Knowledge (XXG)

Single-stage-to-orbit

Source ๐Ÿ“

2611:(SDI) program office, was an attempt to build a vehicle that could lead to an SSTO vehicle. The one-third-size test craft was operated and maintained by a small team of three people based out of a trailer, and the craft was once relaunched less than 24 hours after landing. Although the test program was not without mishap (including a minor explosion), the DC-X demonstrated that the maintenance aspects of the concept were sound. That project was cancelled when it landed with three of four legs deployed, tipped over, and exploded on the fourth flight after transferring management from the 1701: 300: 2557:, a SSTO rocket launching an identical payload mass and using the same propellants will always require a substantially smaller structural coefficient to achieve the same delta-v. Given that current materials technology places a lower limit of approximately 0.1 on the smallest structural coefficients attainable, reusable SSTO vehicles are typically an impractical choice even when using the highest performance propellants available. 5068: 549: 656: 33: 858:
the payload/weight ratio of a single-stage rocket approach that of a two-stage. A slight miscalculation and the single-stage rocket winds up with no payload. To get any at all, technology needs to be stretched to the limit. Squeezing out the last drop of specific impulse, and shaving off the last pound, costs money and/or reduces reliability.
617:, using a vacuum bell in atmosphere would have disastrous consequences for the engine. Engines designed to fire in atmosphere therefore have to shorten the nozzle, only expanding the gasses to atmospheric pressure. The efficiency losses due to the smaller bell are usually mitigated via staging, as upper stage engines such as the 163: 825:
in excess of 1, enabling them to lift off. Clearly, one of the main issues with nuclear propulsion would be safety, both during a launch for the passengers, but also in case of a failure during launch. As of February 2024, no current program is attempting nuclear propulsion from Earth's surface.
741:
It is important to note that mass fraction is an important concept in the engineering of a rocket. However, mass fraction may have little to do with the costs of a rocket, as the costs of fuel are very small when compared to the costs of the engineering program as a whole. As a result, a cheap rocket
310:
The DC-X, short for Delta Clipper Experimental, was an uncrewed one-third scale vertical takeoff and landing demonstrator for a proposed SSTO. It is one of only a few prototype SSTO vehicles ever built. Several other prototypes were intended, including the DC-X2 (a half-scale prototype) and the DC-Y,
857:
Using similar technologies (i.e., the same propellants and structural fraction), a two-stage-to-orbit vehicle will always have a better payload-to-weight ratio than a single stage designed for the same mission, in most cases, a very much better . Only when the structural factor approaches zero does
646:
Still, at very high altitudes, the extremely large engine bells tend to expand the exhaust gases down to near vacuum pressures. As a result, these engine bells are counterproductive due to their excess weight. Some SSTO concepts use very high pressure engines which permit high ratios to be used from
2695:
to prove the engines performance across its air-breathing and rocket modes. In November 2012, it was announced that a key test of the engine precooler had been successfully completed, and that ESA had verified the precooler's design. The project's development is now allowed to advance to its next
2225: 1871: 687:
The thrust-to-weight ratio of rockets that rely on on-board oxygen increases dramatically as fuel is expended, because the oxidizer fuel tank has about 1% of the mass as the oxidizer it carries, whereas air-breathing engines traditionally have a poor thrust/weight ratio which is relatively fixed
511:
The overall effect is that there is surprisingly little difference in overall performance between SSTOs that use hydrogen and those that use denser fuels, except that hydrogen vehicles may be rather more expensive to develop and buy. Careful studies have shown that some dense fuels (for example
503:
as well; the vehicle has to hold itself up on rocket power until it reaches orbit. The lower excess thrust of the hydrogen engines due to the lower thrust/weight ratio means that the vehicle must ascend more steeply, and so less thrust acts horizontally. Less horizontal thrust results in taking
495:
While kerosene tanks can be 1% of the weight of their contents, hydrogen tanks often must weigh 10% of their contents. This is because of both the low density and the additional insulation required to minimize boiloff (a problem which does not occur with kerosene and many other fuels). The low
74:
The main projected advantage of the SSTO concept is elimination of the hardware replacement inherent in expendable launch systems. However, the non-recurring costs associated with design, development, research and engineering (DDR&E) of reusable SSTO systems are much higher than expendable
2741:
Using this concept, some aerospace analysts believe the way to lower launch costs is the exact opposite of SSTO. Whereas reusable SSTOs would reduce per launch costs by making a reusable high-tech vehicle that launches frequently with low maintenance, the "mass production" approach views the
496:
density of hydrogen further affects the design of the rest of the vehicle: pumps and pipework need to be much larger in order to pump the fuel to the engine. The result is the thrust/weight ratio of hydrogen-fueled engines is 30โ€“50% lower than comparable engines using denser fuels.
1673: 82:
spacecraft from Earth. The principal complicating factors for SSTO from Earth are: high orbital velocity of over 7,400 metres per second (27,000 km/h; 17,000 mph); the need to overcome Earth's gravity, especially in the early stages of flight; and flight within
534:
experimental rocket has caused a number of SSTO advocates to reconsider hydrogen as a satisfactory fuel. The late Max Hunter, while employing hydrogen fuel in the DC-X, often said that he thought the first successful orbital SSTO would more likely be fueled by propane.
2742:
technical advances as a source of the cost problem in the first place. By simply building and launching large quantities of rockets, and hence launching a large volume of payload, costs can be brought down. This approach was attempted in the late 1970s, early 1980s in
840:
Because they can be more energetic than the potential energy that chemical fuel allows for, some laser or microwave powered rocket concepts have the potential to launch vehicles into orbit, single stage. In practice, this area is not possible with current technology.
400:
Whether rocket-powered or air-breathing, a reusable vehicle must be rugged enough to survive multiple round trips into space without adding excessive weight or maintenance. In addition a reusable vehicle must be able to reenter without damage, and land safely.
315:
in 1995, and they built the DC-XA, an upgraded one-third scale prototype. This vehicle was lost when it landed with only three of its four landing pads deployed, which caused it to tip over on its side and explode. The project has not been continued since.
613:. Depending on the atmospheric pressure, different bell shapes are required. Engines designed to operate in a vacuum have large bells, allowing the exhaust gasses to expand to near vacuum pressures, thereby raising efficiency. Due to an effect known as 192:
in the early 1960s. It was one of the largest spacecraft ever conceptualized with a diameter of over 50 metres and the capability to lift up to 2000 short tons into Earth orbit, intended for missions to further out locations in the Solar System such as
1280: 121:, which is a helicopter that can get to orbit. However, despite showing some promise, none of them have come close to achieving orbit yet due to problems with finding a sufficiently efficient propulsion system and discontinued development. 2403: 105:, which used the hybrid-cycle SABRE engine that can use oxygen from the atmosphere when it is at low altitude, and then using onboard liquid oxygen after switching to the closed cycle rocket engine at high altitude, the McDonnell Douglas 2011: 1704:
Comparison of growth factor sensitivity for Single-Stage-to-Orbit (SSTO) and restricted stage Two-Stage-to-Orbit (TSTO) vehicles. Based on a LEO mission of Delta v = 9.1 km/s and payload mass = 4500 kg for range of propellant
2069: 1711: 2306: 330:
From 1999 to 2001 Rotary Rocket attempted to build a SSTO vehicle called the Roton. It received a large amount of media attention and a working sub-scale prototype was completed, but the design was largely impractical.
124:
Single-stage-to-orbit is much easier to achieve on extraterrestrial bodies that have weaker gravitational fields and lower atmospheric pressure than Earth, such as the Moon and Mars, and has been achieved from the
2691:. Following a successful propulsion system test that was audited by ESA's propulsion division in mid-2012, REL announced that it would begin a three-and-a-half-year project to develop and build a test jig of the 204:
from 1963 was a similarly large craft which would have used ramjets to decrease the liftoff mass of the vehicle by removing the need for large amounts of liquid oxygen while traveling through the atmosphere.
1503: 75:
systems due to the substantial technical challenges of SSTO, assuming that those technical issues can in fact be solved. SSTO vehicles may also require a significantly higher degree of regular maintenance.
2549: 227:
ROMBUS (Reusable Orbital Module, Booster, and Utility Shuttle), another design from Philip Bono. This was not technically single stage since it dropped some of its initial hydrogen tanks, but it came very
2062: 933: 404:
While single-stage rockets were once thought to be beyond reach, advances in materials technology and construction techniques have shown them to be possible. For example, calculations show that the
719:
Similar issues occur with single-stage vehicles attempting to carry conventional jet engines to orbitโ€”the weight of the jet engines is not compensated sufficiently by the reduction in propellant.
170:
Before the second half of the twentieth century, very little research was conducted into space travel. During the 1960s, some of the first concept designs for this kind of craft began to emerge.
2451: 1922: 813:
Due to weight issues such as shielding, many nuclear propulsion systems are unable to lift their own weight, and hence are unsuitable for launching to orbit. However, some designs such as the
750:
Many vehicles are only narrowly suborbital, so practically anything that gives a relatively small delta-v increase can be helpful, and outside assistance for a vehicle is therefore desirable.
1697:) is a critical parameter in SSTO vehicle design. Structural efficiency of a vehicle is maximized as the structural coefficient approaches zero. The structural coefficient is defined as: 2486: 408:
first stage, launched on its own, would have a 25-to-1 ratio of fuel to vehicle hardware. It has a sufficiently efficient engine to achieve orbit, but without carrying much payload.
1158: 1123: 698:) and thrust levels of air-breathing jet engines drop considerably at high speed (above Mach 5โ€“10 depending on the engine) and begin to approach that of rocket engines or worse. 1353: 1469: 993: 2777: 1165: 504:
longer to reach orbit, and gravity losses are increased by at least 300 metres per second (1,100 km/h; 670 mph). While not appearing large, the mass ratio to
1695: 960: 3049: 4375: 2492:(TSTO) vehicles for a standard LEO mission. The curves vertically asymptote at the maximum structural coefficient limit where mission criteria can no longer be met: 2315: 1496: 4402: 4001:
Mossman, Jason, "Investigation of Advanced Propellants to Enable Single Stage to Orbit Launch Vehicles", Master's thesis, California State University, Fresno, 2006.
1440: 1411: 1382: 1311: 1026: 1081: 4798: 4204: 1929: 4354: 1055: 4916: 3901: 2951: 3658: 243:
Hyperion, yet another Philip Bono concept which used a sled to build up speed before liftoff to save on the amount of fuel which had to be lifted into the air.
