Knowledge (XXG)

RNA thermometer

Source 📝

364: 282:
to release of Shine–Dalgarno and the AUG start codon. RNA Thermometers can also be found in some plant symbiotes or pathogens, symbiotes and pathogens use the RNA thermometers to regulate the plant's gene expression. A well studied symbiotic bacteria is the Rhizobiaceae family. In majority of the rhizobial species, ROSE elements (cis-acting) were visible controlling heat-shock genes.
291: 278:
but once a change occurs in temperature, it melts and activates protein production. C. reinhardtii’s RNA thermometer research is the entryway to observing the chloroplast of photosynthetic organisms for gene regulation and how it can be used for agriculture at some point in the future since it helps plants get accustomed to external temperature.
22: 222:, found in the 5’-UTR of the psaA mRNA. Its function was different especially because it was considered absent, it has a hairpin-type secondary structure that protects the Shine–Dalgarno sequence when temperature is low, but once a change occurs in temperature, it melts and activates protein production. 210:
Biological reactions and organism are sensitive to temperature for cell function. RNA thermometers are an efficient way to respond to temperature because as they allow cells to monitor and sense changes to maintain the cell alive and stable. DNA, RNA, or protein-induced mechanisms avoid small changes
281:
ROSE elements, are a bacterial RNA thermometer class that regulates the activation of genes that have small heat shock proteins. It melts at a moderate level parallel to the increase of the temperature surrounding its environment. Once it fully melts at a high temperature of ~42 °C, it proceeds
277:
The first RNA thermometer discovered in chloroplast of Chlamydomonas reinhardtii, found in the 5’-UTR of the psaA mRNA. Its function was different especially because it was considered absent, it has a hairpin-type secondary structure that protects the Shine–Dalgarno sequence when temperature is low,
214:
Bacteria use RNA thermometers to enter and survive in their hosts by mounting themselves to their host and causing fluctuations in their temperature. The bacteria can respond quickly against heat-shock and cold-shock conditions since RNA thermometers control gene expression at a translational level.
323:
Detailed structural analysis of the ROSE RNA thermometer revealed that the mismatched bases are actually engaged in nonstandard basepairing that preserves the helical structure of the RNA (see figure). The unusual basepairs consist of G-G, U-U, and UC-U pairs. Since these noncanonical base pairs
561:
due to their wide-scale distribution in distantly-related organisms. It has been proposed that, in the RNA world, RNA thermosensors would have been responsible for temperature-dependent regulation of other RNA molecules. RNA thermometers in modern organisms may be
391:
UTR of messenger RNA, upstream of a protein-coding gene. Here they are able to occlude the ribosome binding site (RBS) and prevent translation of the mRNA into protein. As temperature increases, the hairpin structure can 'melt' and expose the RBS or
226:
RNA thermometer research is the entryway to observing the chloroplast of photosynthetic organisms for gene regulation and how it can be used for agriculture at some point in the future since it helps plants get accustomed to external temperature.
57:. Its unique characteristic it is that it does not need proteins or metabolites to function, but only reacts to temperature changes. RNA thermometers often regulate genes required during either a 199:
searches have been employed to uncover several novel candidate RNA thermometers. Traditional sequence-based searches are inefficient, however, as the secondary structure of the element is much more
1099:
Altuvia S, Kornitzer D, Teff D, Oppenheim AB (November 1989). "Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation".
613: 603: 131: 1943:
Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S, Masui R (August 2010). "Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus".
320:
with a small number of mismatched base pairs which reduce the stability of the structure, thereby allowing easier unfolding in response to a temperature increase.
466:
Though typically associated with heat-induced protein expression, RNA thermometers can also regulate cold-shock proteins. For example, the expression of two 7
1317:
Waldminghaus T, Gaubig LC, Narberhaus F (November 2007). "Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers".
404:, typically found 8 nucleotides downstream of the Shine-Dalgarno sequence, signals the beginning of a protein-coding gene which is then translated to a 1186:
Altuvia S, Kornitzer D, Kobi S, Oppenheim AB (April 1991). "Functional and structural elements of the mRNA of the cIII gene of bacteriophage lambda".
170:
life cycle in λ phage, with high concentrations of cIII promoting lysogeny. Further study of this upstream RNA region identified two alternative
324:
are relatively unstable, increased temperature causes local melting of the RNA structure in this region, exposing the Shine-Dalgarno sequence.
1363:
Sharma P, Mondal K, Kumar S, Tamang S, Najar IN, Das S, et al. (October 2022). "RNA thermometers in bacteria: Role in thermoregulation".
1465: 839: 2249: 178:
concentration and temperature. This RNA thermometer is now thought to encourage entry to a lytic cycle under heat stress in order for the
1595:
Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F (December 2005). "RNA thermometers are common in alpha- and gamma-proteobacteria".
