Knowledge

RuBisCO

Source đź“ť

1975: 2647:. Later identifications found functionally divergent examples dispersed all over bacteria and archaea, as well as transitionary enzymes performing both RLP-type enolase and RuBisCO functions. It is now believed that the current RuBisCO evolved from a dimeric RLP ancestor, acquiring its carboxylase function first before further oligomerizing and then recruiting the small subunit to form the familiar modern enzyme. The small subunit probably first evolved in anaerobic and thermophilic organisms, where it enabled RuBisCO to catalyze its reaction at higher temperatures. In addition to its effect on stabilizing catalysis, it enabled the evolution of higher specificities for CO 2216:. Even without these strong inhibitors, once every several hundred reactions, the normal reactions with carbon dioxide or oxygen are not completed; other inhibitory substrate analogs are still formed in the active site. Once again, RuBisCO activase can promote the release of these analogs from the catalytic sites and maintain the enzyme in a catalytically active form. However, at high temperatures, RuBisCO activase aggregates and can no longer activate RuBisCO. This contributes to the decreased carboxylating capacity observed during heat stress. 422: 2197:(RuBP) binds more strongly to the active sites of RuBisCO when excess carbamate is present, preventing processes from moving forward. In the light, RuBisCO activase promotes the release of the inhibitory (or — in some views — storage) RuBP from the catalytic sites of RuBisCO. Activase is also required in some plants (e.g., tobacco and many beans) because, in darkness, RuBisCO is inhibited (or protected from hydrolysis) by a competitive inhibitor synthesized by these plants, a 2059:. At ambient levels of carbon dioxide and oxygen, the ratio of the reactions is about 4 to 1, which results in a net carbon dioxide fixation of only 3.5. Thus, the inability of the enzyme to prevent the reaction with oxygen greatly reduces the photosynthetic capacity of many plants. Some plants, many algae, and photosynthetic bacteria have overcome this limitation by devising means to increase the concentration of carbon dioxide around the enzyme, including 1821: 392: 2103: 40: 2461:) and the rate at which product is formed. The authors conclude that RuBisCO may actually have evolved to reach a point of 'near-perfection' in many plants (with widely varying substrate availabilities and environmental conditions), reaching a compromise between specificity and reaction rate. It has been also suggested that the oxygenase reaction of RuBisCO prevents CO 2583: 2167:) move out of the thylakoids in response, increasing the concentration of magnesium in the stroma of the chloroplasts. RuBisCO has a high optimal pH (can be >9.0, depending on the magnesium ion concentration) and, thus, becomes "activated" by the introduction of carbon dioxide and magnesium to the active sites as described above. 5947: 2386:
and be a strategy to increase crop yields. Approaches under investigation include transferring RuBisCO genes from one organism into another organism, engineering Rubisco activase from thermophilic cyanobacteria into temperature sensitive plants, increasing the level of expression of RuBisCO subunits,
2002:
intermediate. Carboxylation and hydration have been proposed as either a single concerted step or as two sequential steps. Concerted mechanism is supported by the proximity of the water molecule to C3 of RuBP in multiple crystal structures. Within the spinach structure, other residues are well placed
1965:
of RuBP is the conversion of the keto tautomer of RuBP to an enediol(ate). Enolisation is initiated by deprotonation at C3. The enzyme base in this step has been debated, but the steric constraints observed in crystal structures have made Lys210 the most likely candidate. Specifically, the carbamate
2715:
RuBisCO. To assist with this buffering process, the newly-evolved enzyme was found to have further developed a series of stabilizing mutations. While RuBisCO has always been accumulating new mutations, most of these mutations that have survived have not had significant effects on protein stability.
2655:
by modulating the effect that substitutions within RuBisCO have on enzymatic function. Substitutions that do not have an effect without the small subunit suddenly become beneficial when it is bound. Furthermore, the small subunit enabled the accumulation of substitutions that are only tolerated in
2118:
RuBisCO is usually only active during the day, as ribulose 1,5-bisphosphate is not regenerated in the dark. This is due to the regulation of several other enzymes in the Calvin cycle. In addition, the activity of RuBisCO is coordinated with that of the other enzymes of the Calvin cycle in several
2480:
There currently are very few effective methods for expressing functional plant Rubisco in bacterial hosts for genetic manipulation studies. This is largely due to Rubisco's requirement of complex cellular machinery for its biogenesis and metabolic maintenance including the nuclear-encoded RbcS
598:
is then coordinated by the His residues of the active site (His300, His302, His335), and is partially neutralized by the coordination of three water molecules and their conversion to OH. This coordination results in an unstable complex, but produces a favorable environment for the binding of
2055:). In this process, two molecules of phosphoglycolate are converted to one molecule of carbon dioxide and one molecule of 3-phosphoglycerate, which can reenter the Calvin cycle. Some of the phosphoglycolate entering this pathway can be retained by plants to produce other molecules such as 2114:
Some enzymes can carry out thousands of chemical reactions each second. However, RuBisCO is slow, fixing only 3-10 carbon dioxide molecules each second per molecule of enzyme. The reaction catalyzed by RuBisCO is, thus, the primary rate-limiting factor of the Calvin cycle during the day.
2441:
PCC7942 (Se7942) were created by replacing the RuBisCO with the large and small subunit genes of the Se7942 enzyme, in combination with either the corresponding Se7942 assembly chaperone, RbcX, or an internal carboxysomal protein, CcmM35. Both mutants had increased
2289:). The use of oxygen as a substrate appears to be a puzzling process, since it seems to throw away captured energy. However, it may be a mechanism for preventing carbohydrate overload during periods of high light flux. This weakness in the enzyme is the cause of 2425:
into plants. This may improve the photosynthetic efficiency of crop plants, although possible negative impacts have yet to be studied. Advances in this area include the replacement of the tobacco enzyme with that of the purple photosynthetic bacterium
2260:
binds to the RuBisCO active site and to another site on the large chain where it can influence transitions between activated and less active conformations of the enzyme. In this way, activation of bacterial RuBisCO might be particularly sensitive to
44:
A 3d depiction of the activated RuBisCO from spinach in open form with active site accessible. The active site Lys175 residues are marked in pink, and a close-up of the residue is provided to the right for one of the monomers composing the
2472:, a biochemical model of RuBisCO reaction is used as the core module of climate change models. Thus, a correct model of this reaction is essential to the basic understanding of the relations and interactions of environmental models. 5548:
Cho JH, Hwang H, Cho MH, Kwon YK, Jeon JS, Bhoo SH, Hahn TR (July 2008). "The effect of DTT in protein preparations for proteomic analysis: Removal of a highly abundant plant enzyme, ribulose bisphosphate carboxylase/oxygenase".
2023:
When carbon dioxide is the substrate, the product of the carboxylase reaction is an unstable six-carbon phosphorylated intermediate known as 3-keto-2-carboxyarabinitol-1,5-bisphosphate, which decays rapidly into two molecules of
2232:, and, thus, activase activity depends on the ratio of these compounds in the chloroplast stroma. Furthermore, in most plants, the sensitivity of activase to the ratio of ATP/ADP is modified by the stromal reduction/oxidation ( 5699:
Schulz, L; Guo, Z; Zarzycki, J; Steinchen, W; Schuller, JM; Heimerl, T; Prinz, S; Mueller-Cajar, O; Erb, TJ; Hochberg, GKA (2022-10-14). "Evolution of increased complexity and specificity at the dawn of form I Rubiscos".
5426:
Xi J, Wang X, Li S, Zhou X, Yue L, Fan J, Hao D (November 2006). "Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome".
3093:
to ribulose-1,5-bisphosphate during the Calvin cycle. It is also thought to be the single most abundant protein on Earth, so it is noteworthy that one of its subunits is encoded by the chloroplast genome.
2240:. In this manner, the activity of activase and the activation state of RuBisCO can be modulated in response to light intensity and, thus, the rate of formation of the ribulose 1,5-bisphosphate substrate. 2212:. In the light, RuBisCO activase also promotes the release of CA1P from the catalytic sites. After the CA1P is released from RuBisCO, it is rapidly converted to a non-inhibitory form by a light-activated 534:
from each large chain contribute to the binding sites. A total of eight large chains (= four dimers) and eight small chains assemble into a larger complex of about 540,000 Da. In some Pseudomonadota and
5470:
Cellar NA, Kuppannan K, Langhorst ML, Ni W, Xu P, Young SA (January 2008). "Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase".
3684:
Lorimer GH, Miziorko HM (November 1980). "Carbamate formation on the epsilon-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by CO2 and Mg2+".
1998:-coordinated water molecule and add directly to the enediol. No Michaelis complex is formed in this process. Hydration of this ketone results in an additional hydroxy group on C3, forming a 299:. It emerged approximately four billion years ago in primordial metabolism prior to the presence of oxygen on Earth. It is probably the most abundant enzyme on Earth. In chemical terms, it 3272:
Yoon M, Putterill JJ, Ross GS, Laing WA (April 2001). "Determination of the relative expression levels of rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends".
6065:
Rubisco plods along at a mere three molecules per second... To bypass such slothfulness, plants synthesize a gross amount of Rubisco, sometimes up to 50% of their total protein content!
2090:, both caused by "misfires" halfway in the enolisation-carboxylation reaction. In higher plants, this process causes RuBisCO self-inhibition, which can be triggered by saturating CO 5660:"RuBisCO-like proteins as the enolase enzyme in the methionine salvage pathway: functional and evolutionary relationships between RuBisCO-like proteins and photosynthetic RuBisCO" 2115:
Nevertheless, under most conditions, and when light is not otherwise limiting photosynthesis, the speed of RuBisCO responds positively to increasing carbon dioxide concentration.
2011:
The gem-diol intermediate cleaves at the C2-C3 bond to form one molecule of glycerate-3-phosphate and a negatively charged carboxylate. Stereo specific protonation of C2 of this
2699:. Laboratory-based phylogenetic studies have shown that this evolution was constrained by the trade-off between stability and activity brought about by the series of necessary 2485:
as unfolded proteins. Furthermore, sufficient expression and interaction with Rubisco activase are major challenges as well. One successful method for expression of Rubisco in
1974: 2204:(CA1P). CA1P binds tightly to the active site of carbamylated RuBisCO and inhibits catalytic activity to an even greater extent. CA1P has also been shown to keep RuBisCO in a 6092: 3766:
Andersson I, Knight S, Schneider G, Lindqvist Y, Lundqvist T, Brändén CI, Lorimer GH (1989). "Crystal structure of the active site of ribulose-bisphosphate carboxylase".
1840:
at the C2 carbon of RuBP and subsequent bond cleavage between the C3 and C2 carbon, 2 molecules of glycerate-3-phosphate are formed. The conversion involves these steps:
5340:
Krishnan HB, Natarajan SS (December 2009). "A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins".
2640: 1990:
Carboxylation of the 2,3-enediolate results in the intermediate 3-keto-2-carboxyarabinitol-1,5-bisphosphate and Lys334 is positioned to facilitate the addition of the CO
2711:
RuBisCO was preceded by a period in which mutations granted the enzyme increased stability, establishing a buffer to sustain and maintain the mutations required for C
1572: 1156: 752: 206: 1910:
form of the minimally active RuBisCO, which with its two components provides a combination of oppositely charged domains required for the enzyme's interaction with O
3089:, one of the subunits of ribulose bisphosphate carboxylase (rubisco) is encoded by chloroplast DNA. Rubisco is the critical enzyme that catalyzes the addition of CO 2656:
its presence. Accumulation of such substitutions leads to a strict dependence on the small subunit, which is observed in extant Rubiscos that bind a small subunit.
2411:-like kinetic characteristics have been attained in rice via nuclear transformation. Robust and reliable engineering for yield of RuBisCO and other enzymes in the C 2052: 5383:
Kim ST, Cho KS, Jang YS, Kang KY (June 2001). "Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays".
225: 2301:
available to RuBisCO shifts too far towards oxygen. This phenomenon is primarily temperature-dependent: high temperatures can decrease the concentration of CO
4598:
Ogbaga CC, Stepien P, Athar HU, Ashraf M (June 2018). "Engineering Rubisco activase from thermophilic cyanobacteria into high-temperature sensitive plants".
2469: 2505:
Due to its high abundance in plants (generally 40% of the total protein content), RuBisCO often impedes analysis of important signaling proteins such as
2277:
at the active site of RuBisCO, carbon fixation by RuBisCO can be enhanced by increasing the carbon dioxide level in the compartment containing RuBisCO (
4028:
Jin SH, Jiang DA, Li XQ, Sun JW (August 2004). "Characteristics of photosynthesis in rice plants transformed with an antisense Rubisco activase gene".
4643:"Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria" 6014:"Crystal structure of carboxylase reaction-oriented ribulose 1, 5-bisphosphate carboxylase/oxygenase from a thermophilic red alga, Galdieria partita" 6187: 5613: 6211: 6085: 2015:
results in another molecule of glycerate-3-phosphate. This step is thought to be facilitated by Lys175 or potentially the carbamylated Lys210.
1926:, the C- and N- terminal segments of the enzyme must be closed off, allowing the active site to be isolated from the solvent and lowering the 5316: 5283: 4780: 4413: 3324: 3110:"Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants" 3082: 1508: 1104: 688: 6294: 3850:
Taylor TC, Andersson I (January 1997). "The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate".
5899:
Portis AR, Parry MA (October 2007). "Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective".
5971:"Mutagenesis at two distinct phosphate-binding sites unravels their differential roles in regulation of Rubisco activation and catalysis" 4863:
John Andrews T, Whitney SM (June 2003). "Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants".