389:
achieving a high enough mass-ratio to carry sufficient propellant to achieve orbit, plus a meaningful payload weight. Air-breathing designs typically fly at
4537: 4010:
Livington, J.W., "Comparative Analysis of Rocket and Air-Breathing Launch Vehicle Systems", Space 2004 Conference and Exhibit, San Diego, California, 2004.
3550: 2220:{\displaystyle 1={\frac {m_{\text{pl}}}{m_{i}}}+{\frac {m_{p}}{m_{i}}}+{\frac {m_{s}}{m_{i}}}={\frac {m_{\text{pl}}}{m_{i}}}+\zeta +{\frac {m_{s}}{m_{i}}}} 1866:{\displaystyle \lambda ={\frac {m_{s}}{m_{p}+m_{s}}}={\frac {m_{s}}{m_{i}-m_{\text{pl}}}}={\frac {\frac {m_{s}}{m_{i}}}{1-{\frac {m_{\text{pl}}}{m_{i}}}}}} 60:
from the surface of a body using only propellants and fluids and without expending tanks, engines, or other major hardware. The term exclusively refers to
4021: 3958: 3521: 2612: 2488:, the size of a vehicle increases with an increasing structural coefficient. This growth factor sensitivity is shown parametrically for both SSTO and 64:. To date, no Earth-launched SSTO launch vehicles have ever been flown; orbital launches from Earth have been performed by either fully or partially 4814: 3594: 3026: 2231: 742:
with a poor mass fraction may be able to deliver more payload to orbit with a given amount of money than a more complicated, more efficient rocket.
311:
a full-scale vehicle which would be capable of single stage insertion into orbit. Neither of these were built, but the project was taken over by
508:
curve is very steep to reach orbit in a single stage, and this makes a 10% difference to the mass ratio on top of the tankage and pump savings.
231:
Ithacus, an adapted ROMBUS concept which was designed to carry soldiers and military equipment to other continents via a sub-orbital trajectory.
4095: 570: 277:
project was intended to launch a scramjet vehicle into orbit, but funding was stopped and the project cancelled. At around the same time, the
3894: 2944: 3933: 3302: 2718:, has the capability to reach orbit as an SSTO. However he concedes that if this was done, there would be no appreciable mass left for a 4395: 4266: 3942:
AIAA, Joint Propulsion Conference, 21st, Monterey, CA, 8โ€“11 July 1985. 10 p. Research supported by the Rensselaer Polytechnic Institute.
2762: 1668:{\displaystyle \zeta ={\frac {m_{p}}{m_{i}}}={\frac {m_{i}-m_{f}}{m_{i}}}=1-{\frac {m_{f}}{m_{i}}}=1-{\frac {1}{MR}}={\frac {MR-1}{MR}}} 3272: 738:
over pure rockets (even multistage rockets) sufficiently to hold out the possibility of full reusability with better payload fraction.
4719: 814: 344: 4296: 3738: 2757:
This is somewhat similar to the approach some previous systems have taken, using simple engine systems with "low-tech" fuels, as the
4793: 3117: 2917: 2497: 596: 234:
Pegasus, another adapted ROMBUS concept designed to carry passengers and payloads long distances in short amounts of time via space.
4241: 734:) which transition to rocket thrust at rather lower speeds (Mach 5.5) do seem to give, on paper at least, an improved orbital 90:
Advances in rocketry in the 21st century have resulted in a substantial fall in the cost to launch a kilogram of payload to either
2747: 2018: 3544:"Star Raker An Airbreather/Rocket-Powered, Horizontal Takeoff Tridelta Flying Wing, Single-Stage-to-Orbit Transportation System" 4181: 871: 5112: 5092: 4819: 4684: 4388: 4363: 2688: 691:
Very high speeds in the atmosphere necessitate very heavy thermal protection systems, which makes reaching orbit even harder.
574: 4147: 4923: 4778: 4747: 4742: 4117: 3684: 3234: 677:
No known air breathing engine is capable of operating at orbital speed within the atmosphere (for example hydrogen fueled
363: 3458: 3414: 3208: 2410: 1878: 4061: 3392: 3370: 3325: 3070: 2711: 2608: 2407:
This expression shows how the size of a SSTO vehicle is dependent on its structural efficiency. Given a mission profile
2015:
An additional expression for the overall structural mass fraction can be found by noting that the payload mass fraction
636: 628:, which can be effective in a wide range of ambient pressures. In fact, a linear aerospike engine was to be used in the 609:
Some SSTO concepts use the same engine for all altitudes, which is a problem for traditional engines with a bell-shaped
339:
There have been various approaches to SSTO, including pure rockets that are launched and land vertically, air-breathing
201: 4212: 3347: 4351: 3760: 3483: 3186: 863: 681:
seem to have a top speed of about Mach 17). This means that rockets must be used for the final orbital insertion.
95: 4318: 704:
of vehicles at hypersonic speeds are poor, however the effective lift to drag ratios of rocket vehicles at high g is
559: 3979:
London III, Lt Col John R., "LEO on the Cheap", Air University (AFMC) Research Report No. AU-ARI-93-8, October 1994.
3650: 2979:
Dick, Stephen and Lannius, R., "Critical Issues in the History of Spaceflight," NASA Publication SP-2006-4702, 2006.
266:
satellites into a 300 nautical mile Earth orbit. Star-raker would have had 3 x LOX/LH2 rocket engines (based on the
5097: 3436: 3160: 578: 563: 4878: 4737: 3130: 267: 3867: 3816: 3575: 3543: 2456: 4911: 4670: 4644: 4586: 4570: 4560: 2840: 2730:
Many studies have shown that regardless of selected technology, the most effective cost reduction technique is
2676: 1475: 735: 485: 378: 178: 65: 3954: 1090:
The mass ratio of a vehicle is defined as a ratio the initial vehicle mass when fully loaded with propellants
516:) exceed the performance of hydrogen fuel when used in an SSTO launch vehicle by 10% for the same dry weight. 5107: 4967: 4940: 4895: 4883: 4863: 4629: 4591: 4565: 3513: 2820: 2655: 2619: 2593: 835: 727: 667: 348: 263: 255: 3711: 5018: 4868: 4768: 4510: 2769: 1314: 822: 818: 670:
that collect oxidizer and reaction mass from the atmosphere to reduce the take-off weight of the vehicle.
438:
Hydrogen has nearly 30% higher specific impulse (about 450 seconds vs. 350 seconds) than most dense fuels.
304: 294: 251: 106: 61: 4035: 3098:. Ames Mission Analysis Division Office of Advanced Research and Technology: NASA. p. 54. N93-71495. 385:, and construction techniques necessary for surviving sustained high-speed flight within the atmosphere, 5102: 4603: 4596: 4411: 3610: 2875: 2734:. Merely launching a large total number reduces the manufacturing costs per vehicle, similar to how the 2692: 2665: 1128: 1093: 189: 2310:
Equating the expressions for structural mass fraction and solving for the initial vehicle mass yields:
1319: 354:
For rocket-powered SSTO, the main challenge is achieving a high enough mass-ratio to carry sufficient
173:
One of the earliest SSTO concepts was the expendable One stage Orbital Space Truck (OOST) proposed by
4714: 4709: 4613: 4527: 3077: 3002: 2880: 2835: 2758: 2680: 2581: 779: 723: 629: 621:
do not have to fire until atmospheric pressure is negligible, and can therefore use the larger bell.
524: 282: 223:
Further examples of Bono's early concepts (prior to the 1990s) which were never constructed include:
110: 4087: 3955:"High-elevation equatorial catapult-launched RBCC SSTO spaceplane for economic manned access to LEO" 2687:
was canceled. The Skylon spaceplane has been positively received by the British government, and the
4873: 4858: 4773: 4660: 4639: 4608: 2815: 2672: 2643: 2574: 1447: 971: 659: 299: 134: 102: 87:, which limits speed in the early stages of flight due to drag, and influences engine performance. 84: 5067: 3905: 3326:"ROMBUS - An Integrated Systems Concept for a Reusable Orbital Module/Booster And Utility Shuttle" 2955: 2588:) was an enormous vehicle with more than 50,000 kilograms (110,000 lb) of payload, utilizing 1275:{\displaystyle MR={\frac {m_{i}}{m_{f}}}={\frac {m_{p}+m_{s}+m_{\text{pl}}}{m_{s}+m_{\text{pl}}}}} 351:-powered vehicles that can fly into orbit and return landing like an airliner, completely intact. 5072: 5038: 5003: 4843: 2885: 2731: 2489: 808: 761: 757: 701: 4263: 2565:
It is easier to achieve SSTO from a body with lower gravitational pull than Earth, such as the
2398:{\displaystyle m_{i}=GLOW={\frac {m_{\text{pl}}}{1-\left({\frac {\zeta }{1-\lambda }}\right)}}} 1700: 5033: 4988: 4888: 4788: 4490: 4464: 3602: 3294: 3113: 3018: 2913: 2895: 2604: 2554: 1680: 1084: 942: 684:
Rocket thrust needs the orbital mass to be as small as possible to minimize propellant weight.
68: 3734: 5053: 5043: 4993: 4699: 4452: 3264: 3010: 2810: 2006:{\displaystyle {\frac {m_{s}}{m_{i}}}=\lambda \left(1-{\frac {m_{\text{pl}}}{m_{i}}}\right)} 1481: 1029: 996: 695: 640: 625: 424: 405: 382: 213: 1418: 1389: 1360: 1289: 1004: 4665: 4469: 4435: 4358: 4288: 4270: 4237: 3937: 3841: 3081: 2789: 2735: 2715: 2705: 1066: 614: 444:
The gross mass of hydrogen stages is lower than dense-fuelled stages for the same payload.
91: 647:
ground level. This gives good performance, negating the need for more complex solutions.
3006: 2910:
Single Stage to Orbit - Politics, Space Technology, and the Quest for Reusable Rocketry.
1037: 4998: 4933: 4634: 4474: 3790: 2870: 2751: 849:
The design space constraints of SSTO vehicles were described by rocket design engineer
783: 618: 237: 185: 138: 130: 3624: 2990: 5086: 5008: 4928: 4783: 4752: 4532: 4522: 4517: 4440: 4430: 3014: 2860: 2855: 2773: 2696:
phase, which involves the construction and testing of a full-scale prototype engine.