904:"Translational regulation of Hsp90 mRNA. AUG-proximal 5'-untranslated region elements essential for preferential heat shock translation" 997:"Role for cis-acting RNA sequences in the temperature-dependent expression of the multiadhesive lig proteins in Leptospira interrogans" 736:
Raza A, Siddique KH, Hu Z (February 2024). "Chloroplast gene control: unlocking RNA thermometer mechanisms in photosynthetic systems".
543: 388: 112: 84:
in response to temperature fluctuations. This structural transition can then expose or occlude important regions of RNA such as a
1492:
Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E (March 2006). "RNA-mediated response to heat shock in mammalian cells".
342: 650: 645: 492: 451:
ion concentration has also been shown to affect the stability of FourU. The most well-studied RNA thermometer is found in the
447:
opposite the Shine-Dalgarno sequence becomes unpaired and allows the mRNA to enter the ribosome for translation to occur.
271: 575: 123: 150:
The first temperature-sensitive RNA element was reported in 1989. Prior to this research, mutations upstream from the
236: 162:
were found to affect the level of translation of the cIII protein. This protein is involved in selection of either a
542:, with different sequences acting as biocatalysts, regulators and sensors. The hypothesis then proposes that modern 655: 313: 634: 517: 459:. This thermosensor upregulates heat shock proteins under high temperatures through σ, a specialised heat-shock 327:
Some RNA thermometers are significantly more complex than a single hairpin, as in the case of a region found in
628: 510: 151: 1267:"Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor" 2244: 1736:"Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli" 393: 376: 30: 302:
RNA thermometers are structurally simple and can be made from short RNA sequences; the smallest is just 44
505: 413: 558: 204: 89: 85: 328: 316:. Generally these RNA elements range in length from 60 to 110 nucleotides and they typically contain a 2037: 1897: 1501: 533: 476: 175: 104: 427: 660: 435: 171: 135: 77: 62: 1620: 1525: 1342: 1139:"Translational regulatory signals within the coding region of the bacteriophage lambda cIII gene" 538:
The RNA world hypothesis states that RNA was once both the carrier of hereditary information and
240: 200: 81: 1693:
Giuliodori AM, Di Pietro F, Marzi S, Masquida B, Wagner R, Romby P, et al. (January 2010).
1409:"Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs" 2221: 2172: 2151:"Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon" 2131: 2096: 2001: 1960: 1925: 1866: 1817: 1765: 1716: 1672: 1612: 1577: 1517: 1471: 1461: 1430: 1380: 1334: 1296: 1247: 1203: 1168: 1116: 1078: 1026: 977: 925: 881: 835: 805: 749: 709: 547: 481: 341:
RNA thermometers have been designed with just a simple single-hairpin structure. However, the
338: 139: 119: 26: 2211: 2203: 2162: 2123: 2086: 2078: 2045: 2028: 1991: 1952: 1915: 1905: 1856: 1848: 1807: 1799: 1755: 1747: 1706: 1662: 1654: 1604: 1567: 1559: 1509: 1453: 1420: 1372: 1326: 1286: 1278: 1237: 1195: 1158: 1150: 1108: 1068: 1060: 1016: 1008: 967: 959: 915: 871: 795: 785: 741: 701: 624: 607: 467: 295: 191: 1695:"The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA" 946:
Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (December 2001).
167: 54: 1978:
Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P (September 2002).
2041: 1901: 1505: 2091: 2066: 2019: 1920: 1885: 1861: 1836: 1812: 1787: 1760: 1735: 1667: 1642: 1572: 1547: 1073: 1048: 1021: 996: 800: 773: 346: 196: 174:; experimental study found the structures to be interchangeable, and dependent on both 50: 2216: 2191: 1996: 1980:"An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes" 1979: 1452:. Contributions to Microbiology. Vol. 16. Basel: S. Karger AG. pp. 150–160. 1291: 1266: 1163: 1138: 2238: 2207: 2192:"Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens" 1199: 1112: 972: 947: 876: 859: 563: 308: 244: 179: 66: 2067:"Ribozymes, riboswitches and beyond: regulation of gene expression without proteins" 1624: 1346: 2114:
Bocobza SE, Aharoni A (October 2008). "Switching the light on plant riboswitches".
1529: 705: 460: 420: 186: 155: 108: 100: 2127: 1154: 745: 1910: 1711: 1694: 1658: 1376: 588:, increasing the translation rate of the heat shock protein at high temperatures. 433:
A specific example of an RNA thermometer motif is the FourU thermometer found in
270:(HSF1) and induces protective proteins when cell temperature exceeds 37 °C ( 185:
The term "RNA thermometer" was not coined until 1999, when it was applied to the
551: 471: 401: 163: 46: 1956: 642:
mRNA, and repress heat shock protein translation at physiological temperatures.
