Knowledge (XXG)

Ruppeiner geometry

Source đź“ť

46:, namely, there exist equilibrium states which can be represented by points on two-dimensional surface (manifold) and the distance between these equilibrium states is related to the fluctuation between them. This concept is associated to probabilities, i.e. the less probable a fluctuation between states, the further apart they are. This can be recognized if one considers the 466:
It has long been observed that the Ruppeiner metric is flat for systems with noninteracting underlying statistical mechanics such as the ideal gas. Curvature singularities signal critical behaviors. In addition, it has been applied to a number of statistical systems including
377:+ ...) in differential form with a few manipulations. The Weinhold geometry is also considered as a thermodynamic geometry. It is defined as a Hessian of the internal energy with respect to entropy and other extensive parameters. 665:
of the black hole. Calculating the Ruppeiner geometry of the black hole's entropy is, in principle, straightforward, but it is important that the entropy should be written in terms of extensive parameters,
249: 461: 557: 356: 140: 281:. For small systems (systems where fluctuations are large), the Ruppeiner metric may not exist, as second derivatives of the entropy are not guaranteed to be non-negative. 715: 587: 812: 738: 659: 635: 611: 944: 168: 383: 638: 487:
in higher dimensions, where the curvature singularity signals thermodynamic instability, as found earlier by conventional methods.
761: 365:
is the temperature of the system under consideration. Proof of the conformal relation can be easily done when one writes down the
499: 491: 294: 949: 934: 366: 64: 908:Ă…man, John E.; Bengtsson, Ingemar; Pidokrajt, Narit; Ward, John (2008). "Thermodynamic Geometries of Black Holes". 266:
refers to the extensive parameters of the system. Mathematically, the Ruppeiner geometry is one particular type of
43: 480: 278: 939: 277:
The Ruppeiner metric can be understood as the thermodynamic limit (large systems limit) of the more general
468: 35:
can be represented by Riemannian geometry, and that statistical properties can be derived from the model.
271: 887: 853: 776:
signature. This calculation cannot be done for the Schwarzschild black hole, because its entropy is
267: 32: 20: 24: 672: 565: 843: 590: 913: 895: 861: 782: 155: 773: 484: 285: 259: 483:, with some physically relevant results. The most physically significant case is for the 891: 857: 38:
This geometrical model is based on the inclusion of the theory of fluctuations into the
769: 723: 644: 620: 614: 596: 28: 928: 878:
Ruppeiner, George (1995). "Riemannian geometry in thermodynamic fluctuation theory".
765: 757: 662: 47: 764:, the Ruppeiner metric has a Lorentzian signature which corresponds to the negative 865: 917: 899: 58:
in the distance formula (line element) between the two equilibrium states
741: 159: 39: 848: 471:
gas. Recently the anyon gas has been studied using this approach.
244:{\displaystyle g_{ij}^{R}=-\partial _{i}\partial _{j}S(U,N^{a})} 456:{\displaystyle g_{ij}^{W}=\partial _{i}\partial _{j}U(S,N^{a})} 756:. The signature of the metric reflects the sign of the hole's 834:
Crooks, Gavin E. (2007). "Measuring Thermodynamic Length".
552:{\displaystyle S={\frac {k_{\text{B}}c^{3}A}{4G\hbar }}} 31:. George Ruppeiner proposed it in 1979. He claimed that 490:
