Knowledge (XXG)

Waveguide (radio frequency)

Source 📝

1317:. Desiccant silica gel canisters may be attached with screw-on nibs and higher power systems will have pressurized tanks for maintaining pressure including leakage monitors. Arcing may also occur if there is a hole, tear or bump in the conducting walls, if transmitting at high power (usually 200 watts or more). Waveguide plumbing is crucial for proper waveguide performance. Voltage standing waves occur when impedance mismatches in the waveguide cause energy to reflect back in the opposite direction of propagation. In addition to limiting the effective transfer of energy, these reflections can cause higher voltages in the waveguide and damage equipment. 1342: 1293:) measurements may be taken to ensure that a waveguide is contiguous and has no leaks or sharp bends. If such bends or holes in the waveguide surface are present, this may diminish the performance of both transmitter and receiver equipment connected at either end. Poor transmission through the waveguide may also occur as a result of moisture build up which corrodes and degrades conductivity of the inner surfaces, which is crucial for low loss propagation. For this reason, waveguides are nominally fitted with 1326: 997: 986: 66: 1375:(SHF) systems. For such applications, it is desired to operate waveguides with only one mode propagating through the waveguide. With rectangular waveguides, it is possible to design the waveguide such that the frequency band over which only one mode propagates is as high as 2:1 (i.e. the ratio of the upper band edge to lower band edge is two). The relation between the waveguide dimensions and the lowest frequency is simple: if 1195: 42: 1354: 2927: 1187: 1179: 953: 1166:(1938) and cavity magnetron (1940), resulted in the first widespread use of waveguide. Standard waveguide "plumbing" components were manufactured, with flanges on the end which could be bolted together. After the war in the 1950s and 60s waveguides became common in commercial microwave systems, such as airport radar and 2985:
due to the change in dielectric constant at the material surface. At millimeter wave frequencies and above, metal is not a good conductor, so metal waveguides can have increasing attenuation. At these wavelengths dielectric waveguides can have lower losses than metal waveguides. Optical fibre is a
2989:
One difference between dielectric and metal waveguides is that at a metal surface the electromagnetic waves are tightly confined; at high frequencies the electric and magnetic fields penetrate a very short distance into the metal. In contrast, the surface of the dielectric waveguide is an interface
1244:
is an electromagnetic waveguide (a) that is tubular, usually with a circular or rectangular cross section, (b) that has electrically conducting walls, (c) that may be hollow or filled with a dielectric material, (d) that can support a large number of discrete propagating modes, though only a few may
3554:
For bandwidths lower than 2:1 it is more common to express them as a percentage of the center frequency, which in the case of 1.360:1 is 26.55 %. For reference, a 2:1 bandwidth corresponds to a 66.67 % bandwidth. The reason for expressing bandwidths as a ratio of upper to lower band edges
1264:
Waveguides are almost exclusively made of metal and mostly rigid structures. There are certain types of "corrugated" waveguides that have the ability to flex and bend but only used where essential since they degrade propagation properties. Due to propagation of energy in mostly air or space within
1052:
Prior to the 1920s, practical work on radio waves concentrated on the low frequency end of the radio spectrum, as these frequencies were better for long-range communication. These were far below the frequencies that could propagate in even large waveguides, so there was little experimental work on
1517:
via higher order modes. The fourth condition is that which allows a 2:1 operation bandwidth. Although it is possible to have a 2:1 operating bandwidth when the height is less than half the width, having the height exactly half the width maximizes the power that can propagate inside the waveguide
1048:
below which waves would not propagate. Since the cutoff wavelength for a given tube was of the same order as its width, it was clear that a hollow conducting tube could not carry radio wavelengths much larger than its diameter. In 1902 R. H. Weber observed that electromagnetic waves travel at a
1260:
The dimensions of a hollow metallic waveguide determine which wavelengths it can support, and in which modes. Typically the waveguide is operated so that only a single mode is present. The lowest order mode possible is generally selected. Frequencies below the guide's cutoff frequency will not
1143:
and hit on the idea of using a hollow pipe as a feedline to feed radio waves to the antenna. By March 1936 he had derived the propagation modes and cutoff frequency in a rectangular waveguide. The source he was using had a large wavelength of 40 cm, so for his first successful waveguide
968:
materials. Generally, the lower the frequency to be passed the larger the waveguide is. For example, the natural waveguide the earth forms given by the dimensions between the conductive ionosphere and the ground as well as the circumference at the median altitude of the Earth is resonant at
2819:
is that waveguides support propagation with lower loss. For lower frequencies, the waveguide dimensions become impractically large, and for higher frequencies the dimensions become impractically small (the manufacturing tolerance becomes a significant portion of the waveguide size).
3555:
for bandwidths greater than 66.67 % is that in the limiting case that the lower edge goes to zero (or the upper edge goes to infinity), the bandwidth approaches 200 %, which means that the entire range of 3:1 to infinity:1 map into the range 100 % to 200 %.
1488:
Because rectangular waveguides have a much larger bandwidth over which only a single mode can propagate, standards exist for rectangular waveguides, but not for circular waveguides. In general (but not always), standard waveguides are designed such that
1273:
into the metal of the inner surface. Since this is where most of the resistive loss occurs, it is important that the conductivity of interior surface be kept as high as possible. For this reason, most waveguide interior surfaces are plated with
1232:
is generally used for radar and other similar applications. The waveguide serves as a feed path, and each slot is a separate radiator, thus forming an antenna. This structure has the capability of generating a radiation pattern to launch an
1132:, a Bell Labs mathematician, did theoretical analyses of waveguides and rediscovered waveguide modes. In December 1933 it was realized that with a metal sheath the dielectric is superfluous and attention shifted to metal waveguides. 2911:
of the guide. It is common to choose the size of the guide such that only this one mode can exist in the frequency band of operation. In rectangular and circular (hollow pipe) waveguides, the dominant modes are designated the
1069:
used short lengths of pipe to conduct the waves, so some sources credit him with inventing the waveguide. However, after this, the concept of radio waves being carried by a tube or duct passed out of engineering knowledge.
2810:
For historical reasons the outside rather than the inside dimensions of these waveguides are 2:1 (with wall thickness WG6–WG10: 0.08" (2.0 mm), WG11A–WG15: 0.064" (1.6 mm), WG16–WG17: 0.05" (1.3 mm), WG18–WG28: 0.04" (1.0
927:
The electromagnetic waves in a (metal-pipe) waveguide may be imagined as travelling down the guide in a zig-zag path, being repeatedly reflected between opposite walls of the guide. For the particular case of
1265:
the waveguide, it is one of the lowest loss transmission line types and highly preferred for high frequency applications where most other types of transmission structures introduce large losses. Due to the
1481: 1024:
of electromagnetic waves propagating through both conducting tubes and dielectric rods of arbitrary shape. He showed that the waves could travel without attenuation only in specific
623: 2904:, in which TEM mode is possible. Additionally, the propagating modes (i.e. TE and TM) inside the waveguide can be mathematically expressed as the superposition of two TEM waves. 1128:. At Bell Labs in 1931 he resumed work in dielectric waveguides. By March 1932 he observed waves in water-filled copper pipes. Rayleigh's previous work had been forgotten, and 2844:
of the equation system. Each mode is characterized by a cutoff frequency below which the mode cannot exist in the guide. Waveguide propagation modes depend on the operating
1426: 596: 1395: 3811: 932:, it is possible to base an exact analysis on this view. Propagation in a dielectric waveguide may be viewed in the same way, with the waves confined to the dielectric by 1085:
which by the 1930s had generated radio waves at up to 10 GHz. These made possible the first systematic research on microwaves in the 1930s. It was discovered that
608: 1214:, a waveguide normally consists of a hollow metallic conductor. These waveguides can take the form of single conductors with or without a dielectric coating, e.g. the 1139:
in Germany. At MIT beginning in 1932 he worked on high frequency antennas to generate narrow beams of radio waves to locate aircraft in fog. He invented a
1147:
Barrow and Southworth became aware of each other's work a few weeks before both were scheduled to present papers on waveguides to a combined meeting of the
1513:, a phenomenon in which the velocity of propagation is a function of frequency. It also limits the loss per unit length. The third condition is to avoid 859: 1225:, allowing higher power transmission. Conversely, waveguides may be required to be evacuated as part of evacuated systems (e.g. electron beam systems). 628: 1587: 1124:
in a long tank of water. He found that if he removed the Lecher line, the tank of water still showed resonance peaks, indicating it was acting as a
992:
who developed waveguides in the early 1930s, in front of mile-long experimental waveguide run at Bell Labs, Holmdel, New Jersey, used in his research
638: 3895: 1218:
and helical waveguides. Hollow waveguides must be one-half wavelength or more in diameter in order to support one or more transverse wave modes.