2633:
Non-carbon-fixing proteins similar to RuBisCO, termed RuBisCO-like proteins (RLPs), are also found in the wild in organisms as common as
6192: 6142: 4439: 2281:). Several times during the evolution of plants, mechanisms have evolved for increasing the level of carbon dioxide in the stroma (see 6216: 6078: 4957:"Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized" 618:) increases in the light. The role of changing pH and magnesium ion levels in the regulation of RuBisCO enzyme activity is discussed 6363: 6177: 4806:"Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco" 3812:
Hartman FC, Harpel MR (1994). "Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase".
3053:
Back to the future of photosynthesis: Resurrecting billon-year-old enzymes reveals how photosynthesis adapted to the rise of oxygen.
4523:"Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: Prospects, progress and challenges" 5601: 3728:
Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH (April 1998). "Mechanism of Rubisco: The Carbamate as General Base".
2767:
xygenase), but it has also been argued that is should all be in lower case (rubisco), similar to other terms like scuba or laser.
2517:
on plant protein mixtures would result in multiple intense RuBisCO subunit peaks that interfere and hide those of other proteins.
622:. Once the carbamate is formed, His335 finalizes the activation by returning to its initial position through thermal fluctuation. 6207: 6132: 5396: 218: 3066: 2403:
of RuBisCO has been mostly unsuccessful, though mutated forms of the protein have been achieved in tobacco plants with subunit C
6182: 2087: 352: 4330:"Activation of cyanobacterial RuBP-carboxylase/oxygenase is facilitated by inorganic phosphate via two independent mechanisms" 3567:"Crystal structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate" 6239: 4122:"2'-carboxy-D-arabitinol 1-phosphate protects ribulose 1, 5-bisphosphate carboxylase/oxygenase against proteolytic breakdown" 2224:
The removal of the inhibitory RuBP, CA1P, and the other inhibitory substrate analogs by activase requires the consumption of
2154: 169: 145: 6519: 4271:"Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform" 1592: 1176: 772: 409:
for enzyme catalysis are shown in color and labeled. Distances of the hydrogen bonding interactions are shown in angstroms.
2391:, and altering RuBisCO genes to increase specificity for carbon dioxide or otherwise increase the rate of carbon fixation. 2446:
fixation rates when measured as carbon molecules per RuBisCO. However, the mutant plants grew more slowly than wild-type.
2379:
by modifying RuBisCO genes in plants to increase catalytic activity and/or decrease oxygenation rates. This could improve
3158:(Rubisco) is the most prevalent enzyme on this planet, accounting for 30–50% of total soluble protein in the chloroplast; 6261: 4369:
Spreitzer RJ, Salvucci ME (2002). "Rubisco: structure, regulatory interactions, and possibilities for a better enzyme".
2810: 2363:
to pass by gas exchange through these openings. Evaporation through the upper side of a leaf is prevented by a layer of
2348: 2201: 2068: 340: 5856:
Wildman SG (2002). "Along the trail from Fraction I protein to Rubisco (ribulose bisphosphate carboxylase-oxygenase)".
4702:"Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice" 3052: 1978:
A 3D image of the active site of spinach RuBisCO complexed with the inhibitor 2-carboxyarabinitol-1,5-bisphosphate, CO
1966:
oxygen on Lys210 that is not coordinated with the Mg ion deprotonates the C3 carbon of RuBP to form a 2,3-enediolate.
3635:"Plant-like substitutions in the large-subunit carboxy terminus of Chlamydomonas Rubisco increase CO2/O2 specificity" 3887:"Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies" 2540:, though these methods are more time-consuming and less efficient when compared to protamine sulfate precipitation. 1875:(distinct from the "activating" carbon dioxide). RuBisCO also catalyses a reaction of ribulose-1,5-bisphosphate and 355:, unlike RuBisCO, only temporarily fixes carbon. Reflecting its importance, RuBisCO is the most abundant protein in 351:, these pathways are relatively small contributors to global carbon fixation compared to that catalyzed by RuBisCO. 6172: 6127: 4073:"Incorporation of carbon from photosynthetic products into 2-carboxyarabinitol-1-phosphate and 2-carboxyarabinitol" 6504: 1962: 6620: 6607: 6594: 6581: 6568: 6555: 6542: 6304: 6276: 6226: 6162: 6115: 2513:, and regulatory proteins found in lower abundance (10-100 molecules per cell) within plants. For example, using 2400: 2376: 2194: 2158: 1918:. These conditions help explain the low turnover rate found in RuBisCO: In order to increase the strength of the 1868: 1528: 708: 579:
operates by driving deprotonation of the Lys210 residue, causing the Lys residue to rotate by 120 degrees to the
344: 308: 6514: 2644: 466:(formerly proteobacteria), the enzyme usually consists of two types of protein subunit, called the large chain ( 163: 6468: 6411: 6328: 6106: 5505:
Agrawal GK, Jwa NS, Rakwal R (February 2009). "Rice proteomics: ending phase I and the beginning of phase II".
5065:
Igamberdiev AU, Lea PJ (February 2006). "Land plants equilibrate O2 and CO2 concentrations in the atmosphere".
2144: 2083: 511: 266: 56: 2747:
The capitalization of the name has been long debated. It can be capitalized for each letter of the full name (
1580: 1164: 760: 2695:. This was achieved through enhancement of conformational flexibility of the “open-closed” transition in the 2418:
One avenue is to introduce RuBisCO variants with naturally high specificity values such as the ones from the
150: 6642: 6416: 6167: 6152: 6147: 2605: 2533: 2437: 6197: 6137: 2225: 328: 5299:
Gupta R, Kim ST (2015). "Depletion of RuBisCO Protein Using the Protamine Sulfate Precipitation Method".
2265:
levels, which might cause it to act in a similar way to how RuBisCO activase functions in higher plants.
230: 6437: 6356: 2850: 2428: 2415:
cycle was shown to be possible, and it was first achieved in 2019 through a synthetic biology approach.
2229: 2205: 2025: 1864: 1841: 397: 138: 6509: 1576: 1160: 756: 2355:
closed during the day, which conserves water but prevents the light-independent reactions (a.k.a. the
421: 6157: 5908: 5810: 5709: 5558: 5436: 5349: 5225: 5074: 4968: 4911: 4817: 4654: 4282: 4223: 3943: 3775: 3407: 3265: 3121: 2905: 2524:
solution. Other existing methods for depleting RuBisCO and studying lower abundance proteins include
2506: 2493: 2380: 1521: 1117: 701: 507: 435: 417:, and is followed by three water molecules (red spheres). All other residues are placed in grayscale. 73: 1533: 713: 594:
is first enabled to bind to the active site by the rotation of His335 to an alternate conformation.
6473: 2692: 2529: 2491:
involves the co-expression of multiple chloroplast chaperones, though this has only been shown for
2449:
A recent theory explores the trade-off between the relative specificity (i.e., ability to favour CO
1927: 1900: 376: 348: 166: 68: 5658:
Ashida H, Saito Y, Nakano T, Tandeau de Marsac N, Sekowska A, Danchin A, Yokota A (19 June 2007).
2028:. This product, also known as 3-phosphoglycerate, can be used to produce larger molecules such as 90: 6406: 6266: 5932: 5881: 5776: 5751:
Sage RF, Sage TL, Kocacinar F (2012). "Photorespiration and the evolution of C4 photosynthesis".
5733: 5640: 5582: 5530: 5408: 5098: 4786: 4623: 4394: 4053: 4010: 3967: 3791: 3377:
Figure 16-48 shows a structural model of the active site, including the involvement of magnesium.
3372: 2937: 2805: 2796: 2744:" in reference to Wildman's attempts to create an edible protein supplement from tobacco leaves. 2668: 2375:
Since RuBisCO is often rate-limiting for photosynthesis in plants, it may be possible to improve
2318: 2282: 2278: 2079: 2060: 2003:
to aid in the hydration step as they are within hydrogen bonding distance of the water molecule.
1849: 430: 368: 360: 4212:"Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2" 2293:, such that healthy leaves in bright light may have zero net carbon fixation when the ratio of O 2602:; explanation of what the small subunit probably does (improve CO2/O2 discrimination); maybe a 590:. The close proximity allows for the formation of a covalent bond, resulting in the carbamate. 6647: 6035: 6000: 5924: 5873: 5838: 5768: 5725: 5681: 5574: 5522: 5487: 5452: 5400: 5365: 5322: 5312: 5279: 5253: 5190: 5139: 5090: 5047: 4996: 4937: 4880: 4845: 4776: 4731: 4682: 4615: 4580: 4500: 4386: 4351: 4310: 4251: 4192: 4143: 4102: 4045: 4002: 3959: 3916: 3867: 3829: 3745: 3701: 3666: 3588: 3547: 3489: 3435: 3320: 3289: 3247: 3196: 3149: 3078: 3035: 2986: 2929: 2921: 2893: 2872: 2855: 2845: 2635: 2521: 2514: 1923: 1907: 1896: 1599: 1567: 1183: 1151: 779: 747: 324: 157: 6056: 5303:. Methods in Molecular Biology. Vol. 1295. New York, NY: Humana Press. pp. 225–33. 5208:
Aigner H, Wilson RH, Bracher A, Calisse L, Bhat JY, Hartl FU, Hayer-Hartl M (December 2017).
4469:"Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field" 4382: 2465:
depletion near its active sites and provides the maintenance of the chloroplast redox state.
6452: 6447: 6421: 6349: 6289: 6025: 5990: 5982: 5916: 5865: 5828: 5818: 5760: 5717: 5671: 5630: 5622: 5566: 5514: 5479: 5444: 5392: 5357: 5304: 5243: 5233: 5180: 5170: 5129: 5082: 5037: 5027: 4986: 4976: 4927: 4919: 4872: 4835: 4825: 4766: 4758: 4721: 4713: 4672: 4662: 4607: 4570: 4534: 4490: 4480: 4378: 4341: 4300: 4290: 4241: 4231: 4182: 4174: 4133: 4092: 4084: 4037: 3994: 3951: 3906: 3898: 3859: 3821: 3783: 3737: 3693: 3656: 3646: 3615: 3578: 3537: 3527: 3479: 3425: 3415: 3353: 3281: 3237: 3227: 3186: 3139: 3129: 3025: 3017: 2976: 2968: 2913: 2786: 2558: 2486: 2458: 2309:: since plant leaves are evaporatively cooled, limited water causes high leaf temperatures. 2290: 2274: 2213: 2198: 2040: 2039:
and 3-phosphoglycerate. Phosphoglycolate is recycled through a sequence of reactions called
2036: 1820: 471: 1559: 1143: 739: 126: 6499: 6483: 6396: 5764: 5248: 5134: 5117: 4163:"Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo" 2733: 277: 5602:"Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene 5472:
Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
102: 5912: 5814: 5713: 5562: 5440: 5353: 5229: 5078: 4972: 4915: 4821: 4658: 4286: 4227: 3947: 3825: 3779: 3411: 3308: 3125: 2909: 2612:
Please expand the section to include this information. Further details may exist on the
2082:
can lead to useless or inhibitory by-products. Important inhibitory by-products include
1946:. This reaction involves binding of the carboxylate termini of Asp203 and Glu204 to the 269: 61: 6537: 6478: 6119: 6012:
Sugawara H, Yamamoto H, Shibata N, Inoue T, Okada S, Miyake C, et al. (May 1999).
5995: 5970: 5833: 5798: 5185: 5158: 5042: 5015: 4991: 4956: 4932: 4899: 4726: 4701: 4677: 4642: 4495: 4468: 4097: 4072: 3911: 3886: 3661: 3634: 3542: 3511: 3430: 3396:"Structural mechanism of RuBisCO activation by carbamylation of the active site lysine" 3395: 3242: 3215: 3030: 3005: 2981: 2956: 2688: 2566: 2537: 2433: 2306: 2132: 1919: 1872: 584: 561: 536: 463: 285: 281: 273: 201: 4876: 4305: 4270: 4187: 4162: 3583: 3566: 3144: 3109: 2707:
RuBisCO. Moreover, in order to sustain the destabilizing mutations, the evolution to C
2557:, which codes for the large subunit of RuBisCO has been widely used as an appropriate 2180: 181: 6636: 6442: 6401: 6313: 5986: 5737: 4840: 4805: 4346: 4329: 4246: 4211: 4138: 4121: 3971: 3313: 3175:"Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated" 2562: 2525: 1845: 1513: 1109: 693: 611: 527: 452: 304: 176: 5936: 5780: 5600:
Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, et al. (1993).
5586: 5448: 5412: 5361: 5102: 2941: 1942:
Carbamylation of the ε-amino group of Lys210 is stabilized by coordination with the
1489: 1085: 657: 6391: 5885: 5534: 4790: 4627: 4398: 4057: 3795: 3619: 3357: 2781: 2696: 2613: 2520:
Recently, one efficient method for precipitating out RuBisCO involves the usage of
2356: 2148: 2107: 2044: 2035:
When molecular oxygen is the substrate, the products of the oxygenase reaction are
1999: 1833: 1555: 1139: 735: 495: 5483: 5159:"Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms" 4611: 2736:
at a seminar honouring the retirement of the early, prominent RuBisCO researcher,
391: 5308: 3532: 2720:
mutations on RuBisCO has been sustained by environmental pressures such as low CO
1501: 1097: 669: 583:
conformer, decreasing the distance between the nitrogen of Lys and the carbon of
6615: 6550: 6386: 6070: 4014: 2816: 2737: 2482: 2237: 2048: 1853: 615: 557: 519: 487: 185: 5803:
Proceedings of the National Academy of Sciences of the United States of America
4961:
Proceedings of the National Academy of Sciences of the United States of America
4810:
Proceedings of the National Academy of Sciences of the United States of America
4750: 4647:
Proceedings of the National Academy of Sciences of the United States of America
4275:
Proceedings of the National Academy of Sciences of the United States of America
4216:
Proceedings of the National Academy of Sciences of the United States of America
3400:
Proceedings of the National Academy of Sciences of the United States of America
3114:
Proceedings of the National Academy of Sciences of the United States of America
2724:
concentrations, requiring a sacrifice of stability for new adaptive functions.