2635: 694:
While at lower speeds, air-breathing engines are very efficient, but the efficiency (
416: 325: 274: 217: 118: 79: 3930: 478:
Wide combustible range โ€“ easily ignited and burns with a dangerously invisible flame
5013: 4972: 4945: 4704: 4500: 4495: 3242: 2850: 2785: 2743: 2585: 850: 793: 705: 500: 427:
of any commonly used fuel: around 450 seconds, compared with up to 350 seconds for
254:
unveiled a concept for a 100-ton payload heavy-lift multicycle airbreather ramjet/
146: 142: 4151: 5028: 5023: 4829: 4369: 2890: 2830: 2825: 2793: 2719: 2631: 2592:
for (vertical) landing. While the technical problems seemed to be solvable, the
548: 520: 371: 174: 114: 37: 4125: 3680: 3491: 2584:'s Space Division in 1970โ€“1971 under NASA contract NAS8-26341. Their proposal ( 377:
For air-breathing SSTO, the main challenge is system complexity and associated
258:, horizontal takeoff/horizontal landing single-stage-to-orbit spaceplane named 5048: 4505: 3601:, vol. 129, no. 4000, Business Press International, pp. 38โ€“40, 3466: 3422: 3212: 2668: 2639: 2589: 2301:{\displaystyle {\frac {m_{s}}{m_{i}}}=1-\zeta -{\frac {m_{\text{pl}}}{m_{i}}}} 1058: 866:
expresses the maximum change in velocity any single rocket stage can achieve:
771: 394: 390: 355: 285:
technology, but failed to show significant advantages over rocket technology.
209: 41: 4065: 3606: 3400: 3378: 3333: 3022: 78:
It is considered to be marginally possible to launch a single-stage-to-orbit
3355: 2845: 2797: 713: 469: 367: 208:
From 1965, Robert Salkeld investigated various single stage to orbit winged
3768: 3371:""Ithacus" โ€” a new concept of inter-continental ballistic transport (ICBT)" 3182: 655: 4326: 3134: 2991:"Cost analysis for single-stage (SSTO) reusable ballistic launch vehicles" 397:
speeds, and usually include a rocket engine for the final burn for orbit.
32: 3871: 3514:"The Space Plane NASA Wanted to Use to Build Solar Power Plants in Orbit" 2865: 2781: 765: 678: 472:โ€“ must be stored at very low temperatures and thus needs heavy insulation 428: 340: 4380: 3444: 3156: 1498:) of a vehicle can be expressed solely as a function of the mass ratio: 4824: 4457: 963: 513: 505: 2622:
was designed to bring bulk materials to orbit as cheaply as possible.
2596:
required a winged design that led to the Shuttle as we know it today.
366:
weight. One possibility is to give the rocket an initial speed with a
17: 4447: 4425: 3579: 610: 420: 4173: 2768:
An alternative to scale is to make the discarded stages practically
2064:, propellant mass fraction and structural mass fraction sum to one: 4366:, an analysis of space launch costs, with a section critiquing SSTO 3895:"A Comparison of Propulsions Concepts for SSTO Reusable launchers" 3050:"DEPLOYED PAYLOAD ANALYSIS FOR A SINGLE STAGE TO ORBIT SPACEPLANE" 2684: 2577:
ascended from the lunar surface to lunar orbit in a single stage.
1699: 731: 654: 359: 298: 278: 162: 161: 57: 31: 2945:"A Comparison of Propulsion Concepts for SSTO Reusable Launchers" 3209:"Encyclopedia Astronautica - North American Air Augmented VTOVL" 2600: 2570: 2566: 531: 419:
might seem the obvious fuel for SSTO vehicles. When burned with
312: 194: 126: 4384: 3931:"Transatmospheric vehicle propelled by air-turborocket engines" 3929:
Cimino, P.; Drake, J.; Jones, J.; Strayer, D.; Venetoklis, P.:
2738:
of automobiles brought about great increases in affordability.
2722:, landing legs, or fuel to land, much less any usable payload. 527:, and showed that it could improve payload size by around 30%. 184:
Another early SSTO concept was a reusable launch vehicle named
2661: 2544:{\displaystyle \lambda _{\text{max}}=1-\zeta ={\frac {1}{MR}}} 542: 481:
Tends to condense oxygen which can cause flammability problems
3707: 98:, reducing the main projected advantage of the SSTO concept. 716:) the mass budgets do not seem to close for orbital launch. 2057:{\displaystyle \left({\frac {m_{\text{pl}}}{m_{i}}}\right)} 343:-powered vehicles that are launched and land horizontally, 3074: 4238:"Skylon spaceplane engine concept achieves key milestone" 1924:
can be expressed in terms of the structural coefficient:
635:
Other solutions involve using multiple engines and other
465:
of the density of kerosene) โ€“ requiring a very large tank
117:
which was intended to replace the Space Shuttle, and the
2630:
Current and previous SSTO projects include the Japanese
928:{\displaystyle \Delta v=I_{\text{sp}}\cdot g_{0}\ln(MR)} 3057:
Centre for Future Air Space Transportation Technologies
4148:"UK Space Agency - Skylon System Requirements Review" 2500: 2459: 2413: 2318: 2234: 2072: 2021: 1932: 1881: 1714: 1683: 1506: 1484: 1450: 1421: 1392: 1363: 1322: 1292: 1168: 1131: 1096: 1069: 1040: 1007: 974: 945: 874: 4264:"European Space Agency clears SABRE orbital engines" 2912:
The Johns Hopkins University Press, Baltimore 2004,
2580:
A detailed study into SSTO vehicles was prepared by
2553:
In comparison to a non-optimized TSTO vehicle using
181:. A reusable version named ROOST was also proposed. 4981: 4960: 4904: 4851: 4842: 4807: 4761: 4730: 4692: 4683: 4653: 4622: 4579: 4553: 4546: 4483: 4418: 4232: 4230: 4118:"Reaction Engines Ltd - Frequently Asked Questions" 3625:"Wired 4.05: Insanely Great? or Just Plain Insane?" 3613:
on 22 October 2012 – via FlightGlobal Archive
3478: 3476: 2446:{\displaystyle \left(\Delta v,m_{\text{pl}}\right)} 1917:{\displaystyle \left({\frac {m_{s}}{m_{i}}}\right)} 966:) is the maximum change of velocity of the vehicle, 492:These issues can be dealt with, but at extra cost. 2543: 2480: 2445: 2397: 2300: 2219: 2056: 2005: 1916: 1865: 1689: 1667: 1490: 1463: 1434: 1405: 1376: 1347: 1305: 1274: 1152: 1117: 1075: 1049: 1020: 987: 954: 927: 3071:"The Recent Large Reduction in Space Launch Cost" 2778:SpaceX reusable launch system development program 2776:phase B studies, and is currently pursued by the 2726:Alternative approaches to inexpensive spaceflight 2603:technology demonstrator, originally developed by 212:concepts. He proposed a vehicle which would burn 4088:"UKSA Reviews Skylon and SABRE at Parabolic Arc" 451:However, hydrogen also has these disadvantages: 4025:, Third Edition, Oxford: Elsevier, 2010. Print. 2710:Elon Musk, CEO of SpaceX, has claimed that the 855: 101:Notable single stage to orbit concepts include 4376:Burnout Velocity Vb of a Single 1-Stage Rocket 2712:upper stage of the prototype "Starship" rocket 137:, by several robotic spacecraft of the Soviet 4396: 3902:Journal of the British Interplanetary Society 712:Thus with for example scramjet designs (e.g. 27:Launch system that only uses one rocket stage 8: 4205:"SSTO spaceplane is coming to Great Britain" 3651:"A Cannon for Shooting Supplies into Space" 3133:. Encyclopedia Astronautica. Archived from 2772:: this was the original design goal of the 673:Some of the issues with this approach are: 577:. Unsourced material may be challenged and 216:while in the atmosphere and then switch to 4848: 4689: 4550: 4403: 4389: 4381: 4352:A Single-Stage-to-Orbit Thought Experiment 4022:Orbital Mechanics for Engineering Students 3735:"Alternate Propellants for SSTO Launchers" 2938: 2936: 2934: 2660:The British Government partnered with the 2481:{\displaystyle \left(I_{\text{sp}}\right)} 3706:Mitchell Burnside-Clapp (February 1997). 