463: 3601: 1113: 478: 100: 3683:
Modi, Anuj Y.; Balanis, Constantine A. (2016). "PEC-PMC Baffle Inside Circular Cross Section Waveguide for Reduction of Cut-Off Frequency".
1049:
slower speed in tubes than in free space, and deduced the reason; that the waves travel in a "zigzag" path as they reflect from the walls.
1116:, who worked without knowledge of one another. Southworth's interest was sparked during his 1920s doctoral work in which he measured the 1261:
propagate. It is possible to operate waveguides at higher order modes, or with multiple modes present, but this is usually impractical.
3756: 3729: 3478: 3308: 937: 1301:
build up or arcing in high power systems such as radio or radar transmitters. Moisture in waveguides can typically be prevented with
358: 3746: 3642: 3338: 877: 90: 2885:. Rectangular wave guides may be solved in rectangular coordinates. Round waveguides may be solved in cylindrical coordinates. 2840:
determined by the properties of the materials and their interfaces. These equations have multiple solutions, or modes, which are
3468: 1053:
waveguides during this period, although a few experiments were done. In a June 1, 1894 lecture, "The work of Hertz", before the
273: 3666: 3120: 3064: 1579: 852: 618: 95: 3719: 2926: 3905: 3536:. Plasma and Beam Physics Research Facility, Dept. of Physics and Materials Science, Chiang Mai University, Thailand. 2012 3400: 3142: 2833: 1008:
meeting in 1938, showing 1.5 GHz microwaves passing through the 7.5 m flexible metal hose registering on a diode detector.
633: 338: 1152: 1005: 498: 488: 473: 238: 105: 3298: 1341: 538: 228: 1105: 873: 791: 666: 563: 458: 1485:
With circular waveguides, the highest possible bandwidth allowing only a single mode to propagate is only 1.3601:1.
291: 3004: 2978: 1148: 933: 845: 806: 333: 323: 263: 258: 198: 1074: 3900: 1431: 1211: 974: 921: 776: 656: 343: 1297:
at the outer end that will not interfere with propagation but keep the elements out. Moisture can also cause
3910: 3857: 2882: 1502:
the upper edge of the band is approximately 5% lower than the cutoff frequency of the next higher order mode
781: 751: 183: 173: 168: 3864:". New York, Van Nostrand , xi, 689 p. illus. 24 cm. Bell Telephone Laboratories series. LCCN 50009834 3529: 2874:
TEM modes (transverse electromagnetic) have no electric nor magnetic field in the direction of propagation.
3803: 3226: 3084: 2829: 1021: 603: 373: 148: 1129: 1066: 701: 388: 378: 328: 318: 65: 2888:
In hollow, single conductor waveguides, TEM waves are not possible. This contrasts with two-conductor
1294: 996: 2990:
between two dielectrics, so the fields of the wave penetrate outside the dielectric in the form of an
1097:, had excessive power losses at microwave frequencies, creating a need for a new transmission method. 3503: 3363: 3218: 2849: 1519: 1400: 1372: 1246: 1234: 1125: 1101: 989: 826: 726: 691: 443: 308: 208: 193: 128: 3879: 3231: 1378: 985: 233: 3620: 3069: 2837: 1510: 1325: 1117: 1078: 786: 766: 761: 568: 553: 438: 408: 303: 1012:
During the 1890s theorists did the first analyses of electromagnetic waves in ducts. Around 1893
3700: 2959: 2538: 2500: 2435: 1073:
During the 1920s the first continuous sources of high frequency radio waves were developed: the
970: 661: 401: 203: 163: 31: 3776: 3207: 1257:
field, and (h) in which discontinuities and bends may cause mode conversion but not radiation.
1194: 3752: 3725: 3662: 3638: 3597: 3474: 3334: 3304: 3116: 3054: 3044: 2889: 2877:
Hybrid modes have both electric and magnetic field components in the direction of propagation.
2853: 1509:
The first condition is to allow for applications near band edges. The second condition limits
1229: 1170:
networks which were built to transmit telephone calls and television programs between cities.
1136: 1086: 893: 721: 3328: 1065:
through a short cylindrical copper duct. In his pioneering 1894-1900 research on microwaves,
3692: 3628: 3574: 3511: 3379: 3371: 3330:
Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits, Vol. 1
3274: 3236: 3079: 3074: 3019: 3014: 2982: 1497: 1332: 1109: 1082: 1045: 821: 736: 696: 686: 573: 528: 511: 428: 363: 133: 57: 3431: 3263:"On the passage of electric waves through tubes, or the vibrations of dielectric cylinders" 3089: 2991: 2974: 2954:
is a dielectric guide designed to work at optical frequencies. Transmission lines such as
2861: 1514: 1250: 1167: 909: 756: 681: 676: 543: 418: 383: 278: 243: 143: 1397:
is the greater of its two dimensions, then the longest wavelength that will propagate is
796: 17: 3565:
Harvey, A. F. (July 1955). "Standard waveguides and couplings for microwave equipment".
3507: 3367: 3222: 1155:
in May 1936. They amicably worked out credit sharing and patent division arrangements.
3049: 1037: 1029: 913: 905: 716: 711: 533: 423: 348: 298: 248: 221: 178: 153: 123: 116: 2871:
TM modes (transverse magnetic) have no magnetic field in the direction of propagation.
2868:
TE modes (transverse electric) have no electric field in the direction of propagation.
1493:
one band starts where another band ends, with another band that overlaps the two bands
1269:
at high frequencies, electric current along the walls penetrates typically only a few
1253:
at any point is describable in terms of the supported modes, (g) in which there is no
3889: 3874: 3494:
Schelkunoff, Sergei A. (November 1937). "Electromagnetic Waves in Conducting Tubes".
2967: 2951: 2893: 2857: 2841: 2569: 2241: 2053: 2021: 1989: 1957: 1094: 1054: 1017: 1013: 831: 816: 801: 741: 453: 368: 353: 268: 253: 158: 964:
Depending on the frequency, waveguides can be constructed from either conductive or
41: 3704: 3633: 3029: 1533:, and the number is the inner dimension width of the waveguide in hundredths of an 1222: 1199: 1140: 1058: 811: 706: 671: 613: 548: 433: 313: 188: 1044:), perpendicular to the direction of propagation. He also showed each mode had a 468: 3807: 1266: 1215: 1121: 1025: 941: 901: 731: 583: 413: 75: 3696: 3384: 3278: 3240: 3059: 3034: 2973:
Dielectric rod and slab waveguides are used to conduct radio waves, mostly at
2955: 2845: 2816: 2815:
For the frequencies in the table above, the main advantage of waveguides over
1537:(0.01 inch = 0.254 mm) rounded to the nearest hundredth of an inch. 1353: 1302: 1270: 1186: 1016:
derived the electromagnetic modes inside a cylindrical metal cavity. In 1897
965: 885: 448: 3578: 3375: 3300:
Digital Microwave Communication: Engineering Point-to-Point Microwave Systems
3515: 3039: 3024: 2963: 2901: 2897: 1496:
the lower edge of the band is approximately 30% higher than the waveguide's
1306: 1254: 1221:
Waveguides may be filled with pressurized gas to inhibit arcing and prevent
1207: 1090: 1062: 897: 889: 771: 746: 558: 483: 80: 35: 3110: 30:"Waveguide (electromagnetism)" redirects here. For optical waveguides, see 1144:
experiments he used a 16-foot section of air duct, 18 inches in diameter.