2683:
in exchange for lower specificity as a result of the greater localization of CO
443:
is one of the 21 protein-coding genes involved in photosynthesis (green boxes).
6318: 6254: 6249: 6244: 5920: 5869: 5086: 4539: 4522: 4414:"We may now be able to engineer the most important lousy enzyme on the planet" 3998: 2917: 2864: 2305:
dissolved in the moisture of leaf tissues. This phenomenon is also related to
604: 531: 460: 456: 375:(5–9% of total leaf nitrogen). Given its important role in the biosphere, the 6030: 6013: 5578: 3512:"A short history of RubisCO: the rise and fall (?) of Nature's predominant CO 3371:
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE (2000).
3232: 2432:. In 2014, two transplastomic tobacco lines with functional RuBisCO from the 6589: 6563: 6323: 5823: 5721: 5238: 5209: 5175: 5032: 4981: 4667: 4641:
Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J (August 2011).
4485: 4161:
Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (November 2001).
3420: 3134: 2868: 2330: 2325:. The process first makes a 4-carbon intermediate compound, hence the name C 2310: 2249: 2190: 2140: 2012: 572: 560:
of the enzyme involves addition of an "activating" carbon dioxide molecule (
542: 336: 332: 300: 39: 6039: 6004: 5928: 5877: 5842: 5772: 5729: 5685: 5526: 5518: 5491: 5456: 5404: 5369: 5326: 5257: 5194: 5143: 5094: 5051: 5000: 4941: 4884: 4849: 4830: 4735: 4686: 4619: 4584: 4504: 4390: 4355: 4314: 4295: 4255: 4236: 4196: 4147: 4049: 4041: 4006: 3963: 3920: 3863: 3749: 3670: 3651: 3551: 3493: 3439: 3293: 3285: 3251: 3200: 3153: 3039: 2990: 2933: 2582: 2102: 5799:"Stability-activity tradeoffs constrain the adaptive evolution of RubisCO" 4898:
Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR (September 2014).
4717: 4106: 3871: 3833: 3705: 3592: 1517: 1113: 697: 6230: 5676: 5659: 5635: 5016:"Control of Rubisco function via homeostatic equilibration of CO2 supply" 4771: 4762: 4575: 4558: 3484: 3467: 3191: 3174: 3071: 2791: 2700: 2419: 2388: 2209: 2185: 2072: 1903: 1496: 1092: 664: 515: 292: 5946: 5397:
10.1002/1522-2683(200106)22:10<2103::aid-elps2103>3.0.co;2-w
4923: 4559:"Manipulation of Rubisco: the amount, activity, function and regulation" 3934:
Ellis RJ (January 2010). "Biochemistry: Tackling unintelligent design".
3697: 3021: 2972: 114: 6280: 5644: 5570: 4755:
2010 IEEE International Conference on BioInformatics and BioEngineering
3902: 3614:. RCSB PDB (Research Collaboratory for Structural Bioinformatics PDB). 3352:. RCSB PDB (Research Collaboratory for Structural Bioinformatics PDB). 2741: 2468:
Since photosynthesis is the single most effective natural regulator of
2256:) also participates in the co-ordinated regulation of photosynthesis: P 2056: 2029: 1931: 681: 676: 523: 503: 499: 320: 296: 133: 17: 4557:
Parry MA, Andralojc PJ, Mitchell RA, Madgwick PJ, Keys AJ (May 2003).
4178: 4088: 3985:
Portis AR (2003). "Rubisco activase - Rubisco's catalytic chaperone".
3741: 2925: 2859: 1797: 1791: 1785: 1779: 1773: 1767: 1761: 1755: 1749: 1743: 1737: 1731: 1725: 1719: 1713: 1707: 1701: 1695: 1689: 1683: 1677: 1671: 1665: 1659: 1653: 1647: 1641: 1635: 1629: 1623: 1617: 1611: 1605: 1447: 1441: 1435: 1429: 1423: 1417: 1411: 1405: 1399: 1393: 1387: 1381: 1375: 1369: 1363: 1357: 1351: 1345: 1339: 1333: 1327: 1321: 1315: 1309: 1303: 1297: 1291: 1285: 1279: 1273: 1267: 1261: 1255: 1249: 1243: 1237: 1231: 1225: 1219: 1213: 1207: 1201: 1195: 1189: 1043: 1037: 1031: 1025: 1019: 1013: 1007: 1001: 995: 989: 983: 977: 971: 965: 959: 953: 947: 941: 935: 929: 923: 917: 911: 905: 899: 893: 887: 881: 875: 869: 863: 857: 851: 845: 839: 833: 827: 821: 815: 809: 803: 797: 791: 785: 6602: 6372: 4900:"A faster Rubisco with potential to increase photosynthesis in crops" 3787: 2510: 1876: 1587: 1171: 767: 568: 262: 213: 109: 97: 85: 5626: 4440:"Fixing photosynthesis by engineering it to recycle a toxic mistake" 3955: 2094:
and RuBP concentrations and solved by Rubisco activase (see below).
4700:
Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (July 2011).
367:(20–30% of total leaf nitrogen) and 30% of soluble leaf protein in 6576: 6102: 5945: 4751:"Analysis and Optimization of C3 Photosynthetic Carbon Metabolism" 3607: 3345: 2352: 2233: 2101: 1973: 1819: 448: 420: 390: 3331:
Figure 20.3. Structure of Rubisco.] (Color-coded ribbon diagram)
5797:
Studer RA, Christin PA, Williams MA, Orengo CA (February 2014).
3309:"Chapter 20: The Calvin Cycle and the Pentose Phosphate Pathway" 2163:. To balance ion potential across the membrane, magnesium ions ( 1549: 1484: 1133: 1080: 729: 652: 356: 289: 121: 6345: 6074: 1895:
is attributed to the differing interactions of the substrate's
4749:
Stracquadanio G, Umeton R, Papini A, Lio P, Nicosia G (2010).
2957:"Ribulose Bisphosphate Carboxylase Synthesis in Barley Leaves" 2896:(May 2019). "Discovery of the canonical Calvin-Benson cycle". 2576: 2364: 545: 405:: Residues involved in both the active site and stabilizing CO 5969:
Marcus Y, Altman-Gueta H, Finkler A, Gurevitz M (June 2005).
5116:
Bracher A, Whitney SM, Hartl FU, Hayer-Hartl M (April 2017).
2594:
about explanation of the large-only oligomeric forms up to (L
2457:
incorporation, which leads to the energy-wasteful process of
539:, enzymes consisting of only large subunits have been found. 4071:
Andralojc PJ, Dawson GW, Parry MA, Keys AJ (December 1994).
3006:"Bicarbonate Inhibits Ribulose-1,5-Bisphosphate Carboxylase" 2775: 2189:), is required to allow the rapid formation of the critical 552:) are needed for enzymatic activity. Correct positioning of 2843:
The structure of RuBisCO from the photosynthetic bacterium
2135:
rises from 7.0 to 8.0 because of the proton (hydrogen ion,
2128: 614:
of magnesium ions in the fluid compartment (in plants, the
607: 6341: 1922:
necessary for sufficient interaction with the substrates’
498:
of plant cells, and the small chains are imported to the
4120:
Khan S, Andralojc PJ, Lea PJ, Parry MA (December 1999).
2193:
in the active site of RuBisCO. This is required because
2043:, which involves enzymes and cytochromes located in the 27:
Key enzyme of photosynthesis involved in carbon fixation
5957:
complex is given its own color for easy identification.
4467:
South PF, Cavanagh AP, Liu HW, Ort DR (January 2019).
2732:
The term "RuBisCO" was coined humorously in 1979, by
2359:) from taking place, since these reactions require CO 2143:
membrane. The movement of protons into thylakoids is
4269:
Zhang N, Kallis RP, Ewy RG, Portis AR (March 2002).
3055:, News from the Max Planck Society, October 13, 2022 274:
light-independent (or "dark") part of photosynthesis
6528: 6492: 6461: 6430: 6379: 6303: 6275: 6225: 6114: 2679:-type RuBisCO evolved to have faster turnover of CO 1598: 1586: 1566: 1548: 1543: 1527: 1507: 1495: 1483: 1475: 1470: 1465: 1182: 1170: 1150: 1132: 1127: 1103: 1091: 1079: 1071: 1066: 1061: 778: 766: 746: 728: 723: 707: 687: 675: 663: 651: 643: 638: 631: 490:DNA in plants. There are typically several related 379:of RuBisCO in crops is of continuing interest (see 224: 212: 200: 195: 175: 156: 144: 132: 120: 108: 96: 84: 79: 67: 55: 50: 32: 5269: 5267: 3312: 3070: 2236:) state through another small regulatory protein, 5118:"Biogenesis and Metabolic Maintenance of Rubisco" 4955:Tcherkez GG, Farquhar GD, Andrews TJ (May 2006). 4210:Crafts-Brandner SJ, Salvucci ME (November 2000). 3761: 3759: 3461: 3459: 3457: 3455: 3453: 3451: 3449: 3375:(4th ed.). New York: W. H. Freeman & Co. 2740:, and also alluded to the snack food trade name " 2641:2,3-diketo-5-methylthiopentyl-1-phosphate enolase 5953:. In this figure, each protein chain in the (LS) 5214:with five chloroplast chaperones including BSD2" 2639:. This bacterium has a rbcL-like protein with a 2228:. This reaction is inhibited by the presence of 359:, accounting for 50% of soluble leaf protein in 4757:. Philadelphia, PA, USA: IEEE. pp. 44–51. 4516: 4514: 3807: 3805: 243:Ribulose-1,5-bisphosphate carboxylase/oxygenase 33:Ribulose-1,5-bisphosphate carboxylase oxygenase 5792: 5790: 3108:Dhingra A, Portis AR, Daniell H (April 2004). 3103: 3101: 2888: 2886: 603:. Formation of the carbamate is favored by an 6357: 6086: 4552: 4550: 4462: 4460: 3319:(5th ed.). San Francisco: W.H. Freeman. 3168: 3166: 3077:(2nd ed.). Washington, D.C.: ASM Press. 2675:in a diversity of plant lineages, ancestral C 2321:initially, which has a higher affinity for CO 1934:cost, and results in the poor turnover rate. 413:ion (green sphere) is shown coordinated to CO 8: 3389: 3387: 3385: 3383: 2481:subunits, which are typically imported into 6063:. Swiss Institute of Bioinformatics (SIB). 3505: 3503: 2863:​. A comparison of the structures of 2127:Upon illumination of the chloroplasts, the 1887:). Discriminating between the substrates CO 1836:. When Rubisco facilitates the attack of CO 6364: 6350: 6342: 6093: 6079: 6071: 3845: 3843: 3723: 3721: 3719: 3717: 3715: 2667:With the mass convergent evolution of the 2175:In plants and some algae, another enzyme, 1954:displacing two of the three aquo ligands. 1540: 1124: 720: 192: 38: 6029: 5994: 5832: 5822: 5675: 5634: 5247: 5237: 5184: 5174: 5133: 5041: 5031: 4990: 4980: 4931: 4839: 4829: 4770: 4725: 4676: 4666: 4574: 4538: 4521:Furbank RT, Quick WP, Sirault XR (2015). 