1330: 692:
Narberhaus F, Waldminghaus T, Chowdhury S (January 2006). "RNA thermometers".
584: 363: 332: 303: 255: 70: 58: 1563: 1047:
Kortmann J, Sczodrok S, Rinnenthal J, Schwalbe H, Narberhaus F (April 2011).
963: 948:"A mRNA-based thermosensor controls expression of rhizobial heat shock genes" 790: 566:
which could hint at a previously more widespread importance in an RNA world.
500: 448: 444: 440: 317: 2225: 2176: 2167: 2150: 2135: 2100: 2005: 1964: 1929: 1870: 1821: 1769: 1720: 1676: 1616: 1581: 1521: 1475: 1434: 1384: 1338: 1300: 1251: 1082: 1030: 981: 929: 920: 903: 885: 809: 753: 713: 247:
and inherent difficulties of detecting short, unconserved RNA sequences in
1837:"Modulation of the stability of the Salmonella fourU-type RNA thermometer" 1425: 1408: 1265:
Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (March 1999).
1207: 1172: 1120: 1064: 290: 1852: 1751: 1282: 1242: 1225: 774:"RNA structure mediated thermoregulation: What can we learn from plants?" 488: 409: 345:
of such short RNA thermometers can be sensitive to mutation, as a single
248: 1803: 1608: 1513: 1012: 487:
RNA thermometers sensitive to temperatures of 37 °C can be used by
65:
response, but have been implicated in other regulatory roles such as in
405: 351: 1457: 832:
The RNA world: the nature of modern RNA suggests a prebiotic RNA world
2050: 2023: 595: 539: 524:, and fluorescence was observed at 37 °C but not at 30 °C. 259: 2082: 1835:
Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H (October 2011).
520:
gene; the gene fusion was then transcribed from the T7 promoter in
579: 362: 289: 263: 20: 1365:
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
1448:
Johansson J (2009). "RNA thermosensors in bacterial pathogens".
858:
Waldminghaus T, Heidrich N, Brantl S, Narberhaus F (July 2007).
267: 243:—though it has been suggested this fact may be due, in part, to 159: 93: 21: 1548:"Molecular basis for temperature sensing by an RNA thermometer" 430:
where it is thought to be involved in the starvation response.
266:. The candidate thermosensor heat shock RNA-1 (HSR1) activates 397: 380: 602:
is predicted to contain two co-operative RNA thermometers: a
306:
and is found in the mRNA of a heat-shock protein, hsp17, in
2190:
Balsiger S, Ragaz C, Baron C, Narberhaus F (October 2004).
1546:
Chowdhury S, Maris C, Allain FH, Narberhaus F (June 2006).
1049:"Translation on demand by a simple RNA-based thermosensor" 400:), which then assembles other translation machinery. The 2149:
Gaubig LC, Waldminghaus T, Narberhaus F (January 2011).
1788:"Thermodynamics of RNA melting, one base pair at a time" 1886:"Is thermosensing property of RNA thermometers unique?" 834:. Plainview, N.Y: Cold Spring Harbor Laboratory Press. 491:
to activate infection-specific genes. For example, the
218:
The first RNA thermometer discovered in chloroplast of
76:
In general, RNA thermometers operate by changing their
860:"FourU: a novel type of RNA thermometer in Salmonella" 1312: 1310: 439:. When exposed to temperatures above 45 °C, the 557:
RNA thermometers and riboswitches are thought to be
470:
proteins are regulated by an RNA thermometer in the
1945:
Biochemical and Biophysical Research Communications