3009: 1310: 1163: 957: 523: 518: 138: 3354:
Weber, R. H. (1902). "Elektromagnetische Schwingungen in Metallrohren".
1135:
Barrow had become interested in high frequencies in 1930 studying under
2304: 2177: 1041: 1033: 493: 1178: 952: 3432:"Jagadish Chandra Bose: Millimeter-wave research in the 19th century" 2881:
Waveguides with certain symmetries may be solved using the method of
2466: 2404: 2373: 2342: 2114: 1925: 1893: 1805: 1298: 1279: 1275: 578: 85: 3262: 944:, use both metal walls and dielectric surfaces to confine the wave. 1100:
The waveguide was developed independently between 1932 and 1936 by
3470:
Technical and Military Imperatives: A Radar History of World War 2
1314: 1193: 1185: 1177: 1159: 995: 984: 951: 917: 40: 3567:
Proceedings of the IEE - Part B: Radio and Electronic Engineering
1162:
during World War 2 and the first high power microwave tubes, the
3112:
The IEEE Standard Dictionary of Electrical and Electronics Terms
1534: 1290: 1283: 3718:
Lioubtchenko, Dmitri; Sergei Tretyakov; Sergey Dudorov (2003).
1309:, or slight pressurization of the waveguide cavities with dry 3786:. Electrical Engineering Dept. Cornell Univ. pp. 2–3, 10 2950:
employs a solid dielectric rod rather than a hollow pipe. An
977:(EHF) communications can be less than a millimeter in width. 1525:
Below is a table of standard waveguides. The waveguide name
1371:
In practice, waveguides act as the equivalent of cables for
1237:
in a specific relatively narrow and controllable direction.
1061:
demonstrated the transmission of 3 inch radio waves from a
3875:
The Feynman Lectures on Physics Vol. II Ch. 24: Waveguides
3208:"The Origin of Waveguides: A Case of Multiple Rediscovery" 2986:
form of dielectric waveguide used at optical wavelengths.
1245:
be practical, (e) in which each discrete mode defines the
2977:
frequencies and above. These confine the radio waves by
3847:, p. 8 (1947) (reprinted by Dover: New York, 1964). 2907:
The mode with the lowest cutoff frequency is termed the
1020:
did a definitive analysis of waveguides; he solved the
900:
frequencies, for such purposes as connecting microwave
3862:
Principles and applications of wave-guide transmission
1382: 3784:
Class notes ECE 303: Electromagnetic Fields and Waves
1434: 1403: 1381: 3215:
IEEE Transactions on Microwave Theory and Techniques
2860:
pattern formed by waves confined in the cavity. The
1077:, the first oscillator which could produce power at 3880:
Derivation of Fields Within a Rectangular Waveguide
2828:Electromagnetic waveguides are analyzed by solving 1475: 1420: 1389: 3261:Strutt, William (Lord Rayleigh) (February 1897). 1331:Short length of rectangular waveguide (WG17 with 3333:. Cambridge University Press. pp. 18, 118. 1505:the waveguide height is half the waveguide width 3802:This article is based in part on material from 3685:IEEE Microwave and Wireless Components Letters 3615: 3613: 2936:mode of a circular hollow metallic waveguide. 853: 8: 3845:Theory and Applications of Mathieu Functions 3136: 3134: 3132: 45:Collection of standard waveguide components. 3751:. Tata McGraw-Hill Education. p. 327. 1089:used to carry lower frequency radio waves, 27:Hollow metal pipe used to carry radio waves 3201: 3199: 3197: 3195: 3193: 3191: 3115:(6 ed.). IEEE Standards Association. 2805:Radio Components Standardization Committee 1539: 1458: 1454: 1442: 1438: 1411: 1407: 860: 846: 64: 48: 3632: 3437:. US National Radio Astronomy Observatory 3383: 3230: 3189: 3187: 3185: 3183: 3181: 3179: 3177: 3175: 3173: 3171: 2970:may also be considered to be waveguides. 2852:and the shape and size of the guide. The 1476:{\displaystyle f\;=\;c/\lambda \;=\;c/2W} 1462: 1446: 1433: 1402: 1380: 936:at its surface. Some structures, such as 3777:"Lecture 26: Dielectric slab waveguides" 3462: 3460: 3458: 3456: 3454: 3452: 1543:Standard sizes of rectangular waveguide 973:. On the other hand, waveguides used in 3770: 3768: 3292: 3290: 3288: 3101: 2922: 609:Electromagnetism and special relativity 56: 1566:Inner dimensions of waveguide opening 1190:Flexible waveguide from a J-Band radar 3322: 3320: 2864:are classified into different types: 1565: 1547: 1114:Massachusetts Institute of Technology 884:is a hollow metal pipe used to carry 629:Maxwell equations in curved spacetime 7: 3625:Time-Harmonic Electromagnetic Fields 3206:Packard, Karle S. (September 1984). 34:. For other types of waveguide, see 938:non-radiative dielectric waveguides 3303:. John Wiley and Sons. p. 7. 25: 3141:Southworth, G. C. (August 1936). 1428:and the lowest frequency is thus 1347:Section of the flexible waveguide 2925: 1352: 1340: 1324: 1249:for that mode, (f) in which the 1120:of water with a radio frequency 3661:. CRC Press. pp. 257–258. 3530:"Module 12: Waveguide Plumbing" 3473:. CRC Press. pp. 146–148. 2856:of a waveguide is a particular 1623:584.20 × 292.10 1421:{\displaystyle \lambda \;=\;2W} 1198:Typical waveguide application: 969:7.83 Hz. This is known as 960:in an air traffic control radar 3896:Telecommunications engineering 3596:(1 ed.). Pergamon Press. 3405:Proc. Of the Royal Institution 3399:Lodge, Oliver (June 1, 1984). 