4494: 4484: 4345: 4304: 4294: 4245: 4235: 4186: 4137: 4096: 3910: 3660: 3650: 3582: 3541: 3531: 3483: 3429: 3419: 3241: 3231: 3190: 3143: 3133: 3029: 3004:Mächler, Felix; Nösberger, Josef (1988). 2980: 2387:expressing RuBisCO small chains from the 2329:plants, which is shuttled into a site of 2088:glycero-2,3-pentodiulose 1,5-bisphosphate 6188:Phosphoribosylaminoimidazole carboxylase 4804:Whitney SM, Andrews TJ (December 2001). 4383:10.1146/annurev.arplant.53.100301.135233 2470:carbon dioxide in the Earth's atmosphere 380: 339:bacteria and archaea fix carbon via the 5614:Annals of the Missouri Botanical Garden 4865:Archives of Biochemistry and Biophysics 3633:Satagopan S, Spreitzer RJ (July 2008). 3307:Stryer L, Berg JM, Tymoczko JL (2002). 2882: 2836: 2610:pointing to the MotM and Erb 2018 pics. 4030:Journal of Zhejiang University Science 3565:Lundqvist T, Schneider G (July 1991). 1906:. This gradient is established by the 1832:RuBisCO is one of many enzymes in the 1462: 1058: 628: 245:, commonly known by the abbreviations 29: 5765:10.1146/annurev-arplant-042811-105511 5135:10.1146/annurev-arplant-043015-111633 4328:Marcus Y, Gurevitz M (October 2000). 3468:"Catalysis and regulation in Rubisco" 3216:"Rubisco Assembly in the Chloroplast" 2955:Nivison, Helen; Stocking, C. (1983). 2528:techniques with calcium and phytate, 502:compartment of chloroplasts from the 7: 6295:3-hydroxy-3-methylglutaryl-CoA lyase 6212:Orotidine 5'-phosphate decarboxylase 3510:Erb TJ, Zarzycki J (February 2018). 315:Alternative carbon fixation pathways 6193:Pyrophosphomevalonate decarboxylase 6143:Aromatic L-amino acid decarboxylase 6018:The Journal of Biological Chemistry 3826:10.1146/annurev.bi.63.070194.001213 3571:The Journal of Biological Chemistry 3269:has four RuBisCO small chain genes. 1994:substrate as it replaces the third 1930:. This isolation has a significant 6217:Uroporphyrinogen III decarboxylase 5157:Sjuts I, Soll J, Bölter B (2017). 3220:Frontiers in Molecular Biosciences 3173:Feller U, Anders I, Mae T (2008). 2407:species, and a RuBisCO with more C 2202:2-carboxy-D-arabitinol 1-phosphate 25: 6178:Phosphoenolpyruvate carboxykinase 5276:Proteomic applications in biology 4600:Critical Reviews in Biotechnology 2337:then decarboxylated, releasing CO 1824:Two main reactions of RuBisCo: CO 323:because it catalyzes the primary 284:is converted by plants and other 6208:Uridine monophosphate synthetase 6133:Adenosylmethionine decarboxylase 5987:10.1128/JB.187.12.4222-4228.2005 4347:10.1046/j.1432-1327.2000.01674.x 4334:European Journal of Biochemistry 4139:10.1046/j.1432-1327.1999.00913.x 4126:European Journal of Biochemistry 3520:Current Opinion in Biotechnology 3214:Vitlin Gruber A, Feiz L (2018). 2581: 2341:to boost the concentration of CO 2273:Since carbon dioxide and oxygen 1986:. (PDB: 1IR1; Ligand View 501:A) 6183:Phosphoenolpyruvate carboxylase 6055:Gerritsen VB (September 2003). 5449:10.1016/j.phytochem.2006.08.005 5362:10.1016/j.phytochem.2009.08.020 1883:) instead of carbon dioxide (CO 353:Phosphoenolpyruvate carboxylase 6240:Fructose-bisphosphate aldolase 5753:Annual Review of Plant Biology 5664:Journal of Experimental Botany 5278:. New York: InTech Manhattan. 5249:11858/00-001M-0000-002E-8B4D-B 5122:Annual Review of Plant Biology 4563:Journal of Experimental Botany 4371:Annual Review of Plant Biology 3472:Journal of Experimental Botany 3179:Journal of Experimental Botany 3073:The Cell: A Molecular Approach 2501:Depletion in proteomic studies 2155:Photosynthetic reaction centre 2139:) gradient created across the 1950:ion. The substrate RuBP binds 571:in the active site (forming a 1: 5484:10.1016/j.jchromb.2007.11.024 4877:10.1016/S0003-9861(03)00100-0 4612:10.1080/07388551.2017.1378998 3814:Annual Review of Biochemistry 3584:10.1016/S0021-9258(18)98942-8 2476:Expression in bacterial hosts 1544:Available protein structures: 1128:Available protein structures: 724:Available protein structures: 6262:2-hydroxyphytanoyl-CoA lyase 5309:10.1007/978-1-4939-2550-6_17 4412:Timmer J (7 December 2017). 3852:Journal of Molecular Biology 3620:10.2210/rcsb_pdb/mom_2000_11 3606:Goodsell D (November 2000). 3533:10.1016/j.copbio.2017.07.017 3358:10.2210/rcsb_pdb/mom_2000_11 3344:Goodsell D (November 2000). 2875:"Molecule of the Month" #11. 2811:Crassulacean acid metabolism 2349:Crassulacean acid metabolism 2248:In cyanobacteria, inorganic 2069:crassulacean acid metabolism 619: 439:(positions ca. 55-56.4 kb). 341:reductive acetyl CoA pathway 6057:"The Plant Kingdom's sloth" 5210:"Plant RuBisCo assembly in 4438:Timmer J (3 January 2019). 3885:Pearce FG (November 2006). 3067:"10.The Chloroplast Genome" 510:. The enzymatically active 6664: 6173:Oxaloacetate decarboxylase 6128:Acetoacetate decarboxylase 5163:Frontiers in Plant Science 5020:Frontiers in Plant Science 2645:methionine salvage pathway 2532:with polyethylene glycol, 2098:Rate of enzymatic activity 1062:RuBisCO, N-terminal domain 626: 395:Active site of RuBisCO of 6520:Michaelis–Menten kinetics 6163:Malonyl-CoA decarboxylase 5921:10.1007/s11120-007-9225-6 5087:10.1007/s11120-005-8388-2 4540:10.1016/j.fcr.2015.04.009 2918:10.1007/s11120-018-0600-2 2401:site-directed mutagenesis 2377:photosynthetic efficiency 2195:ribulose 1,5-bisphosphate 2159:Light-dependent reactions 2084:xylulose 1,5-bisphosphate 1869:ribulose-1,5-bisphosphate 1852:, C-C bond cleavage, and 1828:fixation and oxygenation. 1539: 1123: 719: 616:stroma of the chloroplast 522:are located in the large 345:3-hydroxypropionate cycle 309:ribulose-1,5-bisphosphate 191: 37: 6412:Diffusion-limited enzyme 6329:Spore photoproduct lyase 6031:10.1074/jbc.274.22.15655 5551:Journal of Plant Biology 3466:Andersson I (May 2008). 3394:Stec B (November 2012). 3373:"Molecular Cell Biology" 3233:10.3389/fmolb.2018.00024 2871:RuBisCO is shown in the 2536:, and aggregation using 2351:(CAM) plants keep their 478:, about 13,000 Da). The 6168:Ornithine decarboxylase 6153:Histidine decarboxylase 6148:Glutamate decarboxylase 5975:Journal of Bacteriology 5901:Photosynthesis Research 5870:10.1023/A:1020467601966 5858:Photosynthesis Research 5824:10.1073/pnas.1310811111 5722:10.1126/science.abq1416 5239:10.1126/science.aap9221 5176:10.3389/fpls.2017.00168 5067:Photosynthesis Research 5033:10.3389/fpls.2015.00106 5014:Igamberdiev AU (2015). 4982:10.1073/pnas.0600605103 4668:10.1073/pnas.1109503108 4486:10.1126/science.aat9077 4077:The Biochemical Journal 3999:10.1023/A:1022458108678 3987:Photosynthesis Research 3891:The Biochemical Journal 3421:10.1073/pnas.1210754109 3274:Analytical Biochemistry 3135:10.1073/pnas.0400981101 2898:Photosynthesis Research 2849:has been determined by 2534:affinity chromatography 2438:Synechococcus elongatus 2208:that is protected from 474:) and the small chain ( 6198:Pyruvate decarboxylase 6138:Arginine decarboxylase 5958: 5519:10.1002/pmic.200800594 4831:10.1073/pnas.261417298 4296:10.1073/pnas.042529999 4237:10.1073/pnas.230451497 4042:10.1631/jzus.2004.0897 3864:10.1006/jmbi.1996.0738 3652:10.1186/1471-2229-8-85 3286:10.1006/abio.2001.5042 2643:function, part of the 2592:is missing information 2147:and is fundamental to 2111: 1987: 1829: 506:by crossing the outer 444: 418: 311:(also known as RuBP). 6505:Eadie–Hofstee diagram 6438:Allosteric regulation 5949: 5274:Heazlewood J (2012). 4718:10.1104/pp.111.177030 3612:Molecule of the Month 3350:Molecule of the Month 2851:X-ray crystallography 2846:Rhodospirillum rubrum 2553:The chloroplast gene 2507:transcription factors 2429:Rhodospirillum rubrum 2395:Mutagenesis in plants 2105: 2026:glycerate-3-phosphate 1977: 1823: 424: 398:Galdieria sulphuraria 394: 319:RuBisCO is important 280:by which atmospheric 6515:Lineweaver–Burk plot 6158:Lysine decarboxylase 5348:(17–18): 1958–1964. 4763:10.1109/BIBE.2010.17 4527:Field Crops Research 3266:Arabidopsis thaliana 2549:Phylogenetic studies 2544:Evolution of RuBisCO 2494:Arabidopsis thaliana 2110:and carbon fixation. 1466:RuBisCO, small chain 632:RuBisCO large chain, 508:chloroplast membrane 486:) is encoded by the 436:Arabidopsis thaliana 6024:(22): 15655–15661. 5913:2007PhoRe..94..121P 5815:2014PNAS..111.2223S 5714:2022Sci...378..155S 5563:2008JPBio..51..297C 5441:2006PChem..67.2341X 5354:2009PChem..70.1958K 5301:Proteomic Profiling 5230:2017Sci...358.1272A 5224:(6368): 1272–1278. 5079:2006PhoRe..87..177I 4973:2006PNAS..103.7246T 4924:10.1038/nature13776 4916:2014Natur.513..547L 4822:2001PNAS...9814738W 4816:(25): 14738–14743. 4659:2011PNAS..10814688W 4653:(35): 14688–14693. 4287:2002PNAS...99.3330Z 4228:2000PNAS...9713430C 4222:(24): 13430–13435. 3948:2010Natur.463..164E 3780:1989Natur.337..229A 3698:10.1021/bi00564a027 3577:(19): 12604–12611. 3412:2012PNAS..10918785S 3406:(46): 18785–18790. 3126:2004PNAS..101.6315D 3022:10.1104/pp.88.2.462 2973:10.1104/pp.73.4.906 2910:2019PhoRe.140..235S 2813:/CAM photosynthesis 2728:History of the term 2716:The destabilizing C 2693:bundle sheath cells 2530:gel electrophoresis 2381:sequestration of CO 2371:Genetic engineering 2171:By RuBisCO activase 2051:(this is a case of 1928:dielectric constant 1901:electrostatic field 377:genetic engineering 349:reverse Krebs cycle 6474:Enzyme superfamily 6407:Enzyme promiscuity 6267:Threonine aldolase 5959: 5677:10.1093/jxb/ern104 5571:10.1007/BF03036130 4576:10.1093/jxb/erg141 4569:(386): 1321–1333. 4479:(6422): eaat9077. 