1884:Shah P, Gilchrist MA (July 2010). Spirin AS (ed.). 853: 851: 1688: 1686: 1402: 1400: 1398: 1396: 1394: 995:Matsunaga J, Schlax PJ, Haake DA (November 2013). 396:to permit binding of the small ribosomal subunit ( 111:present in cells, and was replaced by the current 107:. This theory proposes that RNA was once the sole 1487: 1485: 772:Thomas SE, Balcerowicz M, Chung BY (2022-08-17). 687: 685: 683: 681: 679: 677: 675: 1781: 1779: 1541: 1539: 550:replaced the majority of RNA's roles with other 258:, a potential RNA thermometer has been found in 1636: 1634: 1132: 1130: 1094: 1092: 1042: 1040: 480:and a similar mechanism has been identified in 274:), thus preventing the cells from overheating. 235:Most known RNA thermometers are located in the 182:to rapidly replicate and escape the host cell. 1734:Neupert J, Karcher D, Bock R (November 2008). 1358: 1356: 499:, encoding a key transcriptional regulator of 1786:Nikolova EN, Al-Hashimi HM (September 2010). 1219: 1217: 941: 939: 825: 823: 821: 819: 767: 765: 763: 379:becomes exposed, allowing the binding of the 8: 897: 895: 731: 729: 727: 725: 723: 638:respectively. They exist in the 5′ UTR of 294:3D representation of the structure of the 2215: 2166: 2090: 2049: 1995: 1919: 1909: 1860: 1811: 1759: 1710: 1666: 1571: 1424: 1290: 1241: 1162: 1072: 1020: 971: 919: 875: 799: 789: 528:Implications for the RNA world hypothesis 103:, are used as examples in support of the 830:Atkins JF, Gesteland RF, Cech T (2006). 211:because by sensing any external changes 671: 2065:Serganov A, Patel DJ (October 2007). 1137:Altuvia S, Oppenheim AB (July 1986). 118:Examples of RNA thermometers include 7: 902:Ahmed R, Duncan RF (November 2004). 908:The Journal of Biological Chemistry 371:) unwinds at a higher temperature ( 16:Temperature-dependent RNA structure 426:RNA thermometer has been found in 387:RNA thermometers are found in the 14: 509:, was demonstrated by fusing the 268:heat-shock transcription factor 1 2208:10.1128/JB.186.20.6824-6829.2004 877:10.1111/j.1365-2958.2007.05794.x 349:can render the hairpin inactive 335:, as well as multiple hairpins. 239:(UTR) of messenger RNA encoding 92:rate of a nearby protein-coding 1450:Bacterial Sensing and Signaling 1319:Molecular Genetics and Genomics 646:Cyanobacterial RNA thermometers 544:DNA, RNA and protein-based life 419:mechanism, a lone example of a 1643:"RNA switches out in the cold" 706:10.1111/j.1574-6976.2005.004.x 331:which is thought to contain a 254:Though predominantly found in 1: 2128:10.1016/j.tplants.2008.07.004 1997:10.1016/S0092-8674(02)00905-4 1155:10.1128/jb.167.1.415-419.1986 746:10.1016/j.tplants.2024.01.005 99:RNA thermometers, along with 1911:10.1371/journal.pone.0011308 1712:10.1016/j.molcel.2009.11.033 1659:10.1016/j.molcel.2009.12.032 1377:10.1016/j.bbagrm.2022.194871 1200:10.1016/0022-2836(91)90261-4 1188:Journal of Molecular Biology 1113:10.1016/0022-2836(89)90329-X 1101:Journal of Molecular Biology 576:Hsp90 cis-regulatory element 2250:Cis-regulatory RNA elements 1641:Breaker RR (January 2010). 2266: 1957:10.1016/j.bbrc.2010.07.065 778:Frontiers in Plant Science 656:Neisseria RNA thermometers 651:Intergenic RNA thermometer 531: 189:RNA element identified in 88:, which then affects the 1331:10.1007/s00438-007-0272-7 694:FEMS Microbiology Reviews 635:Agrobacterium tumefaciens 518:green fluorescent protein 220:Chlamydomonas reinhardtii 53:molecule which regulates 2071:Nature Reviews. Genetics 1564:10.1038/sj.emboj.7601128 791:10.3389/fpls.2022.938570 629:Bradyrhizobium japonicum 152:transcription start site 2196:Journal of Bacteriology 2116:Trends in Plant Science 1271:Genes & Development 1230:Genes & Development 1143:Journal of Bacteriology 1001:Journal of Bacteriology 738:Trends in Plant Science 394:Shine-Dalgarno sequence 377:Shine-Dalgarno sequence 31:Shine-Dalgarno sequence 2168:10.1099/mic.0.043802-0 1841:Nucleic Acids Research 1740:Nucleic Acids Research 1224:Storz G (March 1999). 