3065:Substrate-integrated waveguide 1735:292.10 × 146.5 1707:381.00 × 190.5 1679:457.20 × 228.6 1651:533.40 × 266.7 1390:{\displaystyle \scriptstyle W} 1359:Waveguide (ankle piece 900MHz) 1158:The development of centimeter 1: 3627:, McGraw-Hill, pp. 7–8, 2834:electromagnetic wave equation 2832:, or their reduced form, the 2642:0.864 × 0.432 1975:58.17 × 29.08 1943:72.14 × 34.94 1911:86.36 × 43.18 1879:109.2 × 54.61 1851:129.5 × 64.77 1823:165.1 × 82.55 1791:195,6 × 97.79 1763:247.7 × 123.8 1560:of operation (GHz) 1289:Voltage standing wave ratio ( 924:, and microwave radio links. 634:Relativistic electromagnetism 3592:Baden Fuller, A. J. (1969). 2798:0.25 × 0.125 2772:0.31 × 0.155 2720:0.47 × 0.235 2694:0.57 × 0.285 2668:0.71 × 0.355 2614:1.09 × 0.546 2586:1.30 × 0.648 2555:1.65 × 0.826 2100:28.50 × 12.6 2071:34.90 × 15.8 2039:40.38 × 20.2 2007:47.55 × 22.2 1182:Rectangular hollow Waveguide 1153:Institute of Radio Engineers 956:Example of waveguides and a 3745:Shevgaonkar, R. K. (2005). 3430:Emerson, Darrel T. (1998). 2892:used at lower frequencies; 2746:0.38 × 0.19 2520:2.03 × 1.02 2486:2.54 × 1.27 2452:3.10 × 1.55 2421:3.76 × 1.88 2390:4.78 × 2.39 2359:5.68 × 2.84 2328:7.11 × 3.56 2290:8.64 × 4.32 2261:10.7 × 4.32 2227:13.0 × 6.48 2198:15.8 × 7.90 2163:19.1 × 9.53 2134:22.9 × 10.2 1106:Bell Telephone Laboratories 1004:demonstrating waveguide at 874:radio-frequency engineering 3927: 3775:Rana, Farhan (Fall 2005). 3721:Millimeter-Wave Waveguides 3534:Introduction to Waveguides 1563:Cutoff frequency (GHz) of 878:communications engineering 359:Liénard–Wiechert potential 29: 3724:. Springer. p. 149. 3697:10.1109/LMWC.2016.2524529 3657:Someda, Carlo G. (1998). 3279:10.1080/14786449708620969 3241:10.1109/tmtt.1984.1132809 3005:Angular misalignment loss 2979:total internal reflection 1573: 1570: 1562: 1555: 1550: 1542: 1333:UBR120 connection-flanges 1149:American Physical Society 934:total internal reflection 624:Mathematical descriptions 334:Electromagnetic radiation 324:Electromagnetic induction 264:Magnetic vector potential 259:Magnetic scalar potential 18:Radio-frequency waveguide 3579:10.1049/pi-b-1.1955.0095 3376:10.1002/andp.19023130802 2994:(non-propagating) wave. 1515:evanescent-wave coupling 1212:electromagnetic spectrum 975:extremely high frequency 922:satellite communications 3858:George Clark Southworth 3634:2027/mdp.39015002091489 3516:10.1103/PhysRev.52.1078 3327:Lee, Thomas H. (2004). 3217:. MTT-32 (9): 961–969. 2883:separation of variables 1571:lowest order mode 912:, in equipment such as 174:Electrostatic induction 169:Electrostatic discharge 3804:Federal Standard 1037C 3297:Kizer, George (2013). 3267:Philosophical Magazine 3143:"Electric Wave Guides" 3085:Waveguide rotary joint 1477: 1422: 1391: 1203: 1191: 1183: 1022:boundary value problem 1009: 993: 961: 604:Electromagnetic tensor 46: 3840:, p. 125 (1897). 3830:, p. 321 (1894). 3748:Electromagnetic Waves 3659:Electromagnetic Waves 3467:Brown, Louis (1999). 2942:Dielectric waveguides 2824:Mathematical analysis 1531:waveguide rectangular 1478: 1423: 1392: 1197: 1189: 1181: 1130:Sergei A. Schelkunoff 1083:split-anode magnetron 1081:frequencies; and the 1067:Jagadish Chandra Bose 999: 988: 955: 930:rectangular waveguide 597:Covariant formulation 389:Synchrotron radiation 329:Electromagnetic pulse 319:Electromagnetic field 44: 3906:Microwave technology 3621:Harrington, Roger F. 2948:dielectric waveguide 2920:modes respectively. 1520:dielectric breakdown 1432: 1401: 1379: 1373:super high frequency 1247:propagation constant 1235:electromagnetic wave 1202:for military radar. 1126:dielectric waveguide 1102:George C. Southworth 1075:Barkhausen–Kurz tube 990:George C. Southworth 639:Stress–energy tensor 564:Reluctance (complex) 309:Displacement current 3508:1937PhRv...52.1078S 3401:"The Work of Hertz" 3368:1902AnP...313..721W 3223:1984ITMTT..32..961P 3070:Transmission medium 2838:boundary conditions 2830:Maxwell's equations 2795:0.009843 × 0.004921 2258:0.420 × 0.170  2131:0.900 × 0.400  2097:1.122 × 0.497  2068:1.372 × 0.622  2004:1.872 × 0.872  1940:2.840 × 1.340  1558:frequency band 1118:dielectric constant 554:Magnetomotive force 439:Electromotive force 409:Alternating current 344:Jefimenko equations 304:Cyclotron radiation 3882:antenna-theory.com 3356:Annalen der Physik 2960:coplanar waveguide 2898:parallel wire line 2890:transmission lines 2769:0.01220 × 0.006102 2743:0.01496 × 0.007480 2717:0.01850 × 0.009252 1473: 1418: 1387: 1386: 1204: 1192: 1184: 1087:transmission lines 1010: 994: 971:Schumann resonance 962: 402:Electrical network 239:Gauss magnetic law 204:Static electricity 164:Electric potential 47: 32:Waveguide (optics) 3843:N. W. McLachlan, 3818:Recent Researches 3603:978-0-08-006616-5 3385:2027/uc1.$ b24304 3055:Radio propagation 3045:Optical waveguide 2981:from the step in 2854:longitudinal mode 2802: 2801: 2691:0.02244 × 0.01122 2665:0.02795 × 0.01398 1295:microwave windows 1230:slotted waveguide 1137:Arnold Sommerfeld 894:transmission line 870: 869: 569:Reluctance (real) 539:Gyrator–capacitor 484:Resonant cavities 374:Maxwell equations 16:(Redirected from 3918: 3825:Proc. Roy. Inst. 3796: 3795: 3793: 3791: 3781: 3772: 3763: 3762: 3742: 3736: 3735: 3715: 3709: 3708: 3680: 3674: 3672: 3654: 3648: 3647: 3636: 3617: 3608: 3607: 3589: 3583: 3582: 3562: 3556: 3552: 3546: 3545: 3543: 3541: 3526: 3520: 3519: 3491: 3485: 3484: 3464: 3447: 3446: 3444: 3442: 3436: 3427: 3421: 3420: 3418: 3416: 3396: 3390: 3389: 3387: 3351: 3345: 3344: 3324: 3315: 3314: 3294: 3283: 3282: 3273:(261): 125–132. 