3108:Philip Bono and Kenneth William Gatland, 2613:Strategic Defense Initiative Organization 2526: 2505: 2499: 2468: 2458: 2432: 2412: 2370: 2353: 2347: 2323: 2317: 2290: 2280: 2274: 2251: 2241: 2235: 2233: 2209: 2199: 2193: 2176: 2166: 2160: 2149: 2139: 2133: 2122: 2112: 2106: 2095: 2085: 2079: 2071: 2042: 2032: 2026: 2020: 1990: 1980: 1974: 1949: 1939: 1933: 1931: 1902: 1892: 1886: 1880: 1852: 1842: 1836: 1822: 1812: 1805: 1793: 1780: 1769: 1763: 1751: 1738: 1727: 1721: 1713: 1682: 1639: 1621: 1604: 1594: 1588: 1571: 1560: 1547: 1540: 1529: 1519: 1513: 1505: 1483: 1455: 1449: 1426: 1420: 1397: 1391: 1384:is the final vehicle mass after the burn, 1368: 1362: 1321: 1297: 1291: 1263: 1250: 1238: 1225: 1212: 1205: 1194: 1184: 1178: 1167: 1140: 1130: 1105: 1095: 1068: 1039: 1012: 1006: 979: 973: 944: 901: 888: 873: 624:One possible solution would be to use an 597:Learn how and when to remove this message 475:Escapes very easily from the smallest gap 220:for increasing efficiency once in space. 4815:Atmosphere-breathing electric propulsion 3893:Richard Varvill & Alan Bond (2003). 2943:Richard Varvill & Alan Bond (2003). 3096:A Single Stage To Orbit Shuttle Concept 2930: 434:Hydrogen has the following advantages: 4372:A critique of SSTO by Jeffrey F. Bell. 4203:Robert Parkinson (22 February 2011). 3741:from the original on 26 February 2014 3556:from the original on 29 February 2020 1875:The overall structural mass fraction 666:Some designs for SSTO attempt to use 499:This inefficiency indirectly affects 447:Hydrogen is environmentally friendly. 7: 4184:from the original on 8 November 2011 3183:"SP-4221 The Space Shuttle Decision" 575:adding citations to reliable sources 4244:from the original on 1 October 2021 3961:from the original on 1 October 2021 3714:from the original on 1 October 2021 3708:"A LO2/Kerosene SSTO Rocket Design" 3687:from the original on 1 October 2021 3305:from the original on 1 October 2021 3189:from the original on 1 October 2021 3163:from the original on 1 October 2021 3029:from the original on 1 October 2021 2989:Koelle, Dietrich E. (1 July 1993). 1313:is the initial vehicle mass or the 4720:Field-emission electric propulsion 3904:. pp. 108โ€“117. Archived from 3524:from the original on 7 August 2020 3094:Gomersall, Edward (20 July 1970). 2419: 1413:is the structural mass of vehicle, 1153:{\displaystyle \left(m_{f}\right)} 1118:{\displaystyle \left(m_{i}\right)} 946: 875: 845:Design challenges inherent in SSTO 202:North American Air Augmented VTOVL 25: 4794:Microwave electrothermal thruster 4370:The Cold Equations Of Spaceflight 4098:from the original on 14 June 2015 3275:from the original on 11 June 2019 1348:{\displaystyle \left(GLOW\right)} 753:Proposed launch assists include: 441:Hydrogen is an excellent coolant. 5066: 4299:from the original on 5 June 2021 4036:"Apollo 11 Lunar Module / EASEP" 3842:"SABRE :: Reaction Engines" 3815:Monroe, Conner (30 March 2016). 3661:from the original on 15 May 2021 3578:. 29 August 2002. Archived from 2748:Democratic Republic of the Congo 789:And on-orbit resources such as: 688:during the air-breathing ascent. 547: 530:Operational experience with the 523:investigated single-stage, VTVL 240:, a 1967 launch vehicle concept. 3377:(AIAA-1964-280). Archived from 3332:(AIAA-1963-271). Archived from 2675:. This design was pioneered by 4924:Pulsed nuclear thermal rocketโ€Ž 4820:High Power Electric Propulsion 3593:Moxon, Julian (1 March 1986), 2714:, currently in development in 2689:British Interplanetary Society 2677:Reaction Engines Limited (REL) 922: 913: 149:lunar sample return missions. 1: 4779:Helicon double-layer thruster 4748:Electrodeless plasma thruster 4743:Magnetoplasmadynamic thruster 4364:Why are launch costs so high? 3084:. Retrieved 12 December 2018. 1464:{\displaystyle m_{\text{pl}}} 988:{\displaystyle I_{\text{sp}}} 722:On the other hand, LACE-like 423:, hydrogen gives the highest 3990:Introduction to Space Flight 3015:10.1016/0094-5765(93)90132-G 2609:Strategic Defense Initiative 1677:The structural coefficient ( 539:One engine for all altitudes 864:Tsiolkovsky rocket equation 639:such as double-mu bells or 412:Dense versus hydrogen fuels 262:, designed to launch heavy 96:International Space Station 5129: 4287:Musk, Elon (5 June 2021). 4174:"Reaction Engines Limited" 3369:Bono, Philip (June 1963). 3324:Bono, Philip (June 1963). 2703: 2653: 1125:to the final vehicle mass 833: 806: 772:air launch or aircraft tow 488:for even small heat leaks. 323: 292: 5064: 4738:Pulsed inductive thruster 4240:. BBC. 28 November 2012. 3846:www.reactionengines.co.uk 3157:Aerospace projects Review 637:altitude adapting designs 303:The maiden flight of the 4912:Nuclear pulse propulsion 4671:Electric-pump-fed engine 4571:Hybrid-propellant rocket 4561:Liquid-propellant rocket 1690:{\displaystyle \lambda } 1476:propellant mass fraction 955:{\displaystyle \Delta v} 760:(rail, maglev including 668:airbreathing jet engines 641:extensible bell sections 486:coefficient of expansion 455:Very low density (about 379:research and development 179:Douglas Aircraft Company 4968:Beam-powered propulsion 4941:Fission-fragment rocket 4896:Nuclear photonic rocket 4864:Nuclear electric rocket 4630:Staged combustion cycle 4566:Solid-propellant rocket 3733:Dr. Bruce Dunn (1996). 3295:"STS-1 Further Reading" 3159:(Report). Vol. 3. 3069:Harry W. Jones (2018). 2821:British Aerospace HOTOL 2679:, a company founded by 2656:Reaction Engines Skylon 2620:Aquarius Launch Vehicle 1442:is the propellant mass, 836:Beam-powered propulsion 830:Beam-powered propulsion 270:) + 10 x turboramjets. 264:Space-based solar power 256:cryogenic rocket engine 5019:Non-rocket spacelaunch 4869:Nuclear thermal rocket 4769:Pulsed plasma thruster 4289:"Elon Musk on Twitter" 4269:1 October 2021 at the 3992:, Prentice Hall, 1994. 3936:1 October 2021 at the 3817:"Lockheed Martin X-33" 2763:Chinese space programs 2545: 2482: 2447: 2399: 2302: 2221: 2058: 2007: 1918: 1867: 1706: 1691: 1669: 1492: 1491:{\displaystyle \zeta } 1465: 1436: 1407: 1378: 1349: 1307: 1276: 1154: 1119: 1077: 1051: 1022: 989: 956: 929: 860: 823:thrust to weight ratio 724:precooled airbreathing 663: 307: 295:McDonnell Douglas DC-X 252:Rockwell International 188:which was proposed by 167: 45: 5113:Spacecraft propulsion 5093:Single-stage-to-orbit 4685:Electrical propulsion 4412:Spacecraft propulsion 4178:reactionengines.co.uk 4122:reactionengines.co.uk 4094:. 22 September 2010. 3080:15 March 2020 at the 2876:Spacecraft propulsion 2666:single-stage to orbit 2664:in 2010 to promote a 2546: 2483: 2448: 2400: 2303: 2222: 2059: 2008: 1919: 1868: 1703: 1692: 1670: 1493: 1466: 1437: 1435:{\displaystyle m_{p}} 1408: 1406:{\displaystyle m_{s}} 1379: 1377:{\displaystyle m_{f}} 1350: 1308: 1306:{\displaystyle m_{i}} 1277: 1155: 1120: 1078: 1052: 1023: 1021:{\displaystyle g_{0}} 990: 957: 930: 658: 525:tripropellant rockets 302: 190:Krafft Arnold Ehricke 165: 50:single-stage-to-orbit 35: 4917:Antimatter-catalyzed 4715:Hall-effect thruster 4528:Solar thermal rocket 4357:15 June 2021 at the 4154:on 26 September 2010 3599:Flight International 3595:"Hotol: where next?" 3381:on 16 December 2008. 3336:on 16 December 2008. 2881:Three-stage-to-orbit 2836:Lockheed Martin X-33 2582:Chrysler Corporation 2498: 2457: 2453:and propellant type 2411: 2316: 2232: 2070: 2019: 1930: 1879: 1712: 1681: 1504: 1482: 1471:is the payload mass. 1448: 1419: 1390: 1361: 1320: 1315:gross liftoff weight 1290: 1166: 1129: 1094: 1076:{\displaystyle \ln } 1067: 1038: 1005: 972: 943: 872: 780:Lofstrom launch loop 726:designs such as the 571:improve this section 370:, as planned in the 362:, plus a meaningful 283:precooled jet engine 111:Lockheed Martin X-33 40:was a proposed SSTO 4859:Direct Fusion Drive 4774:Vacuum arc thruster 4661:Pressure-fed engine 4640:Gas-generator cycle 4547:Chemical propulsion 4484:Physical propulsion 4323:www.astronautix.com 4277:. 