3903:10.1042/BJ20060430 3485:10.1093/jxb/ern091 3192:10.1093/jxb/erm242 3065:Cooper GM (2000). 2806:C4 carbon fixation 2797:C3 carbon fixation 2279:chloroplast stroma 2153:(Further reading: 2112: 1988: 1924:quadrupole moments 1897:quadrupole moments 1830: 1816:Enzymatic activity 518:1,5-bisphosphate) 445: 431:chloroplast genome 419: 272:) involved in the 6630: 6629: 6339: 6338: 6061:Protein Spotlight 5981:(12): 4222–4228. 5708:(6616): 155–160. 5435:(21): 2341–2348. 5391:(10): 2103–2109. 5318:978-1-4939-2549-0 5285:978-953-307-613-3 4967:(19): 7246–7251. 4910:(7519): 547–550. 4782:978-1-4244-7494-3 4340:(19): 5995–6003. 4179:10.1104/pp.010357 4089:10.1042/bj3040781 3942:(7278): 164–165. 3774:(6204): 229–234. 3742:10.1021/cr970010r 3692:(23): 5321–5328. 3639:BMC Plant Biology 3326:978-0-7167-3051-4 3120:(16): 6315–6320. 3084:978-0-87893-106-4 2873:Protein Data Bank 2827: 2826: 2673:-fixation pathway 2636:Bacillus subtilis 2631: 2630: 2522:protamine sulfate 2515:mass spectrometry 2423:Galdieria partita 2269:By carbon dioxide 2071:, and the use of 2053:metabolite repair 2007:C-C bond cleavage 1813: 1812: 1809: 1808: 1805: 1804: 1593:structure summary 1459: 1458: 1455: 1454: 1177:structure summary 1055: 1054: 1051: 1050: 773:structure summary 610:. The pH and the 325:chemical reaction 240: 239: 236: 235: 139:metabolic pathway 16:(Redirected from 6655: 6510:Hanes–Woolf plot 6453:Enzyme activator 6448:Enzyme inhibitor 6422:Enzyme catalysis 6366: 6359: 6352: 6343: 6290:Isocitrate lyase 6095: 6088: 6081: 6072: 6067: 6043: 6033: 6008: 5998: 5941: 5940: 5896: 5890: 5889: 5864:(1–3): 243–250. 5853: 5847: 5846: 5836: 5826: 5809:(6): 2223–2228. 5794: 5785: 5784: 5748: 5742: 5741: 5696: 5690: 5689: 5679: 5670:(7): 1543–1554. 5655: 5649: 5648: 5638: 5610: 5597: 5591: 5590: 5545: 5539: 5538: 5502: 5496: 5495: 5467: 5461: 5460: 5423: 5417: 5416: 5380: 5374: 5373: 5337: 5331: 5330: 5296: 5290: 5289: 5271: 5262: 5261: 5251: 5241: 5205: 5199: 5198: 5188: 5178: 5154: 5148: 5147: 5137: 5113: 5107: 5106: 5062: 5056: 5055: 5045: 5035: 5011: 5005: 5004: 4994: 4984: 4952: 4946: 4945: 4935: 4895: 4889: 4888: 4860: 4854: 4853: 4843: 4833: 4801: 4795: 4794: 4774: 4746: 4740: 4739: 4729: 4712:(3): 1603–1611. 4706:Plant Physiology 4697: 4691: 4690: 4680: 4670: 4638: 4632: 4631: 4595: 4589: 4588: 4578: 4554: 4545: 4544: 4542: 4518: 4509: 4508: 4498: 4488: 4464: 4455: 4454: 4452: 4450: 4435: 4429: 4428: 4426: 4424: 4409: 4403: 4402: 4366: 4360: 4359: 4349: 4325: 4319: 4318: 4308: 4298: 4281:(5): 3330–3334. 4266: 4260: 4259: 4249: 4239: 4207: 4201: 4200: 4190: 4173:(3): 1053–1064. 4167:Plant Physiology 4158: 4152: 4151: 4141: 4117: 4111: 4110: 4100: 4068: 4062: 4061: 4025: 4019: 4018: 3982: 3976: 3975: 3931: 3925: 3924: 3914: 3882: 3876: 3875: 3847: 3838: 3837: 3809: 3800: 3799: 3788:10.1038/337229a0 3763: 3754: 3753: 3730:Chemical Reviews 3725: 3710: 3709: 3681: 3675: 3674: 3664: 3654: 3630: 3624: 3623: 3603: 3597: 3596: 3586: 3562: 3556: 3555: 3545: 3535: 3507: 3498: 3497: 3487: 3478:(7): 1555–1568. 3463: 3444: 3443: 3433: 3423: 3391: 3378: 3376: 3368: 3362: 3361: 3341: 3335: 3333: 3318: 3304: 3298: 3297: 3262: 3256: 3255: 3245: 3235: 3211: 3205: 3204: 3194: 3185:(7): 1615–1624. 3170: 3161: 3160: 3147: 3137: 3105: 3096: 3095: 3076: 3062: 3056: 3050: 3044: 3043: 3033: 3010:Plant Physiology 3001: 2995: 2994: 2984: 2961:Plant Physiology 2952: 2946: 2945: 2890: 2876: 2862: 2841: 2787:Photorespiration 2776: 2626: 2623: 2617: 2609: 2585: 2577: 2561:for analysis of 2459:photorespiration 2291:photorespiration 2214:CA1P-phosphatase 2199:substrate analog 2188: 2177:RuBisCO activase 2166: 2151:in chloroplasts 2138: 2106:Overview of the 2041:photorespiration 2037:phosphoglycolate 1997: 1985: 1953: 1949: 1945: 1877:molecular oxygen 1867:for RuBisCO are 1800: 1794: 1788: 1782: 1776: 1770: 1764: 1758: 1752: 1746: 1740: 1734: 1728: 1722: 1716: 1710: 1704: 1698: 1692: 1686: 1680: 1674: 1668: 1662: 1656: 1650: 1644: 1638: 1632: 1626: 1620: 1614: 1608: 1541: 1463: 1450: 1444: 1438: 1432: 1426: 1420: 1414: 1408: 1402: 1396: 1390: 1384: 1378: 1372: 1366: 1360: 1354: 1348: 1342: 1336: 1330: 1324: 1318: 1312: 1306: 1300: 1294: 1288: 1282: 1276: 1270: 1264: 1258: 1252: 1246: 1240: 1234: 1228: 1222: 1216: 1210: 1204: 1198: 1192: 1125: 1059: 1046: 1040: 1034: 1028: 1022: 1016: 1010: 1004: 998: 992: 986: 980: 974: 968: 962: 956: 950: 944: 938: 932: 926: 920: 914: 908: 902: 896: 890: 884: 878: 872: 866: 860: 854: 848: 842: 836: 830: 824: 818: 812: 806: 800: 794: 788: 721: 634:catalytic domain 629: 625: 624: 602: 597: 593: 578: 555: 551: 461:chemoautotrophic 425:Location of the 412: 329:inorganic carbon 276:, including the 193: 42: 30: 21: 6663: 6662: 6658: 6657: 6656: 6654: 6653: 6652: 6633: 6632: 6631: 6626: 6538:Oxidoreductases 6524: 6500:Enzyme kinetics 6488: 6484:List of enzymes 6457: 6426: 6397:Catalytic triad 6375: 6370: 6340: 6335: 6299: 6271: 6221: 6110: 6099: 6054: 6051: 6046: 6011: 5968: 5964: 5962:Further reading 5956: 5944: 5898: 5897: 5893: 5855: 5854: 5850: 5796: 5795: 5788: 5750: 5749: 5745: 5698: 5697: 5693: 5657: 5656: 5652: 5627:10.2307/2399846 5608: 5599: 5598: 5594: 5547: 5546: 5542: 5504: 5503: 5499: 5469: 5468: 5464: 5425: 5424: 5420: 5385:Electrophoresis 5382: 5381: 5377: 5339: 5338: 5334: 5319: 5298: 5297: 5293: 5286: 5273: 5272: 5265: 5207: 5206: 5202: 5156: 5155: 5151: 5115: 5114: 5110: 5064: 5063: 5059: 5013: 5012: 5008: 4954: 4953: 4949: 4897: 4896: 4892: 4862: 4861: 4857: 4803: 4802: 4798: 4783: 4748: 4747: 4743: 4699: 4698: 4694: 4640: 4639: 4635: 4597: 4596: 4592: 4556: 4555: 4548: 4520: 4519: 4512: 4466: 4465: 4458: 4448: 4446: 4437: 4436: 4432: 4422: 4420: 4411: 4410: 4406: 4368: 4367: 4363: 4327: 4326: 4322: 4268: 4267: 4263: 4209: 4208: 4204: 4160: 4159: 4155: 4119: 4118: 4114: 4070: 4069: 4065: 4027: 4026: 4022: 3984: 3983: 3979: 3956:10.1038/463164a 3933: 3932: 3928: 3884: 3883: 3879: 3849: 3848: 3841: 3811: 3810: 3803: 3765: 3764: 3757: 3727: 3726: 3713: 3683: 3682: 3678: 3632: 3631: 3627: 3605: 3604: 3600: 3564: 3563: 3559: 3515: 3509: 3508: 3501: 3465: 3464: 3447: 3393: 3392: 3381: 3370: 3369: 3365: 3343: 3342: 3338: 3334: 3327: 3306: 3305: 3301: 3271: 3270: 3263: 3259: 3213: 3212: 3208: 3172: 3171: 3164: 3107: 3106: 3099: 3092: 3085: 3064: 3063: 3059: 3051: 3047: 3003: 3002: 2998: 2954: 2953: 2949: 2892: 2891: 2884: 2880: 2879: 2854: 2842: 2838: 2833: 2828: 2773: 2734:David Eisenberg 2730: 2723: 2719: 2714: 2710: 2706: 2689:mesophyll cells 2686: 2682: 2678: 2672: 2665: 2663: 2654: 2650: 2627: 2621: 2618: 2611: 2603: 2601: 2597: 2586: 2575: 2551: 2546: 2503: 2478: 2464: 2456: 2453:fixation over O 2452: 2445: 2414: 2410: 2406: 2397: 2389:chloroplast DNA 2384: 2373: 2362: 2344: 2340: 2334: 2328: 2324: 2319:PEP carboxylase 2317:use the enzyme 2314: 2304: 2300: 2296: 2287:carbon fixation 2286: 2271: 2264: 2259: 2255: 2246: 2222: 2184: 2173: 2164: 2145:driven by light 2136: 2125: 2100: 2093: 2080:side activities 2065:carbon fixation 2064: 2021: 2009: 1995: 1993: 1983: 1981: 1972: 1960: 1951: 1947: 1943: 1940: 1917: 1913: 1894: 1890: 1886: 1882: 1862: 1839: 1827: 1818: 1796: 1790: 1784: 1778: 1772: 1766: 1760: 1754: 1748: 1742: 1736: 1730: 1724: 1718: 1712: 1706: 1700: 1694: 1688: 1682: 1676: 1670: 1664: 1658: 1652: 1646: 1640: 1634: 1628: 1622: 1616: 1610: 1604: 1446: 1440: 1434: 1428: 1422: 1416: 1410: 1404: 1398: 1392: 1386: 1380: 1374: 1368: 1362: 1356: 1350: 1344: 1338: 1332: 1326: 1320: 1314: 1308: 1302: 1296: 1290: 1284: 1278: 1272: 1266: 1260: 1254: 1248: 1242: 1236: 1230: 1224: 1218: 1212: 1206: 1200: 1194: 1188: 1075:RuBisCO_large_N 1042: 1036: 1030: 1024: 1018: 1012: 1006: 1000: 994: 988: 982: 976: 970: 964: 958: 952: 946: 940: 934: 928: 922: 916: 910: 904: 898: 892: 886: 880: 874: 868: 862: 856: 850: 844: 838: 832: 826: 820: 814: 808: 802: 796: 790: 784: 633: 600: 595: 591: 588: 576: 565: 553: 549: 537:dinoflagellates 470:, about 55,000 416: 410: 408: 404: 389: 372: 364: 317: 278:carbon fixation 46: 28: 23: 22: 15: 12: 11: 5: 6661: 6659: 6651: 6650: 6645: 6643:Photosynthesis 6635: 6634: 6628: 6627: 6625: 6624: 6611: 6598: 6585: 6572: 6559: 6546: 6532: 6530: 6526: 6525: 6523: 6522: 6517: 6512: 6507: 6502: 6496: 6494: 6490: 6489: 6487: 6486: 6481: 6476: 6471: 6465: 6463: 6462:Classification 6459: 6458: 6456: 6455: 6450: 6445: 6440: 6434: 6432: 6428: 6427: 6425: 6424: 6419: 6414: 6409: 6404: 6399: 6394: 6389: 6383: 6381: 6377: 6376: 6371: 6369: 6368: 6361: 6354: 6346: 6337: 6336: 6334: 6333: 6332: 6331: 6326: 6316: 6310: 6308: 6301: 6300: 6298: 6297: 6292: 6286: 6284: 6273: 6272: 6270: 6269: 6264: 6259: 6258: 6257: 6252: 6247: 6236: 6234: 6223: 6222: 6220: 6219: 6214: 6205: 6200: 6195: 6190: 6185: 6180: 6175: 6170: 6165: 6160: 6155: 6150: 6145: 6140: 6135: 6130: 6124: 6122: 6120:Carboxy-lyases 6112: 6111: 6101:Carbon–carbon 6100: 6098: 6097: 6090: 6083: 6075: 6069: 6068: 6050: 6049:External links 6047: 6045: 6044: 6009: 5965: 5963: 5960: 5954: 5943: 5942: 5907:(1): 121–143. 5891: 5848: 5786: 5743: 5691: 5650: 5621:(3): 528–580. 5592: 5557:(4): 297–301. 5540: 5513:(4): 935–963. 5497: 5462: 5429:Phytochemistry 5418: 5375: 5342:Phytochemistry 5332: 5317: 5291: 5284: 5263: 5200: 5149: 5108: 5073:(2): 177–194. 5057: 5006: 4947: 4890: 4871:(2): 159–169. 4855: 4796: 4781: 4741: 4692: 4633: 4606:(4): 559–572. 4590: 4546: 4510: 4456: 4430: 4404: 4361: 4320: 4261: 4202: 4153: 4132:(3): 840–847. 4112: 4083:(3): 781–786. 