1053:Nucleic Acids Research 964:10.1093/nar/29.23.4800 952:Nucleic Acids Research 921:10.1074/jbc.M404681200 864:Molecular Microbiology 559:evolutionarily ancient 506:Listeria monocytogenes 412:. In addition to this 384: 299: 237:5′ untranslated region 34: 1426:10.4161/rna.7.1.10501 1407:Narberhaus F (2010). 366: 293: 205:nucleic acid sequence 86:ribosome binding site 24: 1597:Biological Chemistry 1283:10.1101/gad.13.6.655 1243:10.1101/gad.13.6.633 1226:"An RNA thermometer" 540:enzymatically active 534:RNA world hypothesis 477:Thermus thermophilus 172:secondary structures 105:RNA world hypothesis 29:RNA motif, with the 2042:1986Natur.319..618G 1902:2010PLoSO...511308S 1804:10.1261/rna.2235010 1609:10.1515/BC.2005.145 1514:10.1038/nature04518 1506:2006Natur.440..556S 1065:10.1093/nar/gkq1252 1013:10.1128/jb.00663-13 914:(48): 49919–49930. 661:Lig RNA thermometer 436:Salmonella enterica 383:ribosomal subunit. 375:). The highlighted 343:secondary structure 241:heat shock proteins 136:Lig RNA thermometer 128:-regulatory element 113:DNA → RNA → protein 78:secondary structure 1853:10.1093/nar/gkr314 1752:10.1093/nar/gkn545 385: 367:A stable hairpin ( 300: 82:tertiary structure 35: 2202:(20): 6824–6829. 2022:(February 1986). 1847:(18): 8258–8270. 1603:(12): 1279–1286. 1558:(11): 2487–2497. 1500:(7083): 556–560. 1467:978-3-8055-9132-4 1458:10.1159/000219378 1007:(22): 5092–5101. 958:(23): 4800–4807. 841:978-0-87969-739-6 564:molecular fossils 482:Enterobacteriales 195:. More recently, 140:Hsp17 thermometer 27:FourU thermometer 2257: 2230: 2229: 2219: 2187: 2181: 2180: 2170: 2146: 2140: 2139: 2111: 2105: 2104: 2094: 2062: 2056: 2055: 2053: 2051:10.1038/319618a0 2016: 2010: 2009: 1999: 1975: 1969: 1968: 1940: 1934: 1933: 1923: 1913: 1881: 1875: 1874: 1864: 1832: 1826: 1825: 1815: 1798:(9): 1687–1691. 1783: 1774: 1773: 1763: 1731: 1725: 1724: 1714: 1690: 1681: 1680: 1670: 1638: 1629: 1628: 1592: 1586: 1585: 1575: 1552:The EMBO Journal 1543: 1534: 1533: 1489: 1480: 1479: 1445: 1439: 1438: 1428: 1404: 1389: 1388: 1360: 1351: 1350: 1314: 1305: 1304: 1294: 1262: 1256: 1255: 1245: 1221: 1212: 1211: 1183: 1177: 1176: 1166: 1134: 1125: 1124: 1096: 1087: 1086: 1076: 1059:(7): 2855–2868. 1044: 1035: 1034: 1024: 992: 986: 985: 975: 943: 934: 933: 923: 899: 890: 889: 879: 855: 846: 845: 827: 814: 813: 803: 793: 769: 758: 757: 733: 718: 717: 689: 625:hyphomicrobiales 608:IbpB thermometer 457:Escherichia coli 298:RNA thermometer. 272:body temperature 224:C. reinhardtii’s 192:Escherichia coli 156:lambda (λ) phage 43:RNA thermosensor 2265: 2264: 2260: 2259: 2258: 2256: 2255: 2254: 2235: 2234: 2233: 2189: 2188: 2184: 2161:(Pt 1): 66–76. 2148: 2147: 2143: 2122:(10): 526–533. 2113: 2112: 2108: 2083:10.1038/nrg2172 2077:(10): 776–790. 