29 November 2012. 4215:on 23 February 2011 4040:nssdc.gsfc.nasa.gov 3657:. 15 January 2010. 3488:www.astronautix.com 3463:www.astronautix.com 3441:www.astronautix.com 3419:www.astronautix.com 3397:www.astronautix.com 3352:www.astronautix.com 3245:on 28 December 2016 3007:1993AcAau..30..415K 2908:Andrew J. Butrica: 2816:Bristol Spaceplanes 2626:Current development 2575:Apollo Lunar Module 702:Lift to drag ratios 347:vehicles, and even 69:multi-stage rockets 5073:Spaceflight portal 5039:Reactionless drive 5004:Aerogravity assist 4844:Nuclear propulsion 4060:Mark Wade (2007). 3866:Mark Wade (2007). 3681:"The titan family" 3582:on 29 August 2002. 3447:on 6 October 2008. 3265:"ROBERT SALKELD'S" 3137:on 10 October 2011 3110:Frontiers of Space 2886:Two-stage-to-orbit 2732:economies of scale 2555:restricted staging 2541: 2490:two-stage-to-orbit 2478: 2443: 2395: 2298: 2217: 2054: 2003: 1914: 1863: 1707: 1687: 1665: 1488: 1461: 1432: 1403: 1374: 1345: 1303: 1272: 1150: 1115: 1073: 1050:{\displaystyle MR} 1047: 1018: 995:is the propellant 985: 952: 925: 821:designs do have a 809:Nuclear propulsion 803:Nuclear propulsion 664: 308: 177:, an engineer for 168: 166:ROMBUS concept art 85:Earth's atmosphere 56:) vehicle reaches 46: 5098:Rocket propulsion 5080: 5079: 5034:Atmospheric entry 4989:Orbital mechanics 4956: 4955: 4838: 4837: 4789:Resistojet rocket 4679: 4678: 4654:Intake mechanisms 4587:Liquid propellant 4491:Cold gas thruster 4329:on 1 October 2021 4209:The Global Herald 3874:on 29 August 2002 3235:"Salkeld Shuttle" 2995:Acta Astronautica 2896:XS-1 (spacecraft) 2605:McDonnell Douglas 2539: 2508: 2471: 2435: 2393: 2386: 2356: 2296: 2283: 2257: 2215: 2182: 2169: 2155: 2128: 2101: 2088: 2048: 2035: 1996: 1983: 1955: 1908: 1861: 1858: 1845: 1828: 1800: 1796: 1758: 1663: 1634: 1610: 1577: 1535: 1458: 1270: 1266: 1241: 1200: 1085:natural logarithm 982: 891: 776:in-flight fueling 762:Bantam, MagLifter 728:Skylon spaceplane 651:Airbreathing SSTO 607: 606: 599: 141:, and by China's 80:chemically fueled 62:reusable vehicles 16:(Redirected from 5120: 5070: 5054:Alcubierre drive 5044:Field propulsion 4994:Orbital maneuver 4982:Related concepts 4849: 4700:Colloid thruster 4690: 4551: 4453:Specific impulse 4405: 4398: 4391: 4382: 4339: 4338: 4336: 4334: 4325:. Archived from 4315: 4309: 4308: 4306: 4304: 4284: 4278: 4260: 4254: 4253: 4251: 4249: 4234: 4225: 4224: 4222: 4220: 4211:. Archived from 4200: 4194: 4193: 4191: 4189: 4170: 4164: 4163: 4161: 4159: 4150:. Archived from 4144: 4138: 4137: 4135: 4133: 4124:. Archived from 4114: 4108: 4107: 4105: 4103: 4092:parabolicarc.com 4084: 4078: 4077: 4075: 4073: 4064:. Archived from 4057: 4051: 4050: 4048: 4046: 4032: 4026: 4019:Curtis, Howard, 4017: 4011: 4008: 4002: 3999: 3993: 3986: 3980: 3977: 3971: 3970: 3968: 3966: 3951: 3945: 3927: 3921: 3920: 3918: 3916: 3910: 3899: 3890: 3884: 3883: 3881: 3879: 3870:. Archived from 3863: 3857: 3856: 3854: 3852: 3838: 3832: 3831: 3829: 3827: 3812: 3806: 3805: 3803: 3801: 3795:www.grc.nasa.gov 3787: 3781: 3780: 3778: 3776: 3767:. Archived from 3757: 3751: 3750: 3748: 3746: 3730: 3724: 3723: 3721: 3719: 3703: 3697: 3696: 3694: 3692: 3677: 3671: 3670: 3668: 3666: 3647: 3641: 3640: 3638: 3636: 3621: 3615: 3614: 3609:, archived from 3590: 3584: 3583: 3572: 3566: 3565: 3563: 3561: 3555: 3548: 3540: 3534: 3533: 3531: 3529: 3510: 3504: 3503: 3501: 3499: 3494:on 7 August 2020 3490:. Archived from 3480: 3471: 3470: 3465:. Archived from 3455: 3449: 3448: 3443:. Archived from 3433: 3427: 3426: 3425:on 3 March 2016. 3421:. Archived from 3411: 3405: 3404: 3399:. Archived from 3389: 3383: 3382: 3366: 3360: 3359: 3358:on 11 June 2008. 3354:. Archived from 3344: 3338: 3337: 3321: 3315: 3314: 3312: 3310: 3291: 3285: 3284: 3282: 3280: 3261: 3255: 3254: 3252: 3250: 3241:. Archived from 3231: 3225: 3224: 3222: 3220: 3211:. Archived from 3205: 3199: 3198: 3196: 3194: 3185:. NASA History. 3179: 3173: 3172: 3170: 3168: 3153: 3147: 3146: 3144: 3142: 3126: 3120: 3106: 3100: 3099: 3091: 3085: 3067: 3061: 3060: 3054: 3048:Toso, Federico. 3045: 3039: 3038: 3036: 3034: 2986: 2980: 2977: 2971: 2970: 2968: 2966: 2960: 2954:. Archived from 2949: 2940: 2811:Aerospike engine 2716:Starbase (Texas) 2550: 2548: 2547: 2542: 2540: 2538: 2527: 2510: 2509: 2506: 2487: 2485: 2484: 2479: 2477: 2473: 2472: 2469: 2452: 2450: 2449: 2444: 2442: 2438: 2437: 2436: 2433: 2404: 2402: 2401: 2396: 2394: 2392: 2391: 2387: 2385: 2371: 2358: 2357: 2354: 2348: 2328: 2327: 2307: 2305: 2304: 2299: 2297: 2295: 2294: 2285: 2284: 2281: 2275: 2258: 2256: 2255: 2246: 2245: 2236: 2226: 2224: 2223: 2218: 2216: 2214: 2213: 2204: 2203: 2194: 2183: 2181: 2180: 2171: 2170: 2167: 2161: 2156: 2154: 2153: 2144: 2143: 2134: 2129: 2127: 2126: 2117: 2116: 2107: 2102: 2100: 2099: 2090: 2089: 2086: 2080: 2063: 2061: 2060: 2055: 2053: 2049: 2047: 2046: 2037: 2036: 2033: 2027: 2012: 2010: 2009: 2004: 2002: 1998: 1997: 1995: 1994: 1985: 1984: 1981: 1975: 1956: 1954: 1953: 1944: 1943: 1934: 1923: 1921: 1920: 1915: 1913: 1909: 1907: 1906: 1897: 1896: 1887: 1872: 1870: 1869: 1864: 1862: 1860: 1859: 1857: 1856: 1847: 1846: 1843: 1837: 1827: 1826: 1817: 1816: 1807: 1806: 1801: 1799: 1798: 1797: 1794: 1785: 1784: 1774: 1773: 1764: 1759: 1757: 1756: 1755: 1743: 1742: 1732: 1731: 1722: 1696: 1694: 1693: 1688: 1674: 1672: 1671: 1666: 1664: 1662: 1654: 1640: 1635: 1633: 1622: 1611: 1609: 1608: 1599: 1598: 1589: 1578: 1576: 1575: 1566: 1565: 1564: 1552: 1551: 1541: 1536: 1534: 1533: 1524: 1523: 1514: 1497: 1495: 1494: 1489: 1470: 1468: 1467: 1462: 1460: 1459: 1456: 1441: 1439: 1438: 1433: 1431: 1430: 1412: 1410: 1409: 1404: 1402: 1401: 1383: 1381: 1380: 1375: 1373: 1372: 1354: 1352: 1351: 1346: 1344: 1340: 1312: 1310: 1309: 1304: 1302: 1301: 1281: 1279: 1278: 1273: 1271: 1269: 1268: 1267: 1264: 1255: 1254: 1244: 1243: 1242: 1239: 1230: 1229: 1217: 1216: 1206: 1201: 1199: 1198: 1189: 1188: 1179: 1160:after the burn: 1159: 1157: 1156: 1151: 1149: 1145: 1144: 1124: 1122: 1121: 1116: 1114: 1110: 1109: 1082: 1080: 1079: 1074: 1056: 1054: 1053: 1048: 1030:standard gravity 1027: 1025: 1024: 1019: 1017: 1016: 997:specific impulse 994: 992: 991: 986: 984: 983: 980: 961: 959: 958: 953: 934: 932: 931: 926: 906: 905: 893: 892: 889: 626:aerospike engine 602: 595: 591: 588: 582: 551: 543: 464: 463: 459: 425:specific impulse 383:material science 273:Around 1985 the 214:hydrocarbon fuel 21: 5128: 5127: 5123: 5122: 5121: 5119: 5118: 5117: 5083: 5082: 5081: 5076: 5060: 4977: 4952: 4900: 4834: 4803: 4757: 4731:Electromagnetic 4726: 4675: 4666:Pump-fed engine 4649: 4618: 4575: 4542: 4479: 4470:Rocket equation 4436:Reaction engine 4414: 4409: 4359:Wayback Machine 4348: 4343: 4342: 4332: 4330: 4317: 4316: 4312: 4302: 4300: 4286: 4285: 4281: 4271:Wayback Machine 4261: 4257: 4247: 4245: 4236: 4235: 4228: 4218: 4216: 4202: 4201: 4197: 4187: 4185: 4172: 4171: 4167: 4157: 4155: 4146: 4145: 4141: 4131: 4129: 4116: 4115: 4111: 4101: 4099: 4086: 4085: 4081: 4071: 4069: 4068:on 7 April 2004 4059: 4058: 4054: 4044: 4042: 4034: 4033: 4029: 4018: 4014: 4009: 4005: 4000: 3996: 3988:Hale, Francis, 3987: 3983: 3978: 3974: 3964: 3962: 3953: 3952: 3948: 3938:Wayback Machine 3928: 3924: 3914: 3912: 3911:on 28 June 2012 3908: 3897: 3892: 3891: 3887: 3877: 3875: 3865: 3864: 3860: 3850: 3848: 3840: 3839: 3835: 3825: 3823: 3814: 3813: 3809: 3799: 3797: 3791:"Nozzle Design" 3789: 3788: 3784: 3774: 3772: 3765:astronautix.com 3759: 3758: 3754: 3744: 3742: 3732: 3731: 3727: 3717: 3715: 3705: 3704: 3700: 3690: 3688: 3679: 3678: 3674: 3664: 3662: 3655:Popular Science 3649: 3648: 3644: 3634: 3632: 3623: 3622: 3618: 3592: 3591: 3587: 3574: 3573: 3569: 3559: 3557: 3553: 3546: 3542: 3541: 3537: 3527: 3525: 3512: 3511: 3507: 3497: 3495: 3482: 3481: 3474: 3469:on 13 May 2011. 