4063: 4036:(8): 897–899. 4020: 3977: 3926: 3897:(3): 525–534. 3877: 3858:(4): 432–444. 3839: 3801: 3755: 3736:(2): 549–562. 3711: 3676: 3625: 3598: 3557: 3516:fixing enzyme" 3513: 3499: 3445: 3379: 3363: 3336: 3325: 3299: 3280:(2): 237–244. 3257: 3206: 3162: 3097: 3090: 3083: 3057: 3045: 3016:(2): 462–465. 2996: 2967:(4): 906–911. 2947: 2904:(2): 235–252. 2881: 2878: 2877: 2835: 2834: 2832: 2829: 2825: 2824: 2820: 2819: 2814: 2808: 2801: 2800: 2799: 2794: 2789: 2784: 2774: 2772: 2769: 2729: 2726: 2721: 2717: 2712: 2708: 2704: 2684: 2680: 2676: 2670: 2664: 2661: 2658: 2652: 2648: 2629: 2628: 2606:external image 2599: 2595: 2589: 2587: 2580: 2574: 2571: 2567:plant taxonomy 2550: 2547: 2545: 2542: 2502: 2499: 2477: 2474: 2462: 2454: 2450: 2443: 2434:cyanobacterium 2412: 2408: 2404: 2396: 2393: 2382: 2372: 2369: 2360: 2342: 2338: 2335:photosynthesis 2332: 2326: 2322: 2312: 2302: 2298: 2294: 2284: 2270: 2267: 2262: 2257: 2253: 2245: 2242: 2221: 2218: 2172: 2169: 2124: 2121: 2099: 2096: 2091: 2062: 2020: 2017: 2008: 2005: 1991: 1979: 1971: 1968: 1959: 1956: 1939: 1936: 1920:electric field 1915: 1911: 1892: 1888: 1884: 1880: 1873:carbon dioxide 1861: 1858: 1837: 1825: 1817: 1814: 1811: 1810: 1807: 1806: 1803: 1802: 1602: 1596: 1595: 1590: 1584: 1583: 1570: 1564: 1563: 1553: 1546: 1545: 1537: 1536: 1531: 1525: 1524: 1511: 1505: 1504: 1499: 1493: 1492: 1487: 1481: 1480: 1477: 1473: 1472: 1468: 1467: 1460: 1457: 1456: 1453: 1452: 1186: 1180: 1179: 1174: 1168: 1167: 1154: 1148: 1147: 1137: 1130: 1129: 1121: 1120: 1107: 1101: 1100: 1095: 1089: 1088: 1083: 1077: 1076: 1073: 1069: 1068: 1064: 1063: 1056: 1053: 1052: 1049: 1048: 782: 776: 775: 770: 764: 763: 750: 744: 743: 733: 726: 725: 717: 716: 711: 705: 704: 691: 685: 684: 679: 673: 672: 667: 661: 660: 655: 649: 648: 645: 641: 640: 636: 635: 586: 563: 464:Pseudomonadota 414: 406: 402: 388: 385: 370: 362: 316: 313: 286:photosynthetic 282:carbon dioxide 238: 237: 234: 233: 228: 222: 221: 216: 210: 209: 204: 198: 197: 189: 188: 179: 173: 172: 161: 154: 153: 148: 142: 141: 136: 130: 129: 124: 118: 117: 112: 106: 105: 100: 94: 93: 88: 82: 81: 77: 76: 71: 65: 64: 59: 53: 52: 48: 47: 43: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6660: 6649: 6646: 6644: 6641: 6640: 6638: 6622: 6618: 6617: 6612: 6609: 6605: 6604: 6599: 6596: 6592: 6591: 6586: 6583: 6579: 6578: 6573: 6570: 6566: 6565: 6560: 6557: 6553: 6552: 6547: 6544: 6540: 6539: 6534: 6533: 6531: 6527: 6521: 6518: 6516: 6513: 6511: 6508: 6506: 6503: 6501: 6498: 6497: 6495: 6491: 6485: 6482: 6480: 6479:Enzyme family 6477: 6475: 6472: 6470: 6467: 6466: 6464: 6460: 6454: 6451: 6449: 6446: 6444: 6443:Cooperativity 6441: 6439: 6436: 6435: 6433: 6429: 6423: 6420: 6418: 6415: 6413: 6410: 6408: 6405: 6403: 6402:Oxyanion hole 6400: 6398: 6395: 6393: 6390: 6388: 6385: 6384: 6382: 6378: 6374: 6367: 6362: 6360: 6355: 6353: 6348: 6347: 6344: 6330: 6327: 6325: 6322: 6321: 6320: 6317: 6315: 6314:Tryptophanase 6312: 6311: 6309: 6306: 6302: 6296: 6293: 6291: 6288: 6287: 6285: 6282: 6278: 6274: 6268: 6265: 6263: 6260: 6256: 6253: 6251: 6248: 6246: 6243: 6242: 6241: 6238: 6237: 6235: 6232: 6228: 6224: 6218: 6215: 6213: 6209: 6206: 6204: 6201: 6199: 6196: 6194: 6191: 6189: 6186: 6184: 6181: 6179: 6176: 6174: 6171: 6169: 6166: 6164: 6161: 6159: 6156: 6154: 6151: 6149: 6146: 6144: 6141: 6139: 6136: 6134: 6131: 6129: 6126: 6125: 6123: 6121: 6117: 6113: 6108: 6104: 6096: 6091: 6089: 6084: 6082: 6077: 6076: 6073: 6066: 6062: 6058: 6053: 6052: 6048: 6041: 6037: 6032: 6027: 6023: 6019: 6015: 6010: 6006: 6002: 5997: 5992: 5988: 5984: 5980: 5976: 5972: 5967: 5966: 5961: 5952: 5948: 5938: 5934: 5930: 5926: 5922: 5918: 5914: 5910: 5906: 5902: 5895: 5892: 5887: 5883: 5879: 5875: 5871: 5867: 5863: 5859: 5852: 5849: 5844: 5840: 5835: 5830: 5825: 5820: 5816: 5812: 5808: 5804: 5800: 5793: 5791: 5787: 5782: 5778: 5774: 5770: 5766: 5762: 5758: 5754: 5747: 5744: 5739: 5735: 5731: 5727: 5723: 5719: 5715: 5711: 5707: 5703: 5695: 5692: 5687: 5683: 5678: 5673: 5669: 5665: 5661: 5654: 5651: 5646: 5642: 5637: 5636:1969.1/179875 5632: 5628: 5624: 5620: 5616: 5615: 5607: 5605: 5596: 5593: 5588: 5584: 5580: 5576: 5572: 5568: 5564: 5560: 5556: 5552: 5544: 5541: 5536: 5532: 5528: 5524: 5520: 5516: 5512: 5508: 5501: 5498: 5493: 5489: 5485: 5481: 5477: 5473: 5466: 5463: 5458: 5454: 5450: 5446: 5442: 5438: 5434: 5430: 5422: 5419: 5414: 5410: 5406: 5402: 5398: 5394: 5390: 5386: 5379: 5376: 5371: 5367: 5363: 5359: 5355: 5351: 5347: 5343: 5336: 5333: 5328: 5324: 5320: 5314: 5310: 5306: 5302: 5295: 5292: 5287: 5281: 5277: 5270: 5268: 5264: 5259: 5255: 5250: 5245: 5240: 5235: 5231: 5227: 5223: 5219: 5215: 5213: 5204: 5201: 5196: 5192: 5187: 5182: 5177: 5172: 5168: 5164: 5160: 5153: 5150: 5145: 5141: 5136: 5131: 5127: 5123: 5119: 5112: 5109: 5104: 5100: 5096: 5092: 5088: 5084: 5080: 5076: 5072: 5068: 5061: 5058: 5053: 5049: 5044: 5039: 5034: 5029: 5025: 5021: 5017: 5010: 5007: 5002: 4998: 4993: 4988: 4983: 4978: 4974: 4970: 4966: 4962: 4958: 4951: 4948: 4943: 4939: 4934: 4929: 4925: 4921: 4917: 4913: 4909: 4905: 4901: 4894: 4891: 4886: 4882: 4878: 4874: 4870: 4866: 4859: 4856: 4851: 4847: 4842: 4837: 4832: 4827: 4823: 4819: 4815: 4811: 4807: 4800: 4797: 4792: 4788: 4784: 4778: 4773: 4772:1721.1/101094 4768: 4764: 4760: 4756: 4752: 4745: 4742: 4737: 4733: 4728: 4723: 4719: 4715: 4711: 4707: 4703: 4696: 4693: 4688: 4684: 4679: 4674: 4669: 4664: 4660: 4656: 4652: 4648: 4644: 4637: 4634: 4629: 4625: 4621: 4617: 4613: 4609: 4605: 4601: 4594: 4591: 4586: 4582: 4577: 4572: 4568: 4564: 4560: 4553: 4551: 4547: 4541: 4536: 4532: 4528: 4524: 4517: 4515: 4511: 4506: 4502: 4497: 4492: 4487: 4482: 4478: 4474: 4470: 4463: 4461: 4457: 4445: 4441: 4434: 4431: 4419: 4415: 4408: 4405: 4400: 4396: 4392: 4388: 4384: 4380: 4376: 4372: 4365: 4362: 4357: 4353: 4348: 4343: 4339: 4335: 4331: 4324: 4321: 4316: 4312: 4307: 4302: 4297: 4292: 4288: 4284: 4280: 4276: 4272: 4265: 4262: 4257: 4253: 4248: 4243: 4238: 4233: 4229: 4225: 4221: 4217: 4213: 4206: 4203: 4198: 4194: 4189: 4184: 4180: 4176: 4172: 4168: 4164: 4157: 4154: 4149: 4145: 4140: 4135: 4131: 4127: 4123: 4116: 4113: 4108: 4104: 4099: 4094: 4090: 4086: 4082: 4078: 4074: 4067: 4064: 4059: 4055: 4051: 4047: 4043: 4039: 4035: 4031: 4024: 4021: 4016: 4012: 4008: 4004: 4000: 3996: 3992: 3988: 3981: 3978: 3973: 3969: 3965: 3961: 3957: 3953: 3949: 3945: 3941: 3937: 3930: 3927: 3922: 3918: 3913: 3908: 3904: 3900: 3896: 3892: 3888: 3881: 3878: 3873: 3869: 3865: 3861: 3857: 3853: 3846: 3844: 3840: 3835: 3831: 3827: 3823: 3819: 3815: 3808: 3806: 3802: 3797: 3793: 3789: 3785: 3781: 3777: 3773: 3769: 3762: 3760: 3756: 3751: 3747: 3743: 3739: 3735: 3731: 3724: 3722: 3720: 3718: 3716: 3712: 3707: 3703: 3699: 3695: 3691: 3687: 3680: 3677: 3672: 3668: 3663: 3658: 3653: 3648: 3644: 3640: 3636: 3629: 3626: 3621: 3617: 3613: 3609: 3602: 3599: 3594: 3590: 3585: 3580: 3576: 3572: 3568: 3561: 3558: 3553: 3549: 3544: 3539: 3534: 3529: 3525: 3521: 3517: 3506: 3504: 3500: 3495: 3491: 3486: 3481: 3477: 3473: 3469: 3462: 3460: 3458: 3456: 3454: 3452: 3450: 3446: 3441: 3437: 3432: 3427: 3422: 3417: 3413: 3409: 3405: 3401: 3397: 3390: 3388: 3386: 3384: 3380: 3374: 3367: 3364: 3359: 3355: 3351: 3347: 3340: 3337: 3332: 3328: 3322: 3317: 3316: 3310: 3303: 3300: 3295: 3291: 3287: 3283: 3279: 3275: 3268: 3267: 3261: 3258: 3253: 3249: 3244: 3239: 3234: 3229: 3225: 3221: 3217: 3210: 3207: 3202: 3198: 3193: 3188: 3184: 3180: 3176: 3169: 3167: 3163: 3159: 3155: 3151: 3146: 3141: 3136: 3131: 3127: 3123: 3119: 3115: 3111: 3104: 3102: 3098: 3094: 3086: 3080: 3075: 3074: 3068: 3061: 3058: 3054: 3049: 3046: 3041: 3037: 3032: 3027: 3023: 3019: 3015: 3011: 3007: 3000: 2997: 2992: 2988: 2983: 2978: 2974: 2970: 2966: 2962: 2958: 2951: 2948: 2943: 2939: 2935: 2931: 2927: 2923: 2919: 2915: 2911: 2907: 2903: 2899: 2895: 2889: 2887: 2883: 2874: 2870: 2866: 2861: 2857: 2852: 2848: 2847: 2840: 2837: 2830: 2823: 2818: 2815: 2812: 2809: 2807: 2804: 2803: 2802: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2779: 2778: 2777: 2770: 2768: 2766: 2762: 2758: 2754: 2750: 2745: 2743: 2739: 2735: 2727: 2725: 2702: 2698: 2694: 2690: 2674: 2659: 2657: 2646: 2642: 2638: 2637: 2625: 2615: 2607: 2593: 2590:This section 2588: 2584: 2579: 2578: 2572: 2570: 2568: 2564: 2563:phylogenetics 2560: 2556: 2548: 2543: 2541: 2539: 2535: 2531: 2527: 2526:fractionation 2523: 2518: 2516: 2512: 2508: 2500: 2498: 2496: 2495: 2490: 2489: 2484: 2475: 2473: 2471: 2466: 2460: 2447: 2440: 2439: 2435: 2431: 2430: 2424: 2421: 2416: 2402: 2394: 2392: 2390: 2385: 2378: 2370: 2368: 2366: 2358: 2354: 2350: 2346: 2336: 2320: 2316: 2308: 2292: 2288: 2280: 2276: 2268: 2266: 2251: 2243: 2241: 2239: 2235: 2231: 2227: 2219: 2217: 2215: 2211: 2207: 2203: 2200: 2196: 2192: 2187: 2182: 2178: 2170: 2168: 2162: 2160: 2156: 2150: 2149:ATP synthesis 2146: 2142: 2134: 2130: 2122: 2120: 2116: 2109: 2104: 2097: 2095: 2089: 2085: 2081: 2076: 2074: 2070: 2066: 2058: 2054: 2050: 2046: 2042: 2038: 2033: 2031: 2027: 2018: 2016: 2014: 2006: 2004: 2001: 1976: 1970:Carboxylation 1969: 1967: 1964: 1957: 1955: 1937: 1935: 1933: 1929: 1925: 1921: 1909: 1905: 1902: 1898: 1878: 1874: 1870: 1866: 1859: 1857: 1855: 1851: 1847: 1846:carboxylation 1843: 1835: 1822: 1815: 1799: 1793: 1787: 1781: 1775: 1769: 1763: 1757: 1751: 1745: 1739: 1733: 1727: 1721: 1715: 1709: 1703: 1697: 1691: 1685: 1679: 1673: 