The entropy of a black hole is given by the well-known
785: 726: 675: 647: 623: 599: 568: 502: 386: 351:{\displaystyle ds_{R}^{2}={\frac {1}{T}}ds_{W}^{2}\,} 297: 171: 67: 284:The Ruppeiner metric is conformally related to the 806: 732: 709: 653: 629: 605: 581: 551: 455: 350: 243: 134: 154:is the symmetric metric tensor which is called a 135:{\displaystyle ds^{2}=g_{ij}^{R}dx^{i}dx^{j},\,} 8: 847: 784: 725: 698: 674: 646: 622: 598: 573: 567: 526: 516: 509: 501: 444: 422: 412: 399: 391: 385: 347: 341: 336: 319: 310: 305: 296: 232: 210: 200: 184: 176: 170: 131: 122: 109: 96: 88: 75: 66: 826: 543: 158:, defined as a negative Hessian of the 910:The Eleventh Marcel Grossmann Meeting 817:which renders the metric degenerate. 19:is thermodynamic geometry (a type of 7: 479:This geometry has been applied to 419: 409: 207: 197: 14: 639:Newtonian constant of gravitation 475:Application to black hole systems 274:used in mathematical statistics. 145:where the matrix of coefficients 945:New College of Florida faculty 801: 795: 748:are the conserved charges and 704: 685: 450: 431: 238: 219: 1: 866:10.1103/PhysRevLett.99.100602 762:Reissner–Nordström black hole 710:{\displaystyle S=S(M,N^{a})} 582:{\displaystyle k_{\text{B}}} 367:first law of thermodynamics 966: 918:10.1142/9789812834300_0182 768:it possess, while for the 492:Bekenstein–Hawking formula 44:equilibrium thermodynamics 900:10.1103/RevModPhys.67.605 880:Reviews of Modern Physics 481:black hole thermodynamics 279:Fisher information metric 270:and it is similar to the 262:(mass) of the system and 23:) using the language of 912:. pp. 1511–1513. 808: 807:{\displaystyle S=S(M)} 744:of the black hole and 734: 711: 655: 631: 607: 583: 553: 457: 352: 245: 136: 809: 735: 712: 656: 632: 608: 584: 554: 458: 353: 246: 137: 33:thermodynamic systems 950:Mathematical physics 783: 724: 673: 645: 621: 597: 566: 500: 384: 295: 268:information geometry 169: 65: 21:information geometry 935:Riemannian geometry 892:1995RvMP...67..605R 858:2007PhRvL..99j0602C 661:is the area of the 404: 346: 315: 189: 101: 25:Riemannian geometry 804: 730: 707: 651: 627: 603: 591:Boltzmann constant 579: 549: 453: 387: 348: 332: 301: 241: 172: 132: 84: 17:Ruppeiner geometry 733:{\displaystyle M} 654:{\displaystyle A} 630:{\displaystyle G} 606:{\displaystyle c} 576: 547: 519: 327: 272:Fisher–Rao metric 957: 921: 903: 870: 869: 851: 831: 813: 811: 810: 805: 739: 737: 736: 731: 716: 714: 713: 708: 703: 702: 660: 658: 657: 652: 636: 634: 633: 628: 612: 610: 609: 604: 588: 586: 585: 580: 578: 577: 574: 558: 556: 555: 550: 548: 546: 535: 531: 530: 521: 520: 517: 510: 462: 460: 459: 454: 449: 448: 427: 426: 417: 416: 403: 398: 357: 355: 354: 349: 345: 340: 328: 320: 314: 309: 250: 248: 247: 242: 237: 236: 215: 214: 205: 204: 188: 183: 156:Ruppeiner metric 141: 139: 138: 133: 127: 126: 114: 113: 100: 95: 80: 79: 965: 964: 960: 959: 958: 956: 955: 954: 925: 924: 907: 877: 874: 873: 836:Phys. Rev. Lett 833: 832: 828: 823: 781: 780: 752:runs from 1 to 722: 721: 694: 671: 670: 643: 642: 619: 618: 595: 594: 569: 564: 563: 536: 522: 512: 511: 498: 497: 485:Kerr black hole 477: 440: 418: 408: 382: 381: 293: 292: 286:Weinhold metric 260:internal energy 228: 206: 196: 167: 166: 153: 118: 105: 71: 63: 62: 57: 12: 11: 5: 963: 961: 953: 952: 947: 942: 940:Thermodynamics 937: 927: 926: 923: 922: 905: 886:(3): 605–659. 