3258: 3252: 3251: 3249: 3247: 3234: 3212: 3203: 3166: 3165: 3163: 3161: 3150:Short Wave Craft 3147: 3138: 3127: 3126: 3106: 3080:Waveguide flange 3075:Waveguide filter 3020:Cutoff frequency 3015:Cavity resonator 2983:refractive index 2929: 2862:transverse modes 2507: 2473: 2316: 2248: 2121: 1540: 1498:cutoff frequency 1482: 1480: 1479: 1474: 1466: 1450: 1427: 1425: 1424: 1419: 1396: 1394: 1393: 1388: 1356: 1344: 1328: 1242:closed waveguide 1110:Wilmer L. Barrow 1046:cutoff frequency 1028:with either the 862: 855: 848: 529:Electric machine 512:Magnetic circuit 474:Parallel circuit 464:Network analysis 429:Electric current 364:London equations 209:Triboelectricity 199:Potential energy 68: 58:Electromagnetism 49: 21: 3926: 3925: 3921: 3920: 3919: 3917: 3916: 3915: 3901:Electrodynamics 3886: 3885: 3871: 3854: 3852:Further reading 3833:Lord Rayleigh, 3816:J. J. Thomson, 3799: 3789: 3787: 3779: 3774: 3773: 3766: 3759: 3744: 3743: 3739: 3732: 3717: 3716: 3712: 3682: 3681: 3677: 3669: 3656: 3655: 3651: 3645: 3619: 3618: 3611: 3604: 3591: 3590: 3586: 3564: 3563: 3559: 3553: 3549: 3539: 3537: 3528: 3527: 3523: 3496:Physical Review 3493: 3492: 3488: 3481: 3466: 3465: 3450: 3440: 3438: 3434: 3429: 3428: 3424: 3414: 3412: 3398: 3397: 3393: 3353: 3352: 3348: 3341: 3326: 3325: 3318: 3311: 3296: 3295: 3286: 3260: 3259: 3255: 3245: 3243: 3232:10.1.1.532.8921 3210: 3205: 3204: 3169: 3159: 3157: 3145: 3140: 3139: 3130: 3123: 3108: 3107: 3103: 3099: 3094: 3090:Flap attenuator 3000: 2975:millimeter wave 2944: 2937: 2935: 2930: 2919: 2915: 2826: 2639:0.0340 × 0.0170 2611:0.0430 × 0.0215 2583:0.0510 × 0.0255 2552:0.0650 × 0.0325 2528: 2526: 2505: 2471: 2314: 2308: 2246: 2181: 2119: 1648:21.000 × 10.500 1620:23.000 × 11.500 1559: 1557: 1552: 1548:Waveguide name 1430: 1429: 1399: 1398: 1377: 1376: 1369: 1364: 1363: 1362: 1361: 1360: 1357: 1349: 1348: 1345: 1337: 1336: 1329: 1176: 1168:microwave relay 983: 950: 914:microwave ovens 888:. This type of 866: 837: 836: 652: 644: 643: 599: 589: 588: 544:Induction motor 514: 504: 503: 419:Current density 404: 394: 393: 384:Poynting vector 294: 292:Electrodynamics 284: 283: 279:Right-hand rule 244:Magnetic dipole 234:Biot–Savart law 224: 214: 213: 149:Electric dipole 144:Electric charge 119: 39: 28: 23: 22: 15: 12: 11: 5: 3924: 3922: 3914: 3913: 3911:Wave mechanics 3908: 3903: 3898: 3888: 3887: 3884: 3883: 3877: 3870: 3869:External links 3867: 3866: 3865: 3853: 3850: 3849: 3848: 3841: 3831: 3821: 3814: 3798: 3797: 3764: 3758:978-0070591165 3757: 3737: 3731:978-1402075315 3730: 3710: 3691:(3): 171–173. 3675: 3667: 3649: 3643: 3609: 3602: 3584: 3573:(4): 493–499. 3557: 3547: 3521: 3486: 3480:978-1420050660 3479: 3448: 3422: 3391: 3362:(4): 721–751. 3346: 3339: 3316: 3310:978-1118636800 3309: 3284: 3253: 3167: 3128: 3121: 3109:Radatz, Jane. 3100: 3098: 3095: 3093: 3092: 3087: 3082: 3077: 3072: 3067: 3062: 3057: 3052: 3050:Radiation mode 3047: 3042: 3037: 3032: 3027: 3022: 3017: 3012: 3007: 3001: 2999: 2996: 2943: 2940: 2939: 2938: 2933: 2931: 2924: 2917: 2913: 2879: 2878: 2875: 2872: 2869: 2842:eigenfunctions 2825: 2822: 2817:coaxial cables 2813: 2812: 2807: 2806: 2800: 2799: 2796: 2793: 2790: 2787: 2784: 2782: 2780: 2778: 2774: 2773: 2770: 2767: 2764: 2761: 2758: 2756: 2754: 2752: 2748: 2747: 2744: 2741: 2738: 2735: 2732: 2730: 2728: 2726: 2722: 2721: 2718: 2715: 2712: 2709: 2706: 2704: 2702: 2700: 2696: 2695: 2692: 2689: 2686: 2683: 2680: 2678: 2676: 2674: 2670: 2669: 2666: 2663: 2660: 2657: 2654: 2652: 2650: 2648: 2644: 2643: 2640: 2637: 2634: 2631: 2628: 2626: 2623: 2620: 2616: 2615: 2612: 2609: 2606: 2603: 2600: 2598: 2595: 2592: 2588: 2587: 2584: 2581: 2578: 2575: 2572: 2567: 2564: 2561: 2557: 2556: 2553: 2550: 2547: 2544: 2541: 2536: 2533: 2530: 2522: 2521: 2518: 2515: 2512: 2509: 2503: 2498: 2495: 2492: 2488: 2487: 2484: 2481: 2478: 2475: 2469: 2464: 2461: 2458: 2454: 2453: 2450: 2447: 2444: 2441: 2438: 2433: 2430: 2427: 2423: 2422: 2419: 2416: 2413: 2410: 2407: 2402: 2399: 2396: 2392: 2391: 2388: 2385: 2382: 2379: 2376: 2371: 2368: 2365: 2361: 2360: 2357: 2354: 2351: 2348: 2345: 2340: 2337: 2334: 2330: 2329: 2326: 2323: 2320: 2317: 2311: 2306: 2302: 2299: 2296: 2292: 2291: 2288: 2285: 2282: 2279: 2276: 2273: 2270: 2267: 2263: 2262: 2259: 2256: 2253: 2250: 2244: 2239: 2236: 2233: 2229: 2228: 2225: 2222: 2219: 2216: 2213: 2210: 2207: 2204: 2200: 2199: 2196: 2193: 2190: 2187: 2184: 2179: 2175: 2172: 2169: 2165: 2164: 2161: 2158: 2155: 2152: 2149: 2146: 2143: 2140: 2136: 2135: 2132: 2129: 2126: 2123: 2117: 2112: 2109: 2106: 2102: 2101: 2098: 2095: 2092: 2089: 2086: 2083: 2080: 2077: 2073: 2072: 2069: 2066: 2063: 2060: 2057: 2051: 2048: 2045: 2041: 2040: 2037: 2034: 2031: 2028: 2025: 2019: 2016: 2013: 2009: 2008: 2005: 2002: 1999: 1996: 1993: 1987: 1984: 1981: 1977: 1976: 1973: 1970: 1967: 1964: 1961: 1955: 1952: 1949: 1945: 1944: 1941: 1938: 1935: 1932: 1929: 1923: 1920: 1917: 1913: 1912: 1909: 1906: 1903: 1900: 1897: 1891: 1888: 1885: 1881: 1880: 1877: 1874: 1871: 1868: 1865: 1863: 1860: 1857: 1853: 1852: 1849: 1846: 1843: 1840: 1837: 1835: 1832: 1829: 1825: 1824: 1821: 1818: 1815: 1812: 1809: 1803: 1800: 1797: 1793: 1792: 1789: 1786: 1783: 1780: 1777: 1775: 1772: 1769: 1765: 1764: 1761: 1758: 1755: 1752: 1749: 1747: 1744: 1741: 1737: 1736: 1733: 1732:11.500 × 5.750 1730: 1727: 1724: 1721: 1719: 1716: 1713: 1709: 1708: 1705: 1704:15.000 × 7.500 1702: 1699: 1696: 1693: 1691: 1688: 1685: 1681: 1680: 1677: 1676:18.000 × 9.000 1674: 1671: 1668: 1665: 1663: 1660: 1657: 1653: 1652: 1649: 