1667: 1661: 1655: 1649: 1643: 1637: 1631: 1625: 1619: 1613: 1607: 1603: 1601: 1597: 1594: 1591: 1589: 1585: 1582: 1578: 1574: 1571: 1569: 1565: 1561: 1557: 1554: 1551: 1547: 1542: 1538: 1535: 1532: 1530: 1526: 1523: 1519: 1515: 1512: 1510: 1506: 1503: 1500: 1498: 1494: 1491: 1488: 1486: 1482: 1479:RuBisCO_small 1478: 1474: 1469: 1464: 1461: 1449: 1443: 1437: 1431: 1425: 1419: 1413: 1407: 1401: 1395: 1389: 1383: 1377: 1371: 1365: 1359: 1353: 1347: 1341: 1335: 1329: 1323: 1317: 1311: 1305: 1299: 1293: 1287: 1281: 1275: 1269: 1263: 1257: 1251: 1245: 1239: 1233: 1227: 1221: 1215: 1209: 1203: 1197: 1191: 1187: 1185: 1181: 1178: 1175: 1173: 1169: 1166: 1162: 1158: 1155: 1153: 1149: 1145: 1141: 1138: 1135: 1131: 1126: 1122: 1119: 1115: 1111: 1108: 1106: 1102: 1099: 1096: 1094: 1090: 1087: 1084: 1082: 1078: 1074: 1070: 1065: 1060: 1057: 1045: 1039: 1033: 1027: 1021: 1015: 1009: 1003: 997: 991: 985: 979: 973: 967: 961: 955: 949: 943: 937: 931: 925: 919: 913: 907: 901: 895: 889: 883: 877: 871: 865: 859: 853: 847: 841: 835: 829: 823: 817: 811: 805: 799: 793: 787: 783: 781: 777: 774: 771: 769: 765: 762: 758: 754: 751: 749: 745: 741: 737: 734: 731: 727: 722: 718: 715: 712: 710: 706: 703: 699: 695: 692: 690: 686: 683: 680: 678: 674: 671: 668: 666: 662: 659: 656: 654: 650: 647:RuBisCO_large 646: 642: 637: 630: 627: 623: 621: 617: 613: 612:concentration 609: 606: 589: 582: 574: 570: 566: 559: 547: 544: 540: 538: 533: 529: 525: 521: 520:binding sites 517: 513: 509: 505: 501: 497: 494:genes in the 493: 489: 485: 481: 477: 473: 469: 465: 462: 458: 454: 453:cyanobacteria 450: 442: 438: 437: 432: 428: 423: 400: 399: 393: 386: 384: 382: 378: 374: 366: 358: 354: 350: 346: 342: 338: 335:. While many 334: 330: 326: 322: 314: 312: 310: 306: 305:carboxylation 302: 298: 294: 291: 288:organisms to 287: 283: 279: 275: 271: 268: 264: 260: 256: 252: 248: 244: 232: 229: 227: 223: 220: 217: 215: 211: 208: 205: 203: 199: 194: 190: 187: 183: 180: 178: 177:Gene Ontology 174: 171: 168: 165: 162: 159: 155: 152: 149: 147: 143: 140: 137: 135: 131: 128: 125: 123: 119: 116: 115:NiceZyme view 113: 111: 107: 104: 101: 99: 95: 92: 89: 87: 83: 78: 75: 72: 70: 66: 63: 60: 58: 54: 49: 41: 36: 31: 19: 6616:Translocases 6613: 6600: 6587: 6574: 6561: 6551:Transferases 6548: 6535: 6392:Binding site 6202: 6064: 6060: 6021: 6017: 5978: 5974: 5950: 5904: 5900: 5894: 5861: 5857: 5851: 5806: 5802: 5756: 5752: 5746: 5705: 5701: 5694: 5667: 5663: 5653: 5618: 5612: 5603: 5595: 5554: 5550: 5543: 5510: 5506: 5500: 5478:(1): 29–39. 5475: 5471: 5465: 5432: 5428: 5421: 5388: 5384: 5378: 5345: 5341: 5335: 5300: 5294: 5275: 5221: 5217: 5211: 5203: 5166: 5162: 5152: 5125: 5121: 5111: 5070: 5066: 5060: 5023: 5019: 5009: 4964: 4960: 4950: 4907: 4903: 4893: 4868: 4864: 4858: 4813: 4809: 4799: 4754: 4744: 4709: 4705: 4695: 4650: 4646: 4636: 4603: 4599: 4593: 4566: 4562: 4530: 4526: 4476: 4472: 4447:. Retrieved 4444:Ars Technica 4443: 4433: 4421:. Retrieved 4418:Ars Technica 4417: 4407: 4374: 4370: 4364: 4337: 4333: 4323: 4278: 4274: 4264: 4219: 4215: 4205: 4170: 4166: 4156: 4129: 4125: 4115: 4080: 4076: 4066: 4033: 4029: 4023: 3993:(1): 11–27. 3990: 3986: 3980: 3939: 3935: 3929: 3894: 3890: 3880: 3855: 3851: 3817: 3813: 3771: 3767: 3733: 3729: 3689: 3686:Biochemistry 3685: 3679: 3642: 3638: 3628: 3611: 3601: 3574: 3570: 3560: 3523: 3519: 3475: 3471: 3403: 3399: 3366: 3349: 3339: 3330: 3315:Biochemistry 3314: 3302: 3277: 3273: 3264: 3260: 3223: 3219: 3209: 3182: 3178: 3157: 3117: 3113: 3088: 3072: 3060: 3048: 3013: 3009: 2999: 2964: 2960: 2950: 2901: 2897: 2844: 2839: 2821: 2782:Carbon cycle 2764: 2760: 2756: 2752: 2748: 2746: 2731: 2697:Calvin cycle 2666: 2634: 2632: 2619: 2608:}} 2604:{{ 2591: 2554: 2552: 2519: 2504: 2492: 2487: 2483:chloroplasts 2479: 2467: 2448: 2436: 2427: 2422: 2417: 2399:In general, 2398: 2374: 2357:Calvin Cycle 2347: 2307:water stress 2272: 2247: 2244:By phosphate 2223: 2206:conformation 2176: 2174: 2152: 2126: 2119:other ways: 2117: 2113: 2108:Calvin cycle 2077: 2045:mitochondria 2034: 2022: 2010: 1989: 1961: 1941: 1938:Binding RuBP 1863: 1834:Calvin cycle 1831: 580: 541: 491: 483: 479: 475: 467: 457:phototrophic 446: 440: 434: 429:gene in the 426: 396: 321:biologically 318: 258: 254: 250: 246: 242: 241: 103:BRENDA entry 6387:Active site 4377:: 449–475. 3820:: 197–234. 3526:: 100–107. 2817:Carboxysome 2763:arboxylase/ 2738:Sam Wildman 2238:thioredoxin 2220:By activase 2210:proteolysis 2049:peroxisomes 1963:Enolisation 1958:Enolisation 1899:and a high 1854:protonation 1842:enolisation 1471:Identifiers 1067:Identifiers 639:Identifiers 558:active site 532:amino acids 492:small-chain 488:chloroplast 480:large-chain 447:In plants, 337:autotrophic 331:enters the 290:energy-rich 91:IntEnz view 51:Identifiers 6637:Categories 6590:Isomerases 6564:Hydrolases 6431:Regulation 6319:Photolyase 6255:Aldolase C 6250:Aldolase B 6245:Aldolase A 5507:Proteomics 2894:Sharkey TD 2865:eukaryotic 2831:References 2759:phosphate 2622:March 2022 2181:GO:0046863 1865:Substrates 1860:Substrates 1556:structures 1140:structures 736:structures 526:that form 160:structures 127:KEGG entry 74:9027-23-0 6469:EC number 6324:CPD lyase 5759:: 19–47. 5738:252897276 5579:1226-9239 5128:: 29–60. 4533:: 19–29. 4449:5 January 4423:5 January 3972:205052478 3608:"Rubisco" 3346:"Rubisco" 2869:bacterial 2755:lose-1,5 2701:mutations 2691:into the 2687:from the 2614:talk page 2497:Rubisco. 2250:phosphate 2191:carbamate 2141:thylakoid 2013:carbanion 1850:hydration 1795:​, 1789:​, 1783:​, 1777:​, 1771:​, 1765:​, 1759:​, 1753:​, 1747:​, 1741:​, 1735:​, 1729:​, 1723:​, 1717:​, 1711:​, 1705:​, 1699:​, 1693:​, 1687:​, 1681:​, 1675:​, 1669:​, 1663:​, 1657:​, 1651:​, 1645:​, 1639:​, 1633:​, 1627:​, 1621:​, 1615:​, 1609:​, 1502:IPR000894 1445:​, 1439:​, 1433:​, 1427:​, 1421:​, 1415:​, 1409:​, 1403:​, 1397:​, 1391:​, 1385:​, 1379:​, 1373:​, 1367:​, 1361:​, 1355:​, 1349:​, 1343:​, 1337:​, 1331:​, 1325:​, 1319:​, 1313:​, 1307:​, 1301:​, 1295:​, 1289:​, 1283:​, 1277:​, 1271:​, 1265:​, 1259:​, 1253:​, 1247:​, 1241:​, 1235:​, 1229:​, 1223:​, 1217:​, 1211:​, 1205:​, 1199:​, 1193:​, 1098:IPR017444 1041:​, 1035:​, 1029:​, 1023:​, 1017:​, 1011:​, 1005:​, 999:​, 993:​, 987:​, 981:​, 975:​, 969:​, 963:​, 957:​, 951:​, 945:​, 939:​, 933:​, 927:​, 921:​, 915:​, 909:​, 903:​, 897:​, 891:​, 885:​, 879:​, 873:​, 867:​, 861:​, 855:​, 849:​, 843:​, 837:​, 831:​, 825:​, 819:​, 813:​, 807:​, 801:​, 795:​, 789:​, 682:PDOC00142 670:IPR000685 573:carbamate 543:Magnesium 530:in which 512:substrate 387:Structure 347:, or the 333:biosphere 327:by which 301:catalyzes 293:molecules 80:Databases 6648:EC 4.1.1 6493:Kinetics 6417:Cofactor 6380:Activity 6281:Oxo-acid 6231:Aldehyde 6040:10336462 6005:15937184 5951:Figure 3 5937:39767233 5929:17665149 5878:16245127 5843:24469821 5781:24199852 5773:22404472 5730:36227987 5686:18403380 5587:23636617 5527:19212951 5492:18063427 5457:16973185 5413:38878805 5405:11465512 5370:19766275 5327:25820725 5258:29217567 5195:28228773 5144:28125284 5103:10709679 5095:16432665 5052:25767475 5001:16641091 4942:25231869 4885:12781767 4850:11724961 4736:21562335 4687:21849620 4620:28937283 4585:12709478 4505:30606819 4391:12221984 4356:10998060 4315:11854454 4256:11069297 4197:11706186 4148:10583377 4050:15236471 4007:16245090 3964:20075906 3921:16822231 3750:11848907 3671:18664299 3552:28843191 3494:18417482 3440:23112176 3294:11401297 3252:29594130 3201:17975207 3154:15067115 3040:16666327 2991:16663341 2942:53092349 2934:30374727 2792:Pyrenoid 2771:See also 2420:red alga 2078:Rubisco 2073:pyrenoid 2019:Products 2000:gem-diol 1932:entropic 1904:gradient 1573:RCSB PDB 1497:InterPro 1157:RCSB PDB 1093:InterPro 753:RCSB PDB 665:InterPro 605:alkaline 516:ribulose 295:such as 270:4.1.1.39 261:, is an 255:RuBPCase 231:proteins 219:articles 207:articles 164:RCSB PDB 62:4.1.1.39 6603:Ligases 6373:Enzymes 6307:: Other 6283:-lyases 6233:-lyases 6203:RuBisCO 5996:1151729 5909:Bibcode 5886:7622999 5834:3926066 5811:Bibcode 5710:Bibcode 5702:Science 5645:2399846 5559:Bibcode 5535:2455432 5437:Bibcode 5350:Bibcode 5226:Bibcode 5218:Science 5212:E. coli 5186:5296341 5169:: 168. 5075:Bibcode 5043:4341507 5026:: 106. 4992:1464328 4969:Bibcode 4933:4176977 4912:Bibcode 4818:Bibcode 4791:5568464 4727:3135941 4678:3167554 4655:Bibcode 4628:4191791 4496:7745124 4473:Science 4399:9387705 4283:Bibcode 4224:Bibcode 4107:7818481 4098:1137402 4058:1496584 3944:Bibcode 3912:1615894 3872:9034362 3834:7979237 3796:4370073 3776:Bibcode 3706:6778504 3662:2527014 3593:1905726 3543:7610757 3431:3503183 3408:Bibcode 3243:5859369 3122:Bibcode 3031:1055600 2982:1066578 2926:1607740 2906:Bibcode 2853:, see: 2742:Nabisco 2511:kinases 2488:E. coli 2353:stomata 2275:compete 2131:of the 2123:By ions 2057:glycine 2030:glucose 1801:​ 1534:cd03527 1490:PF00101 1451:​ 1086:PF02788 1047:​ 714:cd08148 677:PROSITE 658:PF00016 567:) to a 556:in the 504:cytosol 500:stromal 496:nucleus 401:with CO 297:glucose 251:rubisco 247:RuBisCo 186:QuickGO 151:profile 134:MetaCyc 69:CAS no. 45:enzyme. 