2064: 2063: 2059: 2024:"The RNA World" 2018: 2017: 2013: 1977: 1976: 1972: 1942: 1941: 1937: 1883: 1882: 1878: 1834: 1833: 1829: 1785: 1784: 1777: 1733: 1732: 1728: 1692: 1691: 1684: 1640: 1639: 1632: 1594: 1593: 1589: 1545: 1544: 1537: 1491: 1490: 1483: 1468: 1447: 1446: 1442: 1406: 1405: 1392: 1362: 1361: 1354: 1316: 1315: 1308: 1264: 1263: 1259: 1223: 1222: 1215: 1185: 1184: 1180: 1136: 1135: 1128: 1098: 1097: 1090: 1046: 1045: 1038: 994: 993: 989: 945: 944: 937: 901: 900: 893: 857: 856: 849: 842: 829: 828: 817: 771: 770: 761: 735: 734: 721: 691: 690: 673: 669: 621: 617: 572: 536: 530: 408:product by the 361: 288: 233: 148: 55:gene expression 39:RNA thermometer 17: 12: 11: 5: 2263: 2261: 2253: 2252: 2247: 2245:Non-coding RNA 2237: 2236: 2232: 2231: 2182: 2141: 2106: 2057: 2011: 1990:(5): 551–561. 1970: 1951:(3): 336–340. 1935: 1876: 1827: 1775: 1726: 1699:Molecular Cell 1682: 1647:Molecular Cell 1630: 1587: 1535: 1481: 1466: 1440: 1390: 1352: 1325:(5): 555–564. 1306: 1277:(6): 655–665. 1257: 1236:(6): 633–636. 1213: 1194:(4): 723–733. 1178: 1149:(1): 415–419. 1126: 1107:(2): 265–280. 1088: 1036: 987: 935: 891: 870:(2): 413–424. 847: 840: 815: 759: 719: 670: 668: 665: 664: 663: 658: 653: 648: 643: 619: 615: 611: 589: 571: 570:Other examples 568: 532:Main article: 529: 526: 360: 357: 287: 284: 232: 229: 197:bioinformatics 147: 144: 51:non-coding RNA 15: 13: 10: 9: 6: 4: 3: 2: 2262: 2251: 2248: 2246: 2243: 2242: 2240: 2227: 2223: 2218: 2213: 2209: 2205: 2201: 2197: 2193: 2186: 2183: 2178: 2174: 2169: 2164: 2160: 2156: 2152: 2145: 2142: 2137: 2133: 2129: 2125: 2121: 2117: 2110: 2107: 2102: 2098: 2093: 2088: 2084: 2080: 2076: 2072: 2068: 2061: 2058: 2052: 2047: 2043: 2039: 2036:(6055): 618. 2035: 2031: 2030: 2025: 2021: 2015: 2012: 2007: 2003: 1998: 1993: 1989: 1985: 1981: 1974: 1971: 1966: 1962: 1958: 1954: 1950: 1946: 1939: 1936: 1931: 1927: 1922: 1917: 1912: 1907: 1903: 1899: 1896:(7): e11308. 1895: 1891: 1887: 1880: 1877: 1872: 1868: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1831: 1828: 1823: 1819: 1814: 1809: 1805: 1801: 1797: 1793: 1789: 1782: 1780: 1776: 1771: 1767: 1762: 1757: 1753: 1749: 1745: 1741: 1737: 1730: 1727: 1722: 1718: 1713: 1708: 1704: 1700: 1696: 1689: 1687: 1683: 1678: 1674: 1669: 1664: 1660: 1656: 1652: 1648: 1644: 1637: 1635: 1631: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1591: 1588: 1583: 1579: 1574: 1569: 1565: 1561: 1557: 1553: 1549: 1542: 1540: 1536: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1488: 1486: 1482: 1477: 1473: 1469: 1463: 1459: 1455: 1451: 1444: 1441: 1436: 1432: 1427: 1422: 1418: 1414: 1410: 1403: 1401: 1399: 1397: 1395: 1391: 1386: 1382: 1378: 1374: 1371:(7): 194871. 1370: 1366: 1359: 1357: 1353: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1313: 1311: 1307: 1302: 1298: 1293: 1288: 1284: 1280: 1276: 1272: 1268: 1261: 1258: 1253: 1249: 1244: 1239: 1235: 1231: 1227: 1220: 1218: 1214: 1209: 1205: 1201: 1197: 1193: 1189: 1182: 1179: 1174: 1170: 1165: 1160: 1156: 1152: 1148: 1144: 1140: 1133: 1131: 1127: 1122: 1118: 1114: 1110: 1106: 1102: 1095: 1093: 1089: 1084: 1080: 1075: 1070: 1066: 1062: 1058: 1054: 1050: 1043: 1041: 1037: 1032: 1028: 1023: 1018: 1014: 1010: 1006: 1002: 998: 991: 988: 983: 979: 974: 969: 965: 961: 957: 953: 949: 942: 940: 936: 931: 927: 922: 917: 913: 909: 905: 898: 896: 892: 887: 883: 878: 873: 869: 865: 861: 854: 852: 848: 843: 837: 833: 826: 824: 822: 820: 816: 811: 807: 802: 797: 792: 787: 783: 779: 775: 768: 766: 764: 760: 755: 751: 747: 743: 739: 732: 730: 728: 726: 724: 720: 715: 711: 707: 703: 699: 695: 688: 686: 684: 682: 680: 678: 676: 672: 666: 662: 659: 657: 654: 652: 649: 647: 644: 641: 637: 636: 631: 630: 626: 623:are found in 622: 612: 609: 605: 601: 597: 594: 590: 587: 586: 581: 577: 574: 573: 569: 567: 565: 560: 555: 553: 549: 545: 541: 535: 527: 525: 523: 519: 515: 514: 