3459:"Hyperion SSTO" 3457: 3456: 3452: 3435: 3434: 3430: 3415:"Pegasus VTOVL" 3413: 3412: 3408: 3403:on 28 May 2002. 3391: 3390: 3386: 3368: 3367: 3363: 3346: 3345: 3341: 3323: 3322: 3318: 3308: 3306: 3293: 3292: 3288: 3278: 3276: 3263: 3262: 3258: 3248: 3246: 3239:astronautix.com 3233: 3232: 3228: 3218: 3216: 3215:on 4 March 2016 3207: 3206: 3202: 3192: 3190: 3181: 3180: 3176: 3166: 3164: 3155: 3154: 3150: 3140: 3138: 3128: 3127: 3123: 3107: 3103: 3093: 3092: 3088: 3082:Wayback Machine 3068: 3064: 3052: 3047: 3046: 3042: 3032: 3030: 2988: 2987: 2983: 2978: 2974: 2964: 2962: 2961:on 15 June 2011 2958: 2947: 2942: 2941: 2932: 2927: 2905: 2903:Further reading 2900: 2806: 2736:mass production 2728: 2708: 2706:SpaceX Starship 2702: 2671:concept called 2658: 2652: 2642:and the Indian 2628: 2563: 2551: 2531: 2501: 2496: 2495: 2464: 2460: 2455: 2454: 2428: 2418: 2414: 2409: 2408: 2405: 2375: 2366: 2359: 2349: 2319: 2314: 2313: 2308: 2286: 2276: 2247: 2237: 2230: 2229: 2227: 2205: 2195: 2172: 2162: 2145: 2135: 2118: 2108: 2091: 2081: 2068: 2067: 2038: 2028: 2022: 2017: 2016: 2013: 1986: 1976: 1967: 1963: 1945: 1935: 1928: 1927: 1898: 1888: 1882: 1877: 1876: 1873: 1848: 1838: 1829: 1818: 1808: 1789: 1776: 1775: 1765: 1747: 1734: 1733: 1723: 1710: 1709: 1679: 1678: 1675: 1655: 1641: 1626: 1600: 1590: 1567: 1556: 1543: 1542: 1525: 1515: 1502: 1501: 1480: 1479: 1472: 1451: 1446: 1445: 1443: 1422: 1417: 1416: 1414: 1393: 1388: 1387: 1385: 1364: 1359: 1358: 1356: 1327: 1323: 1318: 1317: 1293: 1288: 1287: 1282: 1259: 1246: 1245: 1234: 1221: 1208: 1207: 1190: 1180: 1164: 1163: 1136: 1132: 1127: 1126: 1101: 1097: 1092: 1091: 1088: 1065: 1064: 1062: 1057:is the vehicle 1036: 1035: 1033: 1008: 1003: 1002: 1000: 975: 970: 969: 967: 941: 940: 935: 897: 884: 870: 869: 847: 838: 832: 819:nuclear thermal 811: 805: 784:space fountains 748: 653: 615:Flow separation 603: 592: 586: 583: 568: 552: 541: 461: 457: 456: 414: 345:nuclear-powered 337: 328: 322: 297: 291: 289:DC-X technology 160: 155: 92:low Earth orbit 28: 23: 22: 15: 12: 11: 5: 5126: 5124: 5116: 5115: 5110: 5108:Space vehicles 5105: 5100: 5095: 5085: 5084: 5078: 5077: 5065: 5062: 5061: 5059: 5058: 5057: 5056: 5051: 5041: 5036: 5031: 5026: 5021: 5016: 5011: 5006: 5001: 4999:Gravity assist 4996: 4991: 4985: 4983: 4979: 4978: 4976: 4975: 4970: 4964: 4962: 4961:External power 4958: 4957: 4954: 4953: 4951: 4950: 4949: 4948: 4938: 4937: 4936: 4934:Bussard ramjet 4926: 4921: 4920: 4919: 4908: 4906: 4902: 4901: 4899: 4898: 4893: 4892: 4891: 4886: 4881: 4876: 4866: 4861: 4855: 4853: 4846: 4840: 4839: 4836: 4835: 4833: 4832: 4827: 4822: 4817: 4811: 4809: 4805: 4804: 4802: 4801: 4796: 4791: 4786: 4781: 4776: 4771: 4765: 4763: 4762:Electrothermal 4759: 4758: 4756: 4755: 4750: 4745: 4740: 4734: 4732: 4728: 4727: 4725: 4724: 4723: 4722: 4717: 4712: 4702: 4696: 4694: 4687: 4681: 4680: 4677: 4676: 4674: 4673: 4668: 4663: 4657: 4655: 4651: 4650: 4648: 4647: 4642: 4637: 4635:Expander cycle 4632: 4626: 4624: 4620: 4619: 4617: 4616: 4611: 4606: 4604:Monopropellant 4601: 4600: 4599: 4594: 4583: 4581: 4577: 4576: 4574: 4573: 4568: 4563: 4557: 4555: 4548: 4544: 4543: 4541: 4540: 4535: 4530: 4525: 4520: 4515: 4514: 4513: 4503: 4498: 4493: 4487: 4485: 4481: 4480: 4478: 4477: 4475:Thermal rocket 4472: 4467: 4462: 4461: 4460: 4455: 4445: 4444: 4443: 4438: 4428: 4422: 4420: 4416: 4415: 4410: 4408: 4407: 4400: 4393: 4385: 4379: 4378: 4373: 4367: 4361: 4347: 4346:External links 4344: 4341: 4340: 4310: 4279: 4262:Thomson, Ian. 4255: 4226: 4195: 4165: 4139: 4128:on 2 June 2015 4109: 4079: 4062:"Shuttle SERV" 4052: 4027: 4012: 4003: 3994: 3981: 3972: 3946: 3922: 3885: 3858: 3833: 3807: 3782: 3771:on 2 July 2015 3752: 3725: 3698: 3672: 3642: 3616: 3585: 3567: 3535: 3505: 3472: 3450: 3428: 3406: 3384: 3361: 3339: 3316: 3286: 3256: 3226: 3200: 3174: 3148: 3121: 3101: 3086: 3062: 3040: 2981: 2972: 2929: 2928: 2926: 2923: 2922: 2921: 2904: 2901: 2899: 2898: 2893: 2888: 2883: 2878: 2873: 2871:Space elevator 2868: 2863: 2858: 2853: 2848: 2843: 2838: 2833: 2828: 2823: 2818: 2813: 2807: 2805: 2802: 2727: 2724: 2704:Main article: 2701: 2698: 2654:Main article: 2651: 2648: 2627: 2624: 2562: 2559: 2537: 2534: 2530: 2525: 2522: 2519: 2516: 2513: 2504: 2494: 2476: 2467: 2463: 2441: 2431: 2427: 2424: 2421: 2417: 2390: 2384: 2381: 2378: 2374: 2369: 2365: 2362: 2352: 2346: 2343: 2340: 2337: 2334: 2331: 2326: 2322: 2312: 2293: 2289: 2279: 2273: 2270: 2267: 2264: 2261: 2254: 2250: 2244: 2240: 2228: 2212: 2208: 2202: 2198: 2192: 2189: 2186: 2179: 2175: 2165: 2159: 2152: 2148: 2142: 2138: 2132: 2125: 2121: 2115: 2111: 2105: 2098: 2094: 2084: 2078: 2075: 2066: 2052: 2045: 2041: 2031: 2025: 2001: 1993: 1989: 1979: 1973: 1970: 1966: 1962: 1959: 1952: 1948: 1942: 1938: 1926: 1912: 1905: 1901: 1895: 1891: 1885: 1855: 1851: 1841: 1835: 1832: 1825: 1821: 1815: 1811: 1804: 1792: 1788: 1783: 1779: 1772: 1768: 1762: 1754: 1750: 1746: 1741: 1737: 1730: 1726: 1720: 1717: 1708: 1686: 1661: 1658: 1653: 1650: 1647: 1644: 1638: 1632: 1629: 1625: 1620: 1617: 1614: 1607: 1603: 1597: 1593: 1587: 1584: 1581: 1574: 1570: 1563: 1559: 1555: 1550: 1546: 1539: 1532: 1528: 1522: 1518: 1512: 1509: 1500: 1487: 1454: 1444: 1429: 1425: 1415: 1400: 1396: 1386: 1371: 1367: 1357: 1343: 1339: 1336: 1333: 1330: 1326: 1300: 1296: 1286: 1262: 1258: 1253: 1249: 1237: 1233: 1228: 1224: 1220: 1215: 1211: 1204: 1197: 1193: 1187: 1183: 1177: 1174: 1171: 1162: 1148: 1143: 1139: 1135: 1113: 1108: 1104: 1100: 1083:refers to the 1072: 1063: 1046: 1043: 1034: 1015: 1011: 1001: 978: 968: 951: 948: 939: 924: 921: 918: 915: 912: 909: 904: 900: 896: 887: 883: 880: 877: 868: 846: 843: 834:Main article: 831: 828: 807:Main article: 804: 801: 800: 799: 796: 787: 786: 777: 774: 769: 747: 746:Launch assists 744: 710: 709: 706:not dissimilar 699: 692: 689: 685: 682: 652: 649: 619:Rocketdyne J-2 605: 604: 555: 553: 546: 540: 537: 501:gravity losses 490: 489: 482: 479: 476: 473: 466: 449: 448: 445: 442: 439: 413: 410: 336: 333: 324:Main article: 321: 318: 293:Main article: 290: 287: 245: 244: 241: 238:Douglas SASSTO 235: 232: 229: 159: 158:Early concepts 156: 154: 151: 131:Apollo program 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5125: 5114: 5111: 5109: 5106: 5104: 5101: 5099: 5096: 5094: 5091: 5090: 5088: 5075: 5074: 5069: 5063: 5055: 5052: 5050: 5047: 5046: 5045: 5042: 5040: 5037: 5035: 5032: 5030: 5027: 5025: 5022: 5020: 5017: 5015: 5012: 5010: 5009:Oberth effect 5007: 5005: 5002: 5000: 4997: 4995: 4992: 4990: 4987: 4986: 4984: 4980: 4974: 4971: 4969: 4966: 4965: 4963: 4959: 4947: 4944: 4943: 4942: 4939: 4935: 4932: 4931: 4930: 4929:Fusion rocket 4927: 4925: 4922: 4918: 4915: 4914: 4913: 4910: 4909: 4907: 4903: 4897: 4894: 4890: 4887: 4885: 4882: 4880: 4877: 4875: 4872: 4871: 4870: 4867: 4865: 4862: 4860: 4857: 4856: 4854: 4852:Closed system 4850: 4847: 4845: 4841: 4831: 4828: 4826: 4823: 4821: 4818: 4816: 4813: 4812: 4810: 4806: 4800: 4797: 4795: 4792: 4790: 4787: 4785: 4784:Arcjet rocket 