1646: 1643: 1640: 1637: 1635: 1632: 1629: 1625: 1624: 1621: 1618: 1615: 1612: 1609: 1607: 1604: 1601: 1597: 1596: 1593: 1590: 1585: 1582: 1576: 1575: 1572: 1568: 1567: 1564: 1561: 1554: 1549: 1545: 1544: 1507: 1506: 1503: 1500: 1494: 1472: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1417: 1414: 1410: 1406: 1385: 1368: 1365: 1358: 1351: 1350: 1346: 1339: 1338: 1330: 1323: 1322: 1321: 1320: 1319: 1210:region of the 1175: 1172: 1038:magnetic field 1030:electric field 982: 979: 949: 946: 868: 867: 865: 864: 857: 850: 842: 839: 838: 835: 834: 829: 824: 819: 814: 809: 804: 799: 794: 789: 784: 779: 774: 769: 764: 759: 754: 749: 744: 739: 734: 729: 724: 719: 714: 709: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 653: 650: 649: 646: 645: 642: 641: 636: 631: 626: 621: 619:Four-potential 616: 611: 606: 600: 595: 594: 591: 590: 587: 586: 581: 576: 571: 566: 561: 556: 551: 546: 541: 536: 534:Electric motor 531: 526: 521: 515: 510: 509: 506: 505: 502: 501: 496: 491: 489:Series circuit 486: 481: 476: 471: 466: 461: 459:Kirchhoff laws 456: 451: 446: 441: 436: 431: 426: 424:Direct current 421: 416: 411: 405: 400: 399: 396: 395: 392: 391: 386: 381: 379:Maxwell tensor 376: 371: 366: 361: 356: 351: 349:Larmor formula 346: 341: 336: 331: 326: 321: 316: 311: 306: 301: 299:Bremsstrahlung 295: 290: 289: 286: 285: 282: 281: 276: 271: 266: 261: 256: 251: 249:Magnetic field 246: 241: 236: 231: 225: 222:Magnetostatics 220: 219: 216: 215: 212: 211: 206: 201: 196: 191: 186: 181: 176: 171: 166: 161: 156: 154:Electric field 151: 146: 141: 136: 131: 126: 124:Charge density 120: 117:Electrostatics 115: 114: 111: 110: 109: 108: 103: 98: 93: 88: 83: 78: 70: 69: 61: 60: 54: 53: 52:Articles about 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3923: 3912: 3909: 3907: 3904: 3902: 3899: 3897: 3894: 3893: 3891: 3881: 3878: 3876: 3873: 3872: 3868: 3863: 3859: 3856: 3855: 3851: 3846: 3842: 3839: 3836: 3832: 3829: 3826: 3823:O. J. Lodge, 3822: 3819: 3815: 3813: 3809: 3805: 3801: 3800: 3785: 3778: 3771: 3769: 3765: 3760: 3754: 3750: 3749: 3741: 3738: 3733: 3727: 3723: 3722: 3714: 3711: 3706: 3702: 3698: 3694: 3690: 3686: 3679: 3676: 3670: 3664: 3660: 3653: 3650: 3646: 3644:0-07-026745-6 3640: 3635: 3630: 3626: 3622: 3616: 3614: 3610: 3605: 3599: 3595: 3588: 3585: 3580: 3576: 3572: 3568: 3561: 3558: 3551: 3548: 3540:September 21, 3535: 3531: 3525: 3522: 3517: 3513: 3509: 3505: 3501: 3497: 3490: 3487: 3482: 3476: 3472: 3471: 3463: 3461: 3459: 3457: 3455: 3453: 3449: 3433: 3426: 3423: 3411:(88): 331–332 3410: 3406: 3402: 3395: 3392: 3386: 3381: 3377: 3373: 3369: 3365: 3361: 3357: 3350: 3347: 3342: 3340:9780521835268 3336: 3332: 3331: 3323: 3321: 3317: 3312: 3306: 3302: 3301: 3293: 3291: 3289: 3285: 3280: 3276: 3272: 3268: 3264: 3257: 3254: 3242: 3238: 3233: 3228: 3224: 3220: 3216: 3209: 3202: 3200: 3198: 3196: 3194: 3192: 3190: 3188: 3186: 3184: 3182: 3180: 3178: 3176: 3174: 3172: 3168: 3156:(1): 198, 233 3155: 3151: 3144: 3137: 3135: 3133: 3129: 3124: 3118: 3114: 3113: 3105: 3102: 3096: 3091: 3088: 3086: 3083: 3081: 3078: 3076: 3073: 3071: 3068: 3066: 3063: 3061: 3058: 3056: 3053: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3002: 2997: 2995: 2993: 2987: 2984: 2980: 2976: 2971: 2969: 2968:coaxial cable 2965: 2961: 2957: 2953: 2952:optical fibre 2949: 2941: 2928: 2923: 2921: 2910: 2909:dominant mode 2905: 2903: 2899: 2895: 2894:coaxial cable 2891: 2886: 2884: 2876: 2873: 2870: 2867: 2866: 2865: 2863: 2859: 2858:standing wave 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2823: 2821: 2818: 2809: 2808: 2804: 2803: 2797: 2794: 2791: 2788: 2785: 2783: 2781: 2779: 2776: 2775: 2771: 2768: 2765: 2762: 2759: 2757: 2755: 2753: 2750: 2749: 2745: 2742: 2739: 2736: 2733: 2731: 2729: 2727: 2724: 2723: 2719: 2716: 2713: 2710: 2707: 2705: 2703: 2701: 2698: 2697: 2693: 2690: 2687: 2684: 2681: 2679: 2677: 2675: 2672: 2671: 2667: 2664: 2661: 2658: 2655: 2653: 2651: 2649: 2646: 2645: 2641: 2638: 2635: 2632: 2629: 2627: 2624: 2621: 2618: 2617: 2613: 2610: 2607: 2604: 2601: 2599: 2596: 2593: 2590: 2589: 2585: 2582: 2579: 2576: 2573: 2571: 2568: 2565: 2562: 2559: 2558: 2554: 2551: 2548: 2545: 2542: 2540: 2537: 2534: 2531: 2524: 2523: 2519: 2517:0.080 × 0.040 2516: 2513: 2510: 2504: 2502: 2499: 2496: 2493: 2490: 2489: 2485: 2483:0.100 × 0.050 2482: 2479: 2476: 2470: 2468: 2465: 2462: 2459: 2456: 2455: 2451: 2449:0.122 × 0.061 2448: 2445: 2442: 2439: 2437: 2434: 2431: 2428: 2425: 2424: 2420: 2418:0.148 × 0.074 2417: 2414: 2411: 2408: 2406: 2403: 2400: 2397: 2394: 2393: 2389: 2387:0.188 × 0.094 2386: 2383: 2380: 2377: 2375: 2372: 2369: 2366: 2363: 2362: 2358: 2356:0.224 × 0.112 2355: 2352: 2349: 2346: 2344: 2341: 2338: 2335: 2332: 2331: 2327: 2325:0.280 × 0.140 2324: 2321: 2318: 2312: 2310: 2303: 2300: 2297: 2294: 2293: 2289: 2287:0.340 × 0.170 2286: 2283: 2280: 2277: 2274: 2271: 2268: 2265: 2264: 2260: 2257: 2254: 2251: 2245: 2243: 2240: 2237: 2234: 2231: 2230: 2226: 2224:0.510 × 0.255 2223: 2220: 2217: 2214: 2211: 2208: 2205: 2202: 2201: 2197: 2195:0.622 × 0.311 2194: 2191: 2188: 2185: 2183: 2176: 2173: 2170: 2167: 2166: 2162: 2160:0.750 × 0.375 2159: 2156: 2153: 2150: 2147: 2144: 2141: 2138: 2137: 2133: 2130: 2127: 2124: 2118: 2116: 2113: 2110: 2107: 2104: 2103: 2099: 2096: 2093: 2090: 2087: 2084: 2081: 2078: 2075: 2074: 2070: 2067: 2064: 2061: 2058: 2055: 2052: 2049: 2046: 2043: 2042: 2038: 2036:1.590 × 0.795 2035: 2032: 2029: 