872: 871: 825: 824: 822: 819: 815: 814: 803: 800: 797: 794: 791: 788: 770:BTZ black hole 729: 718: 717: 706: 701: 697: 693: 690: 687: 684: 681: 678: 650: 626: 615:speed of light 602: 572: 560: 559: 545: 542: 539: 534: 529: 525: 515: 508: 505: 476: 473: 464: 463: 452: 447: 443: 439: 436: 433: 430: 425: 421: 415: 411: 407: 402: 397: 394: 390: 359: 358: 344: 339: 335: 331: 326: 323: 318: 313: 308: 304: 300: 252: 251: 240: 235: 231: 227: 224: 221: 218: 213: 209: 203: 199: 195: 192: 187: 182: 179: 175: 149: 143: 142: 130: 125: 121: 117: 112: 108: 104: 99: 94: 91: 87: 83: 78: 74: 70: 53: 29:thermodynamics 13: 10: 9: 6: 4: 3: 2: 962: 951: 948: 946: 943: 941: 938: 936: 933: 932: 930: 919: 915: 911: 906: 901: 897: 893: 889: 885: 881: 876: 875: 867: 863: 859: 855: 850: 845: 841: 837: 830: 827: 820: 818: 798: 792: 789: 786: 779: 778: 777: 775: 771: 767: 766:heat capacity 763: 759: 758:specific heat 755: 751: 747: 743: 727: 699: 695: 691: 688: 682: 679: 676: 669: 668: 667: 664: 663:event horizon 648: 640: 624: 616: 600: 592: 570: 540: 537: 532: 527: 523: 513: 506: 503: 496: 495: 494: 493: 488: 486: 482: 474: 472: 470: 469:Van der Waals 445: 441: 437: 434: 428: 423: 413: 405: 400: 395: 392: 388: 380: 379: 378: 376: 372: 368: 364: 342: 337: 333: 329: 324: 321: 316: 311: 306: 302: 298: 291: 290: 289: 287: 282: 280: 275: 273: 269: 265: 261: 257: 233: 229: 225: 222: 216: 211: 201: 193: 190: 185: 180: 177: 173: 165: 164: 163: 161: 157: 152: 148: 128: 123: 119: 115: 110: 106: 102: 97: 92: 89: 85: 81: 76: 72: 68: 61: 60: 59: 56: 52: 49: 48:metric tensor 45: 41: 36: 34: 30: 26: 22: 18: 909: 883: 879: 839: 835: 829: 816: 772:, we have a 753: 749: 745: 719: 561: 489: 478: 465: 374: 370: 362: 360: 283: 276: 263: 255: 253: 150: 146: 144: 54: 50: 37: 16: 15: 929:Categories 842:: 100602. 821:References 849:0706.0559 774:Euclidean 544:ℏ 420:∂ 410:∂ 208:∂ 198:∂ 194:− 162:function 27:to study 760:. For a 742:ADM mass 888:Bibcode 854:Bibcode 637:is the 613:is the 589:is the 258:is the 160:entropy 720:where 562:where 361:where 254:where 40:axioms 844:arXiv 641:and 288:via 914:doi 896:doi 862:doi 740:is 375:TdS 42:of 931:: 894:. 884:67 882:. 860:. 852:. 840:99 838:. 617:, 593:, 373:= 371:dU 151:ij 55:ij 920:. 916:: 904:. 902:. 898:: 890:: 868:. 864:: 856:: 846:: 802:) 799:M 796:( 793:S 790:= 787:S 754:n 750:a 746:N 728:M 705:) 700:a 696:N 692:, 689:M 686:( 683:S 680:= 677:S 649:A 625:G 601:c 575:B 571:k 541:G 538:4 533:A 528:3 524:c 518:B 514:k 507:= 504:S 451:) 446:a 442:N 438:, 435:S 432:( 429:U 424:j 414:i 406:= 401:W 396:j 393:i 389:g 369:( 363:T 343:2 338:W 334:s 330:d 325:T 322:1 317:= 312:2 307:R 303:s 299:d 264:N 256:U 239:) 234:a 230:N 226:, 223:U 220:( 217:S 212:j 202:i 191:= 186:R 181:j 178:i 174:g 147:g 129:, 124:j 120:x 116:d 111:i 107:x 103:d 98:R 93:j 90:i 86:g 82:= 77:2 73:s 69:d 51:g

Index

information geometry
Riemannian geometry
thermodynamics
thermodynamic systems
axioms
equilibrium thermodynamics
metric tensor
Ruppeiner metric
entropy
internal energy
information geometry
Fisher–Rao metric
Fisher information metric
Weinhold metric
first law of thermodynamics
Van der Waals
black hole thermodynamics
Kerr black hole
Bekenstein–Hawking formula
Boltzmann constant
speed of light
Newtonian constant of gravitation
event horizon
ADM mass
specific heat
Reissner–Nordström black hole
heat capacity
BTZ black hole
Euclidean
arXiv

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