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4766: 4764: 4760: 4754: 4753:Plasma magnet 4751: 4749: 4746: 4744: 4741: 4739: 4736: 4735: 4733: 4729: 4721: 4718: 4716: 4713: 4711: 4708: 4707: 4706: 4703: 4701: 4698: 4697: 4695: 4693:Electrostatic 4691: 4688: 4686: 4682: 4672: 4669: 4667: 4664: 4662: 4659: 4658: 4656: 4652: 4646: 4645:Tap-off cycle 4643: 4641: 4638: 4636: 4633: 4631: 4628: 4627: 4625: 4621: 4615: 4614:Tripropellant 4612: 4610: 4607: 4605: 4602: 4598: 4595: 4593: 4590: 4589: 4588: 4585: 4584: 4582: 4578: 4572: 4569: 4567: 4564: 4562: 4559: 4558: 4556: 4552: 4549: 4545: 4539: 4536: 4534: 4533:Photon rocket 4531: 4529: 4526: 4524: 4523:Magnetic sail 4521: 4519: 4518:Electric sail 4516: 4512: 4509: 4508: 4507: 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4488: 4486: 4482: 4476: 4473: 4471: 4468: 4466: 4463: 4459: 4456: 4454: 4451: 4450: 4449: 4446: 4442: 4441:Reaction mass 4439: 4437: 4434: 4433: 4432: 4431:Rocket engine 4429: 4427: 4424: 4423: 4421: 4417: 4413: 4406: 4401: 4399: 4394: 4392: 4387: 4386: 4383: 4377: 4374: 4371: 4368: 4365: 4362: 4360: 4356: 4353: 4350: 4349: 4345: 4328: 4324: 4320: 4314: 4311: 4298: 4294: 4290: 4283: 4280: 4276: 4272: 4268: 4265: 4259: 4256: 4243: 4239: 4233: 4231: 4227: 4214: 4210: 4206: 4199: 4196: 4183: 4179: 4175: 4169: 4166: 4153: 4149: 4143: 4140: 4127: 4123: 4119: 4113: 4110: 4097: 4093: 4089: 4083: 4080: 4067: 4063: 4056: 4053: 4041: 4037: 4031: 4028: 4024: 4023: 4016: 4013: 4007: 4004: 3998: 3995: 3991: 3985: 3982: 3976: 3973: 3960: 3956: 3950: 3947: 3943: 3939: 3935: 3932: 3926: 3923: 3907: 3903: 3896: 3889: 3886: 3873: 3869: 3862: 3859: 3847: 3843: 3837: 3834: 3822: 3818: 3811: 3808: 3796: 3792: 3786: 3783: 3770: 3766: 3762: 3756: 3753: 3740: 3736: 3729: 3726: 3713: 3709: 3702: 3699: 3686: 3682: 3676: 3673: 3660: 3656: 3652: 3646: 3643: 3630: 3626: 3620: 3617: 3612: 3608: 3604: 3600: 3596: 3589: 3586: 3581: 3577: 3571: 3568: 3552: 3545: 3539: 3536: 3523: 3519: 3515: 3509: 3506: 3493: 3489: 3485: 3479: 3477: 3473: 3468: 3464: 3460: 3454: 3451: 3446: 3442: 3438: 3432: 3429: 3424: 3420: 3416: 3410: 3407: 3402: 3398: 3394: 3388: 3385: 3380: 3376: 3372: 3365: 3362: 3357: 3353: 3349: 3343: 3340: 3335: 3331: 3327: 3320: 3317: 3304: 3300: 3296: 3290: 3287: 3274: 3270: 3266: 3260: 3257: 3244: 3240: 3236: 3230: 3227: 3214: 3210: 3204: 3201: 3188: 3184: 3178: 3175: 3162: 3158: 3152: 3149: 3136: 3132: 3125: 3122: 3119: 3118:0-7137-3504-X 3115: 3111: 3105: 3102: 3097: 3090: 3087: 3083: 3079: 3076: 3072: 3066: 3063: 3058: 3051: 3044: 3041: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 3000: 2996: 2992: 2985: 2982: 2976: 2973: 2957: 2953: 2946: 2939: 2937: 2935: 2931: 2924: 2919: 2918:9780801873386 2915: 2911: 2907: 2906: 2902: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2856:Rockwell X-30 2854: 2852: 2849: 2847: 2844: 2842: 2841:Mass fraction 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2809: 2808: 2803: 2801: 2799: 2795: 2791: 2787: 2783: 2779: 2775: 2774:Space Shuttle 2771: 2766: 2764: 2760: 2755: 2753: 2749: 2745: 2739: 2737: 2733: 2725: 2723: 2721: 2717: 2713: 2707: 2699: 2697: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2667: 2663: 2657: 2649: 2647: 2645: 2641: 2637: 2633: 2625: 2623: 2621: 2616: 2614: 2610: 2606: 2602: 2599:The uncrewed 2597: 2595: 2591: 2587: 2583: 2578: 2576: 2572: 2568: 2560: 2558: 2556: 2535: 2532: 2528: 2523: 2520: 2517: 2514: 2511: 2502: 2493: 2491: 2474: 2465: 2461: 2439: 2429: 2425: 2422: 2415: 2388: 2382: 2379: 2376: 2372: 2367: 2363: 2360: 2350: 2344: 2341: 2338: 2335: 2332: 2329: 2324: 2320: 2311: 2291: 2287: 2277: 2271: 2268: 2265: 2262: 2259: 2252: 2248: 2242: 2238: 2210: 2206: 2200: 2196: 2190: 2187: 2184: 2177: 2173: 2163: 2157: 2150: 2146: 2140: 2136: 2130: 2123: 2119: 2113: 2109: 2103: 2096: 2092: 2082: 2076: 2073: 2065: 2050: 2043: 2039: 2029: 2023: 1999: 1991: 1987: 1977: 1971: 1968: 1964: 1960: 1957: 1950: 1946: 1940: 1936: 1925: 1910: 1903: 1899: 1893: 1889: 1883: 1853: 1849: 1839: 1833: 1830: 1823: 1819: 1813: 1809: 1802: 1790: 1786: 1781: 1777: 1770: 1766: 1760: 1752: 1748: 1744: 1739: 1735: 1728: 1724: 1718: 1715: 1702: 1698: 1684: 1659: 1656: 1651: 1648: 1645: 1642: 1636: 1630: 1627: 1623: 1618: 1615: 1612: 1605: 1601: 1595: 1591: 1585: 1582: 1579: 1572: 1568: 1561: 1557: 1553: 1548: 1544: 1537: 1530: 1526: 1520: 1516: 1510: 1507: 1499: 1485: 1477: 1452: 1427: 1423: 1398: 1394: 1369: 1365: 1341: 1337: 1334: 1331: 1328: 1324: 1316: 1298: 1294: 1285: 1260: 1256: 1251: 1247: 1235: 1231: 1226: 1222: 1218: 1213: 1209: 1202: 1195: 1191: 1185: 1181: 1175: 1172: 1169: 1161: 1146: 1141: 1137: 1133: 1111: 1106: 1102: 1098: 1086: 1070: 1060: 1044: 1041: 1031: 1013: 1009: 998: 976: 965: 949: 938: 919: 916: 910: 907: 902: 898: 894: 885: 881: 878: 867: 865: 859: 854: 852: 844: 842: 837: 829: 827: 824: 820: 816: 815:Orion project 810: 802: 797: 795: 792: 791: 790: 785: 781: 778: 775: 773: 770: 767: 763: 759: 756: 755: 754: 751: 745: 743: 739: 737: 736:mass fraction 733: 729: 725: 720: 717: 715: 707: 703: 700: 697: 693: 690: 686: 683: 680: 676: 675: 674: 671: 669: 661: 657: 650: 648: 644: 642: 638: 633: 631: 627: 622: 620: 616: 612: 601: 598: 590: 587:December 2017 580: 576: 572: 566: 565: 561: 556:This section 554: 550: 545: 544: 538: 536: 533: 528: 526: 522: 519:In the 1960s 517: 515: 509: 507: 502: 497: 493: 487: 483: 480: 477: 474: 471: 467: 454: 453: 452: 446: 443: 440: 437: 436: 435: 432: 430: 426: 422: 418: 417:Hydrogen fuel 411: 409: 407: 402: 398: 396: 392: 388: 384: 380: 375: 373: 369: 365: 361: 357: 352: 350: 346: 342: 334: 332: 327: 326:Rotary Rocket 319: 317: 314: 306: 301: 296: 288: 286: 284: 281:tried to use 280: 276: 271: 269: 265: 261: 257: 253: 249: 242: 239: 236: 233: 230: 226: 225: 224: 221: 219: 218:hydrogen fuel 215: 211: 206: 203: 198: 196: 191: 187: 182: 180: 176: 171: 164: 157: 152: 150: 148: 144: 140: 136: 132: 128: 122: 120: 116: 112: 108: 104: 99: 97: 93: 88: 86: 81: 76: 72: 70: 67: 63: 59: 55: 51: 43: 39: 34: 30: 19: 5103:Space access 5071: 5014:Space launch 4946:Fission sail 4874:Radioisotope 4705:Ion thruster 4623:Power cycles 4609:Bipropellant 4501:Steam rocket 4496:Water rocket 4331:. Retrieved 4327:the original 4322: 4313: 4301:. Retrieved 4292: 4282: 4275:The Register 4274: 4258: 4246:. Retrieved 4217:. Retrieved 4213:the original 4208: 4198: 4186:. Retrieved 4177: 4168: 4156:. Retrieved 4152:the original 4142: 4130:. Retrieved 4126:the original 4121: 4112: 4100:. Retrieved 4091: 4082: 4070:. Retrieved 4066:the original 4055: 4043:. Retrieved 4039: 4030: 4020: 4015: 4006: 3997: 3989: 3984: 3975: 3963:. Retrieved 3949: 3941: 3925: 3913:. Retrieved 3906:the original 3888: 3876:. Retrieved 3872:the original 3861: 3849:. Retrieved 3845: 3836: 3824:. Retrieved 3820: 3810: 3798:. Retrieved 3794: 3785: 3773:. Retrieved 3769:the original 3764: 3755: 3743:. Retrieved 3728: 3718:14 September 3716:. Retrieved 3701: 3691:14 September 3689:. Retrieved 3675: 3663:. Retrieved 3654: 3645: 3633:. Retrieved 3628: 3619: 3611:the original 3598: 3588: 3580:the original 3570: 3558:. Retrieved 3538: 3526:. Retrieved 3518:www.vice.com 3517: 3508: 3496:. Retrieved 3492:the original 3487: 3484:"Star-raker" 3467:the original 3462: 3453: 3445:the original 3440: 3431: 3423:the original 3418: 3409: 3401:the original 3396: 3387: 3379:the original 3374: 3364: 3356:the original 3351: 3342: 3334:the original 3329: 3319: 3307:. Retrieved 3298: 3289: 3277:. Retrieved 3268: 3259: 3247:. Retrieved 3243:the original 3238: 3229: 3217:. Retrieved 3213:the original 3203: 3191:. Retrieved 3177: 3165:. Retrieved 3151: 3139:. Retrieved 3135:the original 3129:Wade, Mark. 3124: 3109: 3104: 3095: 3089: 3065: 3056: 3043: 3033:24 September 3031:. Retrieved 2998: 2994: 2984: 2975: 2963:. Retrieved 2956:the original 2909: 2851:Orbital ring 2786:Falcon Heavy 2767: 2756: 2752:OTRAG rocket 2744:West Germany 2740: 2729: 2709: 2693:Sabre engine 2659: 2646:spaceplane. 