2026: 2023: 2020: 2017: 2014: 2011: 2010: 2006: 2003: 2000: 1997: 1994: 1991: 1988: 1985: 1982: 1979: 1978: 1974: 1972:2.290 × 1.145 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1947: 1946: 1942: 1939: 1936: 1933: 1930: 1927: 1924: 1921: 1918: 1915: 1914: 1910: 1908:3.400 × 1.700 1907: 1904: 1901: 1898: 1895: 1892: 1889: 1886: 1883: 1882: 1878: 1876:4.300 × 2.150 1875: 1872: 1869: 1866: 1864: 1861: 1858: 1855: 1854: 1850: 1848:5.100 × 2.550 1847: 1844: 1841: 1838: 1836: 1833: 1830: 1827: 1826: 1822: 1820:6.500 × 3.250 1819: 1816: 1813: 1810: 1807: 1804: 1801: 1798: 1795: 1794: 1790: 1788:7.700 × 3.850 1787: 1784: 1781: 1778: 1776: 1773: 1770: 1767: 1766: 1762: 1760:9.750 × 4.875 1759: 1756: 1753: 1750: 1748: 1745: 1742: 1739: 1738: 1734: 1731: 1728: 1725: 1722: 1720: 1717: 1714: 1711: 1710: 1706: 1703: 1700: 1697: 1694: 1692: 1689: 1686: 1683: 1682: 1678: 1675: 1672: 1669: 1666: 1664: 1661: 1658: 1655: 1654: 1650: 1647: 1644: 1641: 1638: 1636: 1633: 1630: 1627: 1626: 1622: 1619: 1616: 1613: 1610: 1608: 1605: 1602: 1599: 1598: 1594: 1591: 1589: 1586: 1583: 1581: 1578: 1577: 1569: 1546: 1541: 1538: 1536: 1532: 1528: 1523: 1521: 1516: 1512: 1504: 1501: 1499: 1495: 1492: 1491: 1490: 1486: 1483: 1470: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1415: 1412: 1408: 1404: 1383: 1374: 1366: 1355: 1343: 1334: 1327: 1318: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1287: 1285: 1281: 1277: 1272: 1268: 1262: 1258: 1256: 1252: 1248: 1243: 1238: 1236: 1231: 1226: 1224: 1219: 1217: 1213: 1209: 1201: 1196: 1188: 1180: 1173: 1171: 1169: 1165: 1161: 1156: 1154: 1150: 1145: 1142: 1138: 1133: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1098: 1096: 1095:coaxial cable 1092: 1091:parallel line 1088: 1084: 1080: 1076: 1071: 1068: 1064: 1060: 1056: 1055:Royal Society 1050: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1018:Lord Rayleigh 1015: 1014:J. J. Thomson 1007: 1003: 998: 991: 987: 980: 978: 976: 972: 967: 959: 954: 947: 945: 943: 939: 935: 931: 925: 923: 919: 915: 911: 907: 903: 899: 895: 892:is used as a 891: 887: 883: 879: 875: 863: 858: 856: 851: 849: 844: 843: 841: 840: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 654: 648: 647: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 601: 598: 593: 592: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 516: 513: 508: 507: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 454:Joule heating 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 406: 403: 398: 397: 390: 387: 385: 382: 380: 377: 375: 372: 370: 369:Lorentz force 367: 365: 362: 360: 357: 355: 352: 350: 347: 345: 342: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 296: 293: 288: 287: 280: 277: 275: 272: 270: 269:Magnetization 267: 265: 262: 260: 257: 255: 254:Magnetic flux 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 226: 223: 218: 217: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 159:Electric flux 157: 155: 152: 150: 147: 145: 142: 140: 137: 135: 132: 130: 127: 125: 122: 121: 118: 113: 112: 107: 104: 102: 99: 97: 96:Computational 94: 92: 89: 87: 84: 82: 79: 77: 74: 73: 72: 71: 67: 63: 62: 59: 55: 51: 50: 43: 37: 33: 19: 3861: 3844: 3837: 3834: 3827: 3824: 3817: 3788:. Retrieved 3783: 3747: 3740: 3720: 3713: 3688: 3684: 3678: 3658: 3652: 3624: 3593: 3587: 3570: 3566: 3560: 3550: 3538:. Retrieved 3533: 3524: 3502:(10): 1078. 3499: 3495: 3489: 3469: 3439:. Retrieved 3425: 3413:. Retrieved 3408: 3404: 3394: 3359: 3355: 3349: 3329: 3299: 3270: 3266: 3256: 3244:. Retrieved 3214: 3158:. Retrieved 3153: 3149: 3111: 3104: 3030:Filled cable 2988: 2972: 2947: 2945: 2908: 2906: 2887: 2880: 2850:polarization 2827: 2814: 2186:12.4 — 18.0 2151:10.0 — 15.0 2088:7.05 — 10.0 2059:5.85 — 8.20 2027:4.90 — 7.05 1995:3.95 — 5.85 1963:3.30 — 4.90 1931:2.60 — 3.95 1899:2.20 — 3.30 1867:1.72 — 2.60 1839:1.45 — 2.20 1811:1.15 — 1.72 1779:0.97 — 1.45 1751:0.75 — 1.15 1723:0.63 — 0.97 1695:0.50 — 0.75 1667:0.45 — 0.63 1639:0.35 — 0.50 1611:0.32 — 0.45 1530: 1526: 1524: 1508: 1487: 1484: 1370: 1288: 1263: 1259: 1241: 1239: 1227: 1223:multipaction 1220: 1205: 1200:antenna feed 1157: 1146: 1141:horn antenna 1134: 1099: 1072: 1059:Oliver Lodge 1051: 1026:normal modes 1011: 1001: 963: 929: 926: 902:transmitters 881: 871: 614:Four-current 549:Linear motor 434:Electrolysis 314:Eddy current 274:Permeability 194:Polarization 189:Permittivity 3808:MIL-STD-188 2916:mode and TE 2786:750 — 1100 2122:8.2 — 12.4 1584:RCSC  1556:Recommended 1529:stands for 1367:In practice 1271:micrometers 1267:skin effect 1216:Goubau line 1174:Description 1122:Lecher line 1000:Southworth 942:Goubau line 886:radio waves 584:Transformer 414:Capacitance 339:Faraday law 134:Coulomb law 76:Electricity 3890:Categories 3835:Phil. Mag. 3668:0412578700 3594:Microwaves 3122:1559378336 3097:References 3060:Radio wave 3035:Leaky mode 2992:evanescent 2956:microstrip 2846:wavelength 2760:600 — 900 2734:500 — 750 2708:400 — 600 2682:325 — 500 2656:260 — 400 2630:220 — 330 2602:170 — 260 2574:140 — 220 2543:110 — 170 2249:18 — 26.5 1574:next mode 1553:band name 1511:dispersion 1303:silica gel 966:dielectric 896:mostly at 651:Scientists 499:Waveguides 479:Resistance 449:Inductance 229:Ampère law 3806:and from 3441:April 11, 3415:April 11, 3246:March 24, 3227:CiteSeerX 3160:March 27, 3040:Magic tee 3025:Feed horn 2964:stripline 2902:stripline 2508:90 — 140 2474:75 — 110 2313:26.5 — 40 1551:Frequency 1452:λ 1405:λ 1307:desiccant 1255:radiation 1208:microwave 1063:spark gap 1002:(at left) 948:Principle 908:to their 906:receivers 898:microwave 890:waveguide 882:waveguide 807:Steinmetz 737:Kirchhoff 722:Jefimenko 717:Hopkinson 702:Helmholtz 697:Heaviside 559:Permeance 444:Impedance 184:Insulator 179:Gauss law 129:Conductor 106:Phenomena 101:Textbooks 81:Magnetism 36:Waveguide 3790:June 21, 3623:(1961), 3010:Cantenna 2998:See also 2789:599.584 2766:967.072 2763:483.536 2740:788.927 2737:394.463 2714:637.856 2711:318.928 2688:525.951 2685:262.975 2662:422.243 2659:211.121 2636:347.143 2633:173.571 2608:274.485 2605:137.243 2580:231.429 2577:115.714 2549:181.583 2514:147.536 2480:118.030 2440:60 — 90 2409:50 — 75 2378:40 — 60 2347:33 — 50 2278:22 — 33 2215:15 — 22 1522:occurs. 