508: 507: 502: 498: 494: 490: 485: 483: 479: 478: 473: 469: 464: 462: 458: 454: 450: 446: 442: 438: 437: 431: 429: 425: 423: 418: 416: 411: 407: 403: 399: 395: 390: 382: 378: 374: 370: 365: 358: 356: 354: 353: 348: 344: 340: 336: 334: 330: 325: 321: 319: 315: 311: 310: 309:Synechocystis 305: 297: 292: 285: 283: 279: 275: 273: 269: 265: 261: 257: 252: 250: 246: 245:sampling bias 242: 238: 230: 228: 225: 221: 216: 212: 208: 206: 202: 198: 194: 193: 188: 183: 181: 180:bacteriophage 177: 176:magnesium ion 173: 169: 165: 161: 157: 153: 145: 143: 141: 137: 133: 129: 127: 121: 116: 114: 110: 106: 102: 97: 95: 91: 87: 83: 79: 74: 72: 68: 67:pathogenicity 64: 60: 56: 52: 48: 44: 40: 32: 28: 23: 19: 2199: 2195: 2185: 2158: 2155:Microbiology 2154: 2144: 2119: 2115: 2109: 2074: 2070: 2060: 2033: 2027: 2014: 1987: 1983: 1973: 1948: 1944: 1938: 1893: 1889: 1879: 1844: 1840: 1830: 1795: 1791: 1746:(19): e124. 1743: 1739: 1729: 1705:(1): 21–33. 1702: 1698: 1650: 1646: 1600: 1596: 1590: 1555: 1551: 1497: 1493: 1449: 1443: 1419:(1): 84–89. 1416: 1412: 1368: 1364: 1322: 1318: 1274: 1270: 1260: 1233: 1229: 1191: 1187: 1181: 1146: 1142: 1104: 1100: 1056: 1052: 1004: 1000: 990: 955: 951: 911: 907: 867: 863: 831: 781: 777: 737: 697: 693: 639: 633: 627: 604:ROSE element 599: 592: 583: 556: 552:biomolecules 546:evolved and 537: 521: 512: 504: 496: 493:upregulation 486: 475: 472:thermophilic 465: 461:sigma factor 456: 452: 434: 432: 421: 414: 386: 372: 368: 350: 337: 326: 322: 307: 301: 280: 276: 253: 249:genomic data 234: 231:Distribution 223: 219: 217: 213: 209: 190: 184: 149: 132:ROSE element 125: 117: 109:nucleic acid 101:riboswitches 98: 75: 42: 38: 36: 33:highlighted. 18: 1413:RNA Biology 700:(1): 3–16. 402:start codon 347:base change 304:nucleotides 256:prokaryotes 90:translation 49:-sensitive 47:temperature 2239:Categories 1653:(1): 1–2. 784:: 938570. 667:References 585:Drosophila 578:regulates 511:5′ DNA of 474:bacterium 445:base-pairs 333:pseudoknot 262:including 138:, and the 71:starvation 63:cold shock 59:heat shock 2020:Gilbert W 548:selection 503:genes in 501:virulence 489:pathogens 441:stem-loop 428:RpoS mRNA 359:Mechanism 339:Synthetic 329:CspA mRNA 286:Structure 203:than the 201:conserved 168:lysogenic 146:Discovery 2226:15466035 2177:20864473 2136:18778966 2101:17846637 2006:12230973 1965:20655297 1930:20625392 1890:PLOS ONE 1871:21727085 1822:20660079 1770:18753148 1721:20129052 1677:20129048 1625:84557068 1617:16336122 1582:16710302 1522:16554823 1476:19494584 1435:20009504 1385:36041664 1347:24747327 1339:17647020 1301:10090722 1252:10090718 1083:21131278 1031:24013626 982:11726689 930:15347681 886:17630972 810:36092413 754:38311501 714:16438677 618:and ROSE 606:and the 455:gene in 410:ribosome 314:PCC 6803 312:species 115:system. 2092:4689321 2038:Bibcode 1921:2896394 1898:Bibcode 1862:3185406 1813:2924531 1761:2577334 1668:5315359 1573:1478195 1530:4311262 1502:Bibcode 1208:1827163 1173:2941413 1121:2532257 1074:3074152 1022:3811586 801:9450479 600:E. coli 522:E. coli 516:to the 424:-acting 417:-acting 406:peptide 352:in vivo 318:hairpin 260:mammals 45:) is a 2224:  2217:522190 2214:  2175:  2134:  2099:  2089:  2029:Nature 2004:  1963:  1928:  1918:  1869:  1859:  1820:  1810:  1768:  1758:  1719:  1675:  1665:  1623:  1615:  1580:  1570:  1528:  1520:  1494:Nature 1474:  1464:  1433:  1383:  1345:  1337:  1299:  1292:316556 1289:  1250:  1206:  1171:  1164:212897 1161:  1119:  