18:RuBisCo 6577:Lyases 6305:4.1.99 6103:lyases 6038:  6003:  5993:  5935:  5927:  5884:  5876:  5841:  5831:  5779:  5771:  5736:  5728:  5684:  5643:  5585:  5577:  5533:  5525:  5490:  5455:  5411:  5403:  5368:  5325:  5315:  5282:  5256:  5193:  5183:  5142:  5101:  5093:  5050:  5040:  4999:  4989:  4940:  4930:  4904:Nature 4883:  4848:  4838:  4789:  4779:  4734:  4724:  4685:  4675:  4626:  4618:  4583:  4503:  4493:  4397:  4389:  4354:  4313:  4306:122518 4303:  4254:  4244:  4195:  4188:129275 4185:  4146:  4105:  4095:  4056:  4048:  4013:  4005:  3970:  3962:  3936:Nature 3919:  3909:  3870:  3832:  3794:  3768:Nature 3748:  3704:  3669:  3659:  3645:: 85. 3591:  3550:  3540:  3492:  3438:  3428:  3323:  3292:  3250:  3240:  3226:: 24. 3199:  3152:  3145:395966 3142:  3081:  3038:  3028:  2989:  2979:  2940:  2932:  2924:  2822: 2651:over O 2573:Origin 2315:plants 2186:P10896 2179:(Rca, 2133:stroma 1982:, and 1914:and CO 1588:PDBsum 1562:  1552:  1522:SUPFAM 1476:Symbol 1172:PDBsum 1146:  1136:  1118:SUPFAM 1072:Symbol 768:PDBsum 742:  732:  702:SUPFAM 644:Symbol 569:lysine 528:dimers 524:chains 482:gene ( 455:, and 373:plants 365:plants 357:leaves 343:, the 263:enzyme 259:RuBPco 214:PubMed 196:Search 182:AmiGO 170:PDBsum 110:ExPASy 98:BRENDA 86:IntEnz 57:EC no. 6529:Types 6277:4.1.3 6227:4.1.2 6116:4.1.1 5933:S2CID 5882:S2CID 5777:S2CID 5734:S2CID 5641:JSTOR 5609:(PDF) 5583:S2CID 5531:S2CID 5409:S2CID 5099:S2CID 4841:64751 4787:S2CID 4624:S2CID 4395:S2CID 4247:27241 4054:S2CID 4011:S2CID 3968:S2CID 3792:S2CID 2938:S2CID 2703:for C 2559:locus 2297:to CO 2234:redox 1908:dimer 1891:and O 1518:SCOPe 1509:SCOP2 1114:SCOPe 1105:SCOP2 698:SCOPe 689:SCOP2 620:below 581:trans 449:algae 381:below 257:, or 146:PRIAM 6621:list 6614:EC7 6608:list 6601:EC6 6595:list 6588:EC5 6582:list 6575:EC4 6569:list 6562:EC3 6556:list 6549:EC2 6543:list 6536:EC1 6109:4.1) 6036:PMID 6001:PMID 5925:PMID 5874:PMID 5839:PMID 5769:PMID 5726:PMID 5682:PMID 5575:ISSN 5523:PMID 5488:PMID 5453:PMID 5401:PMID 5366:PMID 5323:PMID 5313:ISBN 5280:ISBN 5254:PMID 5191:PMID 5140:PMID 5091:PMID 5048:PMID 4997:PMID 4938:PMID 4881:PMID 4846:PMID 4777:ISBN 4732:PMID 4683:PMID 4616:PMID 4581:PMID 4501:PMID 4451:2019 4425:2019 4387:PMID 4352:PMID 4311:PMID 4252:PMID 4193:PMID 4144:PMID 4103:PMID 4046:PMID 4015:2632 4003:PMID 3960:PMID 3917:PMID 3868:PMID 3830:PMID 3746:PMID 3702:PMID 3667:PMID 3589:PMID 3548:PMID 3490:PMID 3436:PMID 3321:ISBN 3290:PMID 3248:PMID 3197:PMID 3150:PMID 3079:ISBN 3036:PMID 2987:PMID 2930:PMID 2922:OSTI 2867:and 2860:9RUB 2555:rbcL 2086:and 2047:and 1871:and 1798:8ruc 1792:4rub 1786:3rub 1780:2v6a 1774:2v69 1768:2v68 1762:2v67 1756:2v63 1750:1wdd 1744:1uzh 1738:1uzd 1732:1uwa 1726:1uw9 1720:1upp 1714:1upm 1708:1svd 1702:1rxo 1696:1rsc 1690:1rld 1684:1rlc 1678:1rcx 1672:1rco 1666:1rbo 1660:1rbl 1654:1iwa 1648:1ir2 1642:1ir1 1636:1gk8 1630:1ej7 1624:1bxn 1618:1bwv 1612:1aus 1606:1aa1 1581:PDBj 1577:PDBe 1560:ECOD 1550:Pfam 1514:3rub 1485:Pfam 1448:9rub 1442:8ruc 1436:5rub 1430:4rub 1424:3rub 1418:2v6a 1412:2v69 1406:2v68 1400:2v67 1394:2v63 1388:2rus 1382:2qyg 1376:2d69 1370:2cxe 1364:2cwx 1358:1ykw 1352:1wdd 1346:1uzh 1340:1uzd 1334:1uwa 1328:1uw9 1322:1upp 1316:1upm 1310:1tel 1304:1svd 1298:1rxo 1292:1rus 1286:1rsc 1280:1rld 1274:1rcx 1268:1rco 1262:1rbo 1256:1rbl 1250:1rba 1244:1iwa 1238:1ir2 1232:1ir1 1226:1gk8 1220:1geh 1214:1ej7 1208:1bxn 1202:1bwv 1196:1aus 1190:1aa1 1165:PDBj 1161:PDBe 1144:ECOD 1134:Pfam 1110:3rub 1081:Pfam 1044:9rub 1038:8ruc 1032:5rub 1026:4rub 1020:3rub 1014:2v6a 1008:2v69 1002:2v68 996:2v67 990:2v63 984:2rus 978:2qyg 972:2d69 966:2cxe 960:2cwx 954:1ykw 948:1wdd 942:1uzh 936:1uzd 930:1uwa 924:1uw9 918:1upp 912:1upm 906:1tel 900:1svd 894:1rxo 888:1rus 882:1rsc 876:1rld 870:1rcx 864:1rco 858:1rbo 852:1rbl 846:1rba 840:1iwa 834:1ir2 828:1ir1 822:1gk8 816:1geh 810:1ej7 804:1bxn 798:1bwv 792:1aus 786:1aa1 761:PDBj 757:PDBe 740:ECOD 730:Pfam 694:3rub 653:Pfam 546:ions 484:rbcL 459:and 441:rbcL 427:rbcL 303:the 226:NCBI 167:PDBe 122:KEGG 6026:doi 6022:274 5991:PMC 5983:doi 5979:187 5917:doi 5866:doi 5829:PMC 5819:doi 5807:111 5761:doi 5718:doi 5706:378 5672:doi 5631:hdl 5623:doi 5604:rbc 5567:doi 5515:doi 5480:doi 5476:861 5445:doi 5393:doi 5358:doi 5305:doi 5244:hdl 5234:doi 5222:358 5181:PMC 5171:doi 5130:doi 5083:doi 5038:PMC 5028:doi 4987:PMC 4977:doi 4965:103 4928:PMC 4920:doi 4908:513 4873:doi 4869:414 4836:PMC 4826:doi 4767:hdl 4759:doi 4722:PMC 4714:doi 4710:156 4673:PMC 4663:doi 4651:108 4608:doi 4571:doi 4535:doi 4531:182 4491:PMC 4481:doi 4477:363 4379:doi 4342:doi 4338:267 4301:PMC 4291:doi 4242:PMC 4232:doi 4183:PMC 4175:doi 4171:127 4134:doi 4130:266 4093:PMC 4085:doi 4081:304 4038:doi 3995:doi 3952:doi 3940:463 3907:PMC 3899:doi 3895:399 3860:doi 3856:265 3822:doi 3784:doi 3772:337 3738:doi 3694:doi 3657:PMC 3647:doi 3616:doi 3579:doi 3575:266 3538:PMC 3528:doi 3480:doi 3426:PMC 3416:doi 3404:109 3354:doi 3282:doi 3278:291 3238:PMC 3228:doi 3187:doi 3140:PMC 3130:doi 3118:101 3026:PMC 3018:doi 2977:PMC 2969:doi 2914:doi 2902:140 2856:PDB 2757:bis 2565:in 2538:DTT 2365:wax 2230:ADP 2226:ATP 1600:PDB 1568:PDB 1529:CDD 1184:PDB 1152:PDB 780:PDB 748:PDB 709:CDD 575:). 433:of 383:). 307:of 202:PMC 158:PDB 6639:: 6279:: 6229:: 6118:: 6107:EC 6059:. 6034:. 6020:. 6016:. 5999:. 5989:. 5977:. 5973:. 5931:. 5923:. 5915:. 5905:94 5903:. 5880:. 5872:. 5862:73 5860:. 5837:. 5827:. 5817:. 5805:. 5801:. 5789:^ 5775:. 5767:. 5757:63 5755:. 5732:. 5724:. 5716:. 5704:. 5680:. 5668:59 5666:. 5662:. 5639:. 5629:. 5619:80 5617:. 5611:. 5606:L" 5581:. 5573:. 5565:. 5555:51 5553:. 5529:. 5521:. 5509:. 5486:. 5474:. 5451:. 5443:. 5433:67 5431:. 5407:. 5399:. 5389:22 5387:. 5364:. 5356:. 5346:70 5344:. 5321:. 5311:. 5266:^ 5252:. 5242:. 5232:. 5220:. 5216:. 5189:. 5179:. 5165:. 5161:. 5138:. 5126:68 5124:. 5120:. 5097:. 5089:. 5081:. 5071:87 5069:. 5046:. 5036:. 5022:. 5018:. 4995:. 4985:. 4975:. 4963:. 4959:. 4936:. 4926:. 4918:. 4906:. 4902:. 4879:. 4867:. 4844:. 4834:. 4824:. 4814:98 4812:. 4808:. 4785:. 4775:. 4765:. 4753:. 4730:. 4720:. 4708:. 4704:. 4681:. 4671:. 4661:. 4649:. 4645:. 4622:. 4614:. 4604:38 4602:. 4579:. 4567:54 4565:. 4561:. 4549:^ 4529:. 4525:. 4513:^ 4499:. 4489:. 4475:. 4471:. 4459:^ 4442:. 4416:. 4393:. 4385:. 4375:53 4373:. 4350:. 4336:. 4332:. 4309:. 4299:. 4289:. 4279:99 4277:. 4273:. 4250:. 4240:. 4230:. 4220:97 4218:. 4214:. 4191:. 4181:. 4169:. 4165:. 4142:. 4128:. 4124:. 4101:. 4091:. 4079:. 4075:. 4052:. 4044:. 4032:. 4009:. 4001:. 3991:75 3989:. 3966:. 3958:. 3950:. 3938:. 3915:. 3905:. 3893:. 3889:. 3866:. 3854:. 3842:^ 3828:. 3818:63 3816:. 3804:^ 3790:. 3782:. 3770:. 3758:^ 3744:. 3734:98 3732:. 3714:^ 3700:. 3690:19 3688:. 3665:. 3655:. 3641:. 3637:. 3610:. 3587:. 3573:. 3569:. 3546:. 3536:. 3524:49 3522:. 3518:. 3502:^ 3488:. 3476:59 3474:. 3470:. 3448:^ 3434:. 3424:. 3414:. 3402:. 3398:. 3382:^ 3348:. 3329:. 3311:. 3288:. 3276:. 3246:. 3236:. 3222:. 3218:. 3195:. 3183:59 3181:. 3177:. 3165:^ 3156:. 3148:. 3138:. 3128:. 3116:. 3112:. 3100:^ 3087:. 3069:. 3034:. 3024:. 3014:88 3012:. 3008:. 2985:. 2975:. 2965:73 2963:. 2959:. 2936:. 2928:. 2920:. 2912:. 2900:. 2885:^ 2858:: 2751:ib 2569:. 2509:, 2442:CO 2367:. 2345:. 2252:(P 2183:, 2165:Mg 2157:; 2129:pH 2075:. 2067:, 2032:. 1996:Mg 1984:Mg 1952:Mg 1948:Mg 1944:Mg 1879:(O 1856:. 1848:, 1844:, 1579:; 1575:; 1558:/ 1520:/ 1516:/ 1163:; 1159:; 1142:/ 1116:/ 1112:/ 759:; 755:; 738:/ 700:/ 696:/ 608:pH 601:Mg 596:Mg 592:Mg 585:CO 577:Mg 562:CO 554:Mg 550:Mg 472:Da 451:, 411:Mg 267:EC 253:, 249:, 184:/ 6623:) 6619:( 6610:) 6606:( 6597:) 6593:( 6584:) 6580:( 6571:) 6567:( 6558:) 6554:( 6545:) 6541:( 6365:e 6358:t 6351:v 6210:/ 6105:( 6094:e 6087:t 6080:v 6042:. 6028:: 6007:. 5985:: 5955:2 5939:. 5919:: 5911:: 5888:. 5868:: 5845:. 5821:: 5813:: 5783:. 5763:: 5740:. 5720:: 5712:: 5688:. 5674:: 5647:. 5633:: 5625:: 5589:. 5569:: 5561:: 5537:. 5517:: 5511:9 5494:. 5482:: 5459:. 5447:: 5439:: 5415:. 5395:: 5372:. 5360:: 5352:: 5329:. 5307:: 5288:. 5260:. 5246:: 5236:: 5228:: 5197:. 5173:: 5167:8 5146:. 5132:: 5105:. 5085:: 5077:: 5054:. 5030:: 5024:6 5003:. 4979:: 4971:: 4944:. 4922:: 4914:: 4887:. 4875:: 4852:. 4828:: 4820:: 4793:. 4769:: 4761:: 4738:. 4716:: 4689:. 4665:: 4657:: 4630:. 4610:: 4587:. 4573:: 4543:. 4537:: 4507:. 4483:: 4453:. 4427:. 4401:. 4381:: 4358:. 4344:: 4317:. 4293:: 4285:: 4258:. 4234:: 4226:: 4199:. 4177:: 4150:. 4136:: 4109:. 4087:: 4060:. 4040:: 4034:5 4017:. 3997:: 3974:. 3954:: 3946:: 3923:. 3901:: 3874:. 3862:: 3836:. 3824:: 3798:. 3786:: 3778:: 3752:. 3740:: 3708:. 3696:: 3673:. 3649:: 3643:8 3622:. 3618:: 3595:. 3581:: 3554:. 3530:: 3514:2 3496:. 3482:: 3442:. 3418:: 3410:: 3360:. 3356:: 3296:. 3284:: 3254:. 3230:: 3224:5 3203:. 3189:: 3132:: 3124:: 3091:2 3042:. 3020:: 2993:. 2971:: 2944:. 2916:: 2908:: 2765:o 2761:c 2753:u 2749:R 2722:2 2718:4 2713:4 2709:4 2705:4 2685:2 2681:2 2677:3 2671:4 2669:C 2662:4 2660:C 2653:2 2649:2 2624:) 2620:( 2616:. 2600:5 2598:) 2596:2 2463:2 2455:2 2451:2 2444:2 2413:3 2409:4 2405:4 2383:2 2361:2 2343:2 2339:2 2333:3 2331:C 2327:4 2323:2 2313:4 2311:C 2303:2 2299:2 2295:2 2285:4 2283:C 2263:i 2261:P 2258:i 2254:i 2161:) 2137:H 2092:2 2063:4 2061:C 1992:2 1980:2 1916:2 1912:2 1893:2 1889:2 1885:2 1881:2 1838:2 1826:2 587:2 564:2 548:( 514:( 476:S 468:L 415:2 407:2 403:2 371:4 369:C 363:3 361:C 265:( 20:)

Index

RuBisCo

EC no.
4.1.1.39
CAS no.
9027-23-0
IntEnz
IntEnz view
BRENDA
BRENDA entry
ExPASy
NiceZyme view
KEGG
KEGG entry
MetaCyc
metabolic pathway
PRIAM
profile
PDB
RCSB PDB
PDBe
PDBsum
Gene Ontology
AmiGO
QuickGO
PMC
articles
PubMed
articles
NCBI

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