1311:nitrogen 1164:klystron 1151:and the 1042:TM modes 1034:TE modes 958:diplexer 940:and the 910:antennas 832:Wiechert 787:Poynting 677:Einstein 524:DC motor 519:AC motor 354:Lenz law 139:Electret 3820:(1893). 3705:9594124 3504:Bibcode 3364:Bibcode 3219:Bibcode 2836:, with 2792:1199.2 2546:90.791 2511:73.768 2477:59.015 2446:96.746 2443:48.373 2415:79.750 2412:39.875 2384:62.782 2381:31.391 2353:52.692 2350:26.346 2322:42.154 2319:21.077 2284:34.715 2281:17.357 2255:28.102 2252:14.051 2221:23.143 2218:11.572 2192:18.976 2157:15.737 2128:13.114 2094:10.520 2056:(part) 2024:(part) 1992:(part) 1960:(part) 1928:(part) 1896:(part) 1808:(part) 1712:WR1150 1684:WR1500 1656:WR1800 1628:WR2100 1600:WR2300 1518:before 1206:In the 1112:at the 981:History 817:Thomson 792:Ritchie 782:Poisson 767:Neumann 762:Maxwell 757:Lorentz 752:Liénard 682:Faraday 667:Coulomb 494:Voltage 469:Ohm law 91:History 3810:, and 3755:  3728:  3703:  3665:  3641:  3600:  3477:  3337:  3307:  3229:  3119:  2751:WR1.2 2725:WR1.5 2699:WR1.9 2673:WR2.2 2647:WR2.8 2625:R2600 2597:R2200 2570:G band 2566:R1800 2539:D band 2535:R1400 2529:WR6.5 2501:F band 2497:R1200 2467:W band 2436:E band 2405:V band 2374:U band 2343:Q band 2242:K band 2189:9.488 2154:7.869 2125:6.557 2115:X band 2091:5.260 2076:WR112 2065:8.603 2062:4.301 2054:C band 2044:WR137 2033:7.423 2030:3.712 2022:C band 2012:WR159 2001:6.305 1998:3.153 1990:C band 1980:WR187 1969:5.154 1966:2.577 1958:C band 1951:WG11A 1948:WR229 1937:4.156 1934:2.078 1926:S band 1916:WR284 1905:3.471 1902:1.736 1894:S band 1884:WR340 1873:2.745 1870:1.372 1856:WR430 1845:2.314 1842:1.157 1828:WR510 1817:1.816 1814:0.908 1806:L band 1796:WR650 1785:1.533 1782:0.766 1768:WR770 1757:1.211 1754:0.605 1740:WR975 1729:1.026 1726:0.513 1701:0.787 1698:0.393 1673:0.656 1670:0.328 1645:0.562 1642:0.281 1617:0.513 1614:0.257 1603:WG0.0 1592:(inch) 1299:fungus 1280:silver 1276:copper 1036:) or 920:sets, 802:Singer 797:Savart 777:Ørsted 742:Larmor 732:Kelvin 687:Fizeau 657:Ampère 579:Stator 86:Optics 3780:(PDF) 3701:S2CID 3435:(PDF) 3211:(PDF) 3146:(PDF) 2622:WG32 2594:WG31 2563:WG30 2532:WG29 2494:WG28 2463:R900 2460:WG27 2457:WR10 2432:R740 2429:WG26 2426:WR12 2401:R620 2398:WG25 2395:WR15 2370:R500 2367:WG24 2364:WR19 2339:R400 2336:WG23 2333:WR22 2301:R320 2298:WG22 2295:WR28 2272:R260 2269:WG21 2266:WR34 2238:R220 2235:WG20 2232:WR42 2209:R180 2206:WG19 2203:WR51 2174:R140 2171:WG18 2168:WR62 2145:R120 2142:WG17 2139:WR75 2111:R100 2108:WG16 2105:WR90 2079:WG15 2047:WG14 2015:WG13 1983:WG12 1919:WG10 1887:WG9A 1595:(mm) 1315:argon 1282:, or 1251:field 1160:radar 918:radar 827:Weber 822:Volta 812:Tesla 727:Joule 712:Hertz 707:Henry 692:Gauss 574:Rotor 3812:ATIS 3792:2013 3753:ISBN 3726:ISBN 3663:ISBN 3639:ISBN 3598:ISBN 3542:2015 3475:ISBN 3443:2015 3417:2015 3335:ISBN 3305:ISBN 3248:2015 3162:2015 3117:ISBN 2900:and 2848:and 2811:mm)) 2777:WR1 2619:WR3 2591:WR4 2560:WR5 2491:WR8 2309:band 2182:band 2082:R84 2050:R70 2018:R58 1986:R48 1954:R40 1922:R32 1890:R26 1862:R22 1859:WG8 1834:R18 1831:WG7 1802:R14 1799:WG6 1774:R12 1771:WG5 1743:WG4 1715:WG3 1687:WG2 1659:WG1 1631:WG0 1535:inch 1305:, a 1291:VSWR 1284:gold 1108:and 1093:and 904:and 880:, a 876:and 747:Lenz 672:Davy 662:Biot 3860:, " 3693:doi 3629:hdl 3575:doi 3571:102 3512:doi 3380:hdl 3372:doi 3275:doi 3237:doi 2966:or 2934:1,1 2918:1,1 2914:1,0 2527:WR7 2525:WR6 1746:R9 1718:R8 1690:R6 1662:R5 1634:R4 1606:R3 1588:IEC 1580:EIA 1313:or 1104:at 1079:UHF 1006:IRE 872:In 772:Ohm 3892:: 3838:43 3828:14 3782:. 3767:^ 3699:. 3689:26 3687:. 3637:, 3612:^ 3569:. 3532:. 3510:. 3500:52 3498:. 3451:^ 3409:14 3407:. 3403:. 3378:. 3370:. 3358:. 3319:^ 3287:^ 3271:43 3269:. 3265:. 3235:. 3225:. 3213:. 3170:^ 3152:. 3148:. 3131:^ 2962:, 2958:, 2946:A 2932:TE 2912:TE 2896:, 2315:.0 2275:— 2247:0. 2212:— 2148:— 2085:— 1527:WR 1286:. 1278:, 1240:A 1228:A 1057:, 916:, 3794:. 3761:. 3734:. 3707:. 3695:: 3673:. 3671:. 3631:: 3606:. 3581:. 3577:: 3544:. 3518:. 3514:: 3506:: 3483:. 3445:. 3419:. 3388:. 3382:: 3374:: 3366:: 3360:8 3343:. 3313:. 3281:. 3277:: 3250:. 3239:: 3221:: 3164:. 3154:7 3125:. 2506:0 2472:0 2307:a 2305:K 2180:u 2178:K 2120:0 1471:W 1468:2 1464:/ 1460:c 1456:= 1448:/ 1444:c 1440:= 1436:f 1416:W 1413:2 1409:= 1384:W 1335:) 1040:( 1032:( 861:e 854:t 847:v 38:. 20:)

Index

Radio-frequency waveguide
Waveguide (optics)
Waveguide

Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field
Electric flux
Electric potential
Electrostatic discharge
Electrostatic induction
Gauss law
Insulator
Permittivity
Polarization
Potential energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.