1081:  1071:  1029:  1019:  980:  970:  928:  884:  838:  808:  798:  752:  712:  596:operon 264:humans 134:, the 130:, the 124:Hsp90 122:, the 1621:S2CID 1526:S2CID 1343:S2CID 973:96696 593:ibpAB 580:hsp90 443:that 422:trans 373:right 164:lytic 158:cIII 154:in a 120:FourU 2222:PMID 2173:PMID 2132:PMID 2097:PMID 2002:PMID 1984:Cell 1961:PMID 1926:PMID 1867:PMID 1818:PMID 1766:PMID 1717:PMID 1673:PMID 1613:PMID 1578:PMID 1518:PMID 1472:PMID 1462:ISBN 1431:PMID 1381:PMID 1369:1865 1335:PMID 1297:PMID 1248:PMID 1204:PMID 1169:PMID 1117:PMID 1079:PMID 1027:PMID 978:PMID 926:PMID 882:PMID 836:ISBN 806:PMID 750:PMID 710:PMID 640:HspA 632:and 614:ROSE 591:The 513:prfA 497:prfA 453:rpoH 369:left 296:ROSE 187:rpoH 160:mRNA 94:gene 80:and 69:and 41:(or 25:The 2212:PMC 2204:doi 2200:186 2163:doi 2159:157 2124:doi 2087:PMC 2079:doi 2046:doi 2034:319 1992:doi 1988:110 1953:doi 1949:399 1916:PMC 1906:doi 1857:PMC 1849:doi 1808:PMC 1800:doi 1792:RNA 1756:PMC 1748:doi 1707:doi 1663:PMC 1655:doi 1605:doi 1601:386 1568:PMC 1560:doi 1510:doi 1498:440 1454:doi 1421:doi 1373:doi 1327:doi 1323:278 1287:PMC 1279:doi 1238:doi 1196:doi 1192:218 1159:PMC 1151:doi 1147:167 1109:doi 1105:210 1069:PMC 1061:doi 1017:PMC 1009:doi 1005:195 968:PMC 960:doi 916:doi 912:279 872:doi 796:PMC 786:doi 742:doi 702:doi 620:AT2 598:of 582:in 495:of 468:kDa 415:cis 398:30S 381:30S 166:or 126:cis 61:or 37:An 2241:: 2220:. 2210:. 2198:. 2194:. 2171:. 2157:. 2153:. 2130:. 2120:13 2118:. 2095:. 2085:. 2073:. 2069:. 2044:. 2032:. 2026:. 2000:. 1986:. 1982:. 1959:. 1947:. 1924:. 1914:. 1904:. 1892:. 1888:. 1865:. 1855:. 1845:39 1843:. 1839:. 1816:. 1806:. 1796:16 1794:. 1790:. 1778:^ 1764:. 1754:. 1744:36 1742:. 1738:. 1715:. 1703:37 1701:. 1697:. 1685:^ 1671:. 1661:. 1651:37 1649:. 1645:. 1633:^ 1619:. 1611:. 1599:. 1576:. 1566:. 1556:25 1554:. 1550:. 1538:^ 1524:. 1516:. 1508:. 1496:. 1484:^ 1470:. 1460:. 1429:. 1415:. 1411:. 1393:^ 1379:. 1367:. 1355:^ 1341:. 1333:. 1321:. 1309:^ 1295:. 1285:. 1275:13 1273:. 1269:. 1246:. 1234:13 1232:. 1228:. 1216:^ 1202:. 1190:. 1167:. 1157:. 1145:. 1141:. 1129:^ 1115:. 1103:. 1091:^ 1077:. 1067:. 1057:39 1055:. 1051:. 1039:^ 1025:. 1015:. 1003:. 999:. 976:. 966:. 956:29 954:. 950:. 938:^ 924:. 910:. 906:. 894:^ 880:. 868:65 866:. 862:. 850:^ 818:^ 804:. 794:. 782:13 780:. 776:. 762:^ 748:. 740:. 722:^ 708:. 698:30 696:. 674:^ 554:. 484:. 463:. 449:Mg 389:5′ 355:. 251:. 207:. 142:. 96:. 73:. 2228:. 2206:: 2179:. 2165:: 2138:. 2126:: 2103:. 2081:: 2075:8 2054:. 2048:: 2040:: 2008:. 1994:: 1967:. 1955:: 1932:. 1908:: 1900:: 1894:5 1873:. 1851:: 1824:. 1802:: 1772:. 1750:: 1723:. 1709:: 1679:. 1657:: 1627:. 1607:: 1584:. 1562:: 1532:. 1512:: 1504:: 1478:. 1456:: 1437:. 1423:: 1417:7 1387:. 1375:: 1349:. 1329:: 1303:. 1281:: 1254:. 1240:: 1210:. 1198:: 1175:. 1153:: 1123:. 1111:: 1085:. 1063:: 1033:. 1011:: 984:. 962:: 932:. 918:: 888:. 874:: 844:. 812:. 788:: 756:. 744:: 716:. 704:: 616:1 610:.

Index


FourU thermometer
Shine-Dalgarno sequence
temperature
non-coding RNA
gene expression
heat shock
cold shock
pathogenicity
starvation
secondary structure
tertiary structure
ribosome binding site
translation
gene
riboswitches
RNA world hypothesis
nucleic acid
DNA → RNA → protein
FourU
Hsp90 cis-regulatory element
ROSE element
Lig RNA thermometer
Hsp17 thermometer
transcription start site
lambda (λ) phage
mRNA
lytic
lysogenic
secondary structures

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.