2935: 2930: 2924: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2892:Exotic matter 2890: 2886: 2883: 2882: 2881: 2880:Eightfold way 2878: 2876: 2873: 2871: 2870:Antiparticles 2868: 2866: 2863: 2861: 2858: 2854: 2851: 2850: 2849: 2846: 2842: 2839: 2838: 2837: 2834: 2833: 2831: 2827: 2821: 2818: 2816: 2813: 2811: 2808: 2806: 2803: 2801: 2798: 2797: 2795: 2791: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2755: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2716: 2714: 2712: 2708: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2675: 2673: 2669: 2659: 2656: 2654: 2651: 2649: 2646: 2645: 2643: 2639: 2633: 2630: 2628: 2625: 2623: 2620: 2619: 2617: 2613: 2609: 2606: 2604: 2600: 2594: 2591: 2589: 2586: 2582: 2579: 2577: 2574: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2553: 2552: 2549: 2547: 2544: 2542: 2541:Atomic nuclei 2539: 2538: 2536: 2532: 2522: 2519: 2516: 2512: 2509: 2508: 2506: 2504: 2500: 2494: 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2473:Upsilon meson 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2435: 2433: 2431: 2427: 2421: 2418: 2416: 2413: 2411: 2408: 2406: 2405:Lambda baryon 2403: 2401: 2398: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2375: 2374: 2371: 2370: 2368: 2366: 2362: 2359: 2357: 2353: 2350: 2348: 2344: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2264:Dual graviton 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2246: 2244: 2240: 2229: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2201: 2199: 2195: 2189: 2186: 2184: 2181: 2179: 2176: 2175: 2173: 2171: 2167: 2164: 2162: 2161:Superpartners 2158: 2155: 2153: 2149: 2143: 2140: 2139: 2137: 2135: 2131: 2121: 2118: 2117: 2115: 2113: 2109: 2103: 2100: 2098: 2095: 2093: 2090: 2089: 2087: 2085: 2081: 2078: 2076: 2072: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2044:Muon neutrino 2042: 2040: 2037: 2035: 2032: 2031: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2000: 1997: 1996: 1994: 1992: 1988: 1982: 1979: 1977: 1976:Bottom (quark 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1923: 1921: 1919: 1915: 1912: 1910: 1906: 1903: 1901: 1897: 1893: 1886: 1881: 1879: 1874: 1872: 1867: 1866: 1863: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1828: 1827: 1825: 1821: 1815: 1812: 1810: 1809:Ocean physics 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1766: 1764: 1762: 1758: 1752: 1749: 1745: 1744:Modern optics 1742: 1740: 1737: 1735: 1732: 1731: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1708: 1705: 1703: 1700: 1699: 1698: 1695: 1694: 1692: 1690: 1686: 1678: 1675: 1673: 1670: 1669: 1668: 1665: 1661: 1658: 1656: 1653: 1652: 1651: 1648: 1646: 1643: 1641: 1638: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1615: 1614: 1611: 1610: 1608: 1606: 1602: 1594: 1593:Computational 1591: 1590: 1589: 1586: 1584: 1581: 1580: 1578: 1574: 1566: 1563: 1562: 1561: 1558: 1556: 1553: 1552: 1550: 1546: 1542: 1534: 1529: 1527: 1522: 1520: 1515: 1514: 1511: 1503: 1499: 1494: 1489: 1485: 1481: 1476: 1471: 1467: 1463: 1462: 1457: 1452: 1441: 1440: 1431: 1426: 1415: 1414: 1406: 1402: 1398: 1397: 1393: 1378:on 2020-11-27 1374: 1370: 1366: 1360: 1357: 1352: 1348: 1343: 1338: 1334: 1330: 1329: 1321: 1318: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1280: 1275: 1271: 1267: 1260: 1257: 1253: 1249: 1246: 1241: 1239: 1235: 