2636:ARCA Haas 2C 2629: 2617: 2598: 2586:Shuttle SERV 2579: 2564: 2552: 2406: 2309: 2014: 1874: 1676: 1473: 1283: 1089: 936: 861: 856: 851:Robert Truax 848: 839: 812: 794:Space tether 788: 752: 749: 740: 721: 718: 711: 672: 665: 645: 634: 623: 608: 593: 584: 569:Please help 557: 529: 518: 510: 498: 494: 491: 484:Has a large 450: 433: 415: 403: 399: 386: 376: 353: 338: 329: 309: 272: 259: 247: 246: 222: 207: 199: 183: 172: 169: 139:Luna program 135:Lunar Module 123: 100: 89: 77: 73: 53: 49: 47: 29: 5029:Aerocapture 5024:Aerobraking 4905:Open system 4889:"Lightbulb" 4830:Mass driver 4580:Propellants 4511:Diffractive 4333:20 November 4248:28 November 4219:28 February 3965:25 November 3915:15 November 3878:15 November 3745:15 November 3001:: 415โ€“421. 2891:VentureStar 2831:Launch loop 2826:Kankoh-maru 2794:Blue Origin 2780:with their 2720:heat shield 2632:Kankoh-maru 2590:jet engines 758:sled launch 521:Philip Bono 372:Quicklaunch 358:to achieve 175:Philip Bono 115:VentureStar 38:VentureStar 5087:Categories 5049:Warp drive 4879:Salt-water 4597:Hypergolic 4506:Solar sail 4303:8 December 4045:8 December 3851:8 December 3826:8 December 3800:8 December 3631:. May 1996 3269:pmview.com 3219:18 October 3193:18 October 3167:18 October 3141:18 October 2925:References 2765:still do. 2669:spaceplane 2640:Radian One 1059:mass ratio 662:spaceplane 395:hypersonic 391:supersonic 356:propellant 349:jet-engine 335:Approaches 260:Star-Raker 250:: In 1979 248:Star-raker 210:spaceplane 119:Roton SSTO 66:expendable 42:spaceplane 4592:Cryogenic 3944:, 07/1985 3629:wired.com 3607:0015-3710 3560:15 August 3528:15 August 3498:15 August 3393:"Ithacus" 3023:0094-5765 2846:NASA X-43 2798:New Glenn 2746:with the 2681:Alan Bond 2634:project, 2615:to NASA. 2521:ζ 2518:− 2503:λ 2420:Δ 2383:λ 2380:− 2373:ζ 2364:− 2272:− 2269:ζ 2266:− 2188:ζ 1972:− 1961:λ 1834:− 1787:− 1716:λ 1685:λ 1649:− 1619:− 1586:− 1554:− 1508:ζ 1486:ζ 1087:function. 947:Δ 911:⁡ 895:⋅ 876:Δ 817:and some 679:scramjets 558:does not 470:cryogenic 374:project. 368:space gun 147:Chang'e 6 143:Chang'e 5 4884:Gas core 4419:Concepts 4355:Archived 4297:Archived 4267:Archived 4242:Archived 4182:Archived 4096:Archived 3959:Archived 3934:Archived 3739:Archived 3712:Archived 3685:Archived 3659:Archived 3551:Archived 3522:Archived 3437:"SASSTO" 3348:"Rombus" 3303:Archived 3299:nasa.gov 3273:Archived 3187:Archived 3161:Archived 3078:Archived 3027:Archived 2866:Scramjet 2804:See also 2790:Starship 2782:Falcon 9 2770:reusable 2700:Starship 2607:for the 2561:Examples 766:StarTram 632:design. 429:kerosene 406:Titan II 341:scramjet 4973:Tethers 4825:MagBeam 4710:Gridded 4465:Staging 4458:Delta-v 4319:"Otrag" 4293:Twitter 4188:13 June 4158:1 March 4132:13 June 4102:13 June 4072:1 April 3775:13 June 3761:"VTOVL" 3635:13 June 3309:13 June 3279:13 June 3249:13 June 3073:(PDF). 3003:Bibcode 2965:5 March 2759:Russian 2750:-based 1284:where: 1028:is the 964:delta-v 937:where: 768:, etc.) 579:removed 564:sources 514:propane 512:liquid 506:delta-v 468:Deeply 460:⁄ 381:costs, 364:payload 153:History 129:by the 94:or the 4799:VASIMR 4448:Thrust 4426:Rocket 3868:"X-30" 3665:15 May 3605:  3576:"X-30" 3131:"OOST" 3116:  3021:  2916:  2796:using 2792:, and 2788:, and 2683:after 2673:Skylon 2650:Skylon 2644:Avatar 2573:. The 764:, and 660:Skylon 611:nozzle 421:oxygen 228:close. 109:, the 103:Skylon 18:ROMBUS 4808:Other 4554:State 3909:(PDF) 3898:(PDF) 3554:(PDF) 3547:(PDF) 3053:(PDF) 2959:(PDF) 2948:(PDF) 2861:Roton 2685:HOTOL 732:ATREX 730:(and 360:orbit 320:Roton 279:HOTOL 186:NEXUS 58:orbit 4538:WINE 4335:2019 4305:2021 4250:2012 4221:2011 4190:2015 4160:2011 4134:2015 4104:2015 4074:2010 4047:2021 3967:2018 3917:2007 3880:2007 3853:2021 3828:2021 3821:NASA 3802:2021 3777:2015 3747:2007 3720:2009 3693:2009 3667:2021 3637:2015 3603:ISSN 3562:2020 3530:2020 3500:2020 3375:AIAA 3330:AIAA 3311:2015 3281:2015 3251:2015 3221:2015 3195:2015 3169:2015 3143:2015 3114:ISBN 3075:ICES 3059:: 1. 3035:2021 3019:ISSN 2967:2011 2952:JBIS 2914:ISBN 2761:and 2618:The 2601:DC-X 2594:USAF 2571:Mars 2567:Moon 1705:Isp. 1474:The 862:The 798:tugs 714:X-43 630:X-33 562:any 560:cite 532:DC-X 313:NASA 305:DC-X 275:NASP 268:SSME 200:The 195:Mars 145:and 127:Moon 113:and 107:DC-X 54:SSTO 36:The 3011:doi 2662:ESA 2569:or 2507:max 696:Isp 573:by 393:or 387:and 133:'s 5089:: 4321:. 4295:. 4291:. 4273:. 4229:^ 4207:. 4180:. 4176:. 4120:. 4090:. 4038:. 3957:. 3940:, 3900:. 3844:. 3819:. 3793:. 3763:. 3737:. 3710:. 3683:. 3653:. 3627:. 3597:, 3549:. 3520:. 3516:. 3486:. 3475:^ 3461:. 3439:. 3417:. 3395:. 3373:. 3350:. 3328:. 3301:. 3297:. 3271:. 3267:. 3237:. 3112:, 3055:. 3025:. 3017:. 3009:. 2999:30 2997:. 2993:. 2950:. 2933:^ 2800:. 2784:, 2754:. 2638:, 2470:sp 2434:pl 2355:pl 2282:pl 2168:pl 2087:pl 2034:pl 1982:pl 1844:pl 1795:pl 1457:pl 1265:pl 1240:pl 1071:ln 981:sp 908:ln 890:sp 853:: 643:. 431:. 197:. 71:. 48:A 4404:e 4397:t 4390:v 4337:. 4307:. 4252:. 4223:. 4192:. 4162:. 4136:. 4106:. 4076:. 4049:. 3969:. 3919:. 3882:. 3855:. 3830:. 3804:. 3779:. 3749:. 3722:. 3695:. 3669:. 3639:. 3564:. 3532:. 3502:. 3313:. 3283:. 3253:. 3223:. 3197:. 3171:. 3145:. 3037:. 3013:: 3005:: 2969:. 2920:. 2536:R 2533:M 2529:1 2524:= 2515:1 2512:= 2475:) 2466:I 2462:( 2440:) 2430:m 2426:, 2423:v 2416:( 2389:) 2377:1 2368:( 2361:1 2351:m 2345:= 2342:W 2339:O 2336:L 2333:G 2330:= 2325:i 2321:m 2292:i 2288:m 2278:m 2263:1 2260:= 2253:i 2249:m 2243:s 2239:m 2211:i 2207:m 2201:s 2197:m 2191:+ 2185:+ 2178:i 2174:m 2164:m 2158:= 2151:i 2147:m 2141:s 2137:m 2131:+ 2124:i 2120:m 2114:p 2110:m 2104:+ 2097:i 2093:m 2083:m 2077:= 2074:1 2051:) 2044:i 2040:m 2030:m 2024:( 2000:) 1992:i 1988:m 1978:m 1969:1 1965:( 1958:= 1951:i 1947:m 1941:s 1937:m 1911:) 1904:i 1900:m 1894:s 1890:m 1884:( 1854:i 1850:m 1840:m 1831:1 1824:i 1820:m 1814:s 1810:m 1803:= 1791:m 1782:i 1778:m 1771:s 1767:m 1761:= 1753:s 1749:m 1745:+ 1740:p 1736:m 1729:s 1725:m 1719:= 1660:R 1657:M 1652:1 1646:R 1643:M 1637:= 1631:R 1628:M 1624:1 1616:1 1613:= 1606:i 1602:m 1596:f 1592:m 1583:1 1580:= 1573:i 1569:m 1562:f 1558:m 1549:i 1545:m 1538:= 1531:i 1527:m 1521:p 1517:m 1511:= 1478:( 1453:m 1428:p 1424:m 1399:s 1395:m 1370:f 1366:m 1355:, 1342:) 1338:W 1335:O 1332:L 1329:G 1325:( 1299:i 1295:m 1261:m 1257:+ 1252:s 1248:m 1236:m 1232:+ 1227:s 1223:m 1219:+ 1214:p 1210:m 1203:= 1196:f 1192:m 1186:i 1182:m 1176:= 1173:R 1170:M 1147:) 1142:f 1138:m 1134:( 1112:) 1107:i 1103:m 1099:( 1061:, 1045:R 1042:M 1032:, 1014:0 1010:g 999:, 977:I 962:( 950:v 923:) 920:R 917:M 914:( 903:0 899:g 886:I 882:= 879:v 782:/ 708:. 600:) 594:( 589:) 585:( 581:. 567:. 462:7 458:1 52:( 44:. 20:)

Index

ROMBUS

VentureStar
spaceplane
orbit
reusable vehicles
expendable
multi-stage rockets
chemically fueled
Earth's atmosphere
low Earth orbit
International Space Station
Skylon
DC-X
Lockheed Martin X-33
VentureStar
Roton SSTO
Moon
Apollo program
Lunar Module
Luna program
Chang'e 5
Chang'e 6

Philip Bono
Douglas Aircraft Company
NEXUS
Krafft Arnold Ehricke
Mars
North American Air Augmented VTOVL

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

โ†‘