1230: 1226: 1222: 1216: 1212: 1205: 1202: 1197: 1193: 1189: 1183: 1179: 1172: 1169: 1166: 1160: 1158: 1156: 1152: 1147: 1143: 1136: 1134: 1132: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1090: 1085: 1081: 1077: 1076: 1071: 1064: 1061: 1054: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1026:Random matrix 1024: 1021: 1018: 1015: 1012: 1009: 1008:Quantum chaos 1006: 1003: 1000: 997: 994: 988: 985: 982: 981:Nanomaterials 979: 973: 970: 967: 964: 961: 960:Branched flow 958: 952: 949: 948: 943: 941: 938: 930: 928: 926: 917: 915: 911: 909: 903: 901: 897: 893: 889: 888:wave function 885: 880: 878: 874: 873:valence bands 869: 865: 860: 858: 854: 850: 849:valence bands 846: 842: 835: 833: 831: 827: 823: 819: 815: 810: 808: 803: 798: 796: 792: 788: 784: 780: 776: 775:theoretically 772: 768: 764: 759: 757: 753: 749: 745: 741: 737: 733: 729: 725: 721: 710: 705: 703: 698: 696: 691: 690: 688: 687: 681: 671: 668: 663: 657: 656: 655: 654: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 455:Van der Waals 453: 452: 445: 444: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 412: 408: 403: 402: 394: 391: 389: 386: 384: 381: 379: 375: 372: 370: 367: 365: 362: 361: 357: 352: 351: 343: 340: 338: 334: 331: 329: 325: 322: 320: 316: 313: 311: 308: 307: 300: 299: 291: 288: 286: 283: 281: 278: 277: 270: 269: 261: 258: 256: 253: 251: 250:Ferroelectric 248: 246: 245:Piezoelectric 243: 241: 238: 236: 233: 231: 228: 226: 223: 221: 220:Semiconductor 218: 216: 213: 211: 208: 206: 203: 201: 198: 197: 190: 189: 181: 178: 176: 173: 171: 168: 167: 160: 159: 151: 148: 146: 143: 141: 140:Superfluidity 138: 136: 133: 131: 128: 126: 123: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 88: 87: 83: 78: 77: 71: 68: 66: 63: 61: 58: 57: 55: 54: 50: 46: 45: 42: 38: 33: 19: 2932: 2603:Hypothetical 2551:Exotic atoms 2420:Omega baryon 2410:Sigma baryon 2400:Delta baryon 2152:Hypothetical 2134:Ghost fields 2120:Higgs boson 2054:Tau neutrino 1946:Charm (quark 1769:Astrophysics 1583:Experimental 1468:(1): 30946. 1465: 1461:Scholarpedia 1459: 1443:. Retrieved 1436: 1417:. Retrieved 1411: 1380:. Retrieved 1373:the original 1368: 1359: 1332: 1326: 1320: 1269: 1265: 1259: 1245:Quantum dots 1210: 1204: 1177: 1171: 1141: 1079: 1073: 1063: 1020:Quantum wire 934: 921: 912: 908:quantum dots 904: 899: 881: 861: 839: 822:nanoparticle 813: 811: 799: 760: 719: 718: 585:von Klitzing 290:Kondo effect 150:Time crystal 130:Fermi liquid 2885:Quark model 2653:Theta meson 2556:Positronium 2468:Omega meson 2463:J/psi meson 2393:Antineutron 2304:Dark photon 2269:Graviphoton 2228:Stop squark 1936:Down (quark 1672:Statistical 1588:Theoretical 1565:Engineering 987:Nanophysics 802:transistors 763:conductance 748:macroscopic 740:micrometres 734:(such as a 407:Soft matter 328:Ferromagnet 2948:Categories 2627:Heptaquark 2588:Superatoms 2521:Pentaquark 2511:Tetraquark 2493:Quarkonium 2383:Antiproton 2284:Leptoquark 2219:Neutralino 1981:antiquark) 1971:antiquark) 1966:Top (quark 1961:antiquark) 1951:antiquark) 1941:antiquark) 1931:antiquark) 1900:Elementary 1789:Geophysics 1779:Biophysics 1623:Analytical 1576:Approaches 1475:1601.02237 1382:2010-01-25 1055:References 884:wavelength 864:dielectric 809:circuits. 783:insulators 550:Louis NĂ©el 540:Schrieffer 448:Scientists 342:Spin glass 337:Metamagnet 319:Paramagnet 135:Supersolid 2865:Particles 2810:Particles 2769:Polariton 2759:Plasmaron 2729:Dropleton 2622:Hexaquark 2593:Molecules 2581:Protonium 2458:Phi meson 2443:Rho meson 2415:Xi baryon 2347:Composite 2183:Gravitino 1926:Up (quark 1739:Molecular 1640:Acoustics 1633:Continuum 1628:Celestial 1618:Newtonian 1605:Classical 1548:Divisions 1337:CiteSeerX 1114:0370-1573 868:Electrons 857:band gaps 767:quantized 728:nanoscale 630:Abrikosov 545:Josephson 515:Van Vleck 505:Luttinger 378:Polariton 310:Diamagnet 230:Conductor 225:Semimetal 210:Insulator 125:Fermi gas 2841:timeline 2693:R-hadron 2648:Glueball 2632:Skyrmion 2566:Tauonium 2279:Inflaton 2274:Graviton 2254:Curvaton 2224:Sfermion 2214:Higgsino 2209:Chargino 2170:Gauginos 2029:Neutrino 2014:Antimuon 2004:Positron 1999:Electron 1909:Fermions 1502:26633032 1439:TU Delft 1403:(1995). 1312:11686506 1304:15447435 1248:Archived 1229:32264947 1196:49051457 1122:16012275 892:spectrum 877:band gap 736:molecule 680:Category 635:Ginzburg 610:Laughlin 570:Kadanoff 525:Shockley 510:Anderson 465:von Laue 115:Bose gas 2829:Related 2800:Baryons 2774:Polaron 2764:Plasmon 2739:Fracton 2734:Exciton 2688:Diquark 2683:Pomeron 2658:T meson 2615:Baryons 2576:Pionium 2561:Muonium 2488:D meson 2483:B meson 2388:Neutron 2373:Nucleon 2365:Baryons 2356:Hadrons 2319:Tachyon 2294:Majoron 2259:Dilaton 2188:Photino 2024:Antitau 1991:Leptons 1823:Related 1707:General 1702:Special 1560:Applied 1480:Bibcode 1445:14 June 1419:14 June 1284:Bibcode 1094:Bibcode 944:Related 896:bandgap 779:physics 640:Leggett 615:Störmer 600:Bednorz 560:Giaever 530:Bardeen 520:Hubbard 495:Peierls 485:Onsager 435:Polymer 420:Colloid 383:Polaron 374:Plasmon 369:Exciton 2805:Mesons 2754:Phonon 2749:Magnon 2671:Others 2641:Mesons 2534:Others 2430:Mesons 2378:Proton 2242:Others 2197:Others 2178:Gluino 2112:Scalar 2092:Photon 2075:Bosons 1918:Quarks 1734:Atomic 1689:Modern 1539:Major 1500:  1339:  1310:  1302:  1227:  1217:  1194:  1184:  1120:  1112:  793:, and 791:metals 678:  645:Parisi 605:MĂĽller 595:Rohrer 590:Binnig 580:Wilson 575:Fisher 535:Cooper 500:Landau 388:Magnon 364:Phonon 205:Plasma 105:Plasma 95:Liquid 60:Phases 2793:Lists 2784:Trion 2779:Roton 2719:Anyon 2546:Atoms 2309:Preon 2249:Axion 2204:Axino 2097:Gluon 2084:Gauge 1498:S2CID 1470:arXiv 1433:(PDF) 1408:(PDF) 1308:S2CID 1274:arXiv 1148:2003. 1118:S2CID 1084:arXiv 818:virus 732:atoms 555:Esaki 480:Bloch 475:Debye 470:Bragg 460:Onnes 393:Roton 90:Solid 2744:Hole 2571:Onia 2478:Kaon 2438:Pion 2009:Muon 1660:Wave 1555:Pure 1447:2018 1421:2018 1300:PMID 1225:OCLC 1215:ISBN 1192:OCLC 1182:ISBN 1110:ISSN 828:and 773:and 625:Tsui 620:Yang 565:Kohn 490:Mott 2019:Tau 1655:Ray 1488:doi 1347:doi 1292:doi 1102:doi 1080:434 781:of 180:QCP 100:Gas 70:QCP 2950:: 1496:. 1486:. 1478:. 1466:11 1464:. 1458:. 1435:. 1410:. 1367:. 1345:. 1331:. 1306:. 1298:. 1290:. 1282:. 1270:93 1268:. 1237:^ 1223:. 1190:. 1154:^ 1144:. 1130:^ 1116:. 1108:. 1100:. 1092:. 1078:. 1072:. 927:. 902:. 859:. 851:, 847:, 789:, 785:, 758:. 2517:) 2513:( 2230:) 2226:( 1884:e 1877:t 1870:v 1532:e 1525:t 1518:v 1504:. 1490:: 1482:: 1472:: 1449:. 1423:. 1385:. 1353:. 1349:: 1333:2 1314:. 1294:: 1286:: 1276:: 1231:. 1198:. 1124:. 1104:: 1096:: 1086:: 708:e 701:t 694:v 34:. 20:)

Index

Quantum size effects
mesoscale meteorology
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