Knowledge (XXG)

Waveguide (optics)

Source 📝

549:(typically femtosecond) laser pulses are used, and focused with a high NA microscope objective. By translating the focal spot through a bulk transparent material the waveguides can be directly written. A variation of this method uses a low NA microscope objective and translates the focal spot along the beam axis. This improves the overlap between the focused laser beam and the photorefractive material, thus reducing power needed from the laser. When transparent material is exposed to an unfocused laser beam of sufficient brightness to initiate photorefractive effect, the waveguides may start forming on their own as a result of an accumulated 98: 291: 238: 580: 553:. The formation of such waveguides leads to a breakup of the laser beam. Continued exposure results in a buildup of the refractive index towards the centerline of each waveguide, and collapse of the mode field diameter of the propagating light. Such waveguides remain permanently in the glass and can be photographed off-line (see the picture on the right). 537:. Configuring the waveguides in 3D space provides integration between electronic components on a chip and optical fibers. Such waveguides may be designed for a single mode propagation of infrared light at telecommunication wavelengths, and configured to deliver optical signal between input and output locations with very low loss. 548:
One of the methods for constructing such waveguides utilizes photorefractive effect in transparent materials. An increase in the refractive index of a material may be induced by nonlinear absorption of pulsed laser light. In order to maximize the increase of the refractive index, a very short
524:
Optical waveguides typically maintain a constant cross-section along their direction of propagation. This is for example the case for strip and of rib waveguides. However, waveguides can also have periodic changes in their cross-section while still allowing lossless transmission of light via
515:
is a waveguide in which the guiding layer basically consists of the slab with a strip (or several strips) superimposed onto it. Rib waveguides also provide confinement of the wave in two dimensions and near-unity confinement is possible in multi-layer rib structures.
541: 160:). Take, for example, light passing from air into glass. Similarly, light traveling in the opposite direction (from glass into air) takes the same path, bending away from the normal. This is a consequence of 317:
The slab waveguide consists of three layers of materials with different dielectric constants, extending infinitely in the directions parallel to their interfaces. Light is confined in the middle layer by
525:
so-called Bloch modes. Such waveguides are referred to as segmented waveguides (with a 1D patterning along the direction of propagation) or as photonic crystal waveguides (with a 2D or 3D patterning).
544:
Optical waveguides formed in pure silica glass as a result of an accumulated self-focusing effect with 193 nm laser irradiation. Pictured using transmission microscopy with collimated illumination.
201:). The red rays bounce off both the top and bottom surface of the high index medium. They're guided even if the slab curves or bends, so long as it bends slowly. This is the basic principle behind 1106: 827:
Westerveld, W. J., Leinders, S. M., van Dongen, K. W. A., Urbach, H. P. and Yousefi, M (2012). "Extension of Marcatili's Analytical Approach for Rectangular Silicon Optical Waveguides".
413: 374:
in the plane of the slab. Guided modes constructively interfere on one complete roundtrip in the slab. At each frequency, one or more modes can be found giving a set of eigenvalues
168:. There's a one-to-one correspondence. But because of refraction, some of the rays in the glass are left out (red). The remaining rays are trapped in the glass by a process called 430:
by injecting it with a lens in the plane of the slab. Alternatively a coupling element may be used to couple light into the waveguide, such as a grating coupler or prism coupler.
368: 937: 880: 571:
on a circuit board to the user interface surface. In buildings, light pipes are used to transfer illumination from outside the building to where it is needed inside.
1250:
13. Yao Zhou, Jufan Zhang, Fengzhou Fang. Design of a dual-focal geometrical waveguide near-eye see-through display. Optics and Laser Technology, 2022, Volume 156,
460:, which is formed when the guiding layer of the slab waveguide is restricted in both transverse directions rather than just one. Rectangular waveguides are used in 567:
Light pipes are tubes or cylinders of solid material used to guide light a short distance. In electronics, plastic light pipes are used to guide light from
1257:
14. Yao Zhou, Jufan Zhang, Fengzhou Fang. Design of a large field-of-view two-dimensional geometrical waveguide. Results in Optics, Volume 5, 2021, 100147,
484:
are frequently constructed as rectangular optical waveguides. Optical waveguides with rectangular geometry are produced by a variety of means, usually by a
1128:
Streltsov, AM; Borrelli, NF (1 January 2001). "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses".
187: 341:
decay away from the slab. The plane wave in domain II bounces between the top and bottom interfaces at some angle typically specified by the
894:
Kumar, A., K. Thyagarajan and A. K. Ghatak. (1983). "Analysis of rectangular-core dielectric waveguides—An accurate perturbation approach".
255: 426:
Because guided modes are trapped in the slab, they cannot be excited by light incident on the top or bottom interfaces. Light can be
277: 329:
The slab waveguide is essentially a one-dimensional waveguide. It traps light only normal to the dielectric interfaces. For guided
953:"Single-mode porous silicon waveguide interferometers with unity confinement factors for ultra-sensitive surface adlayer sensing" 656: 473: 469: 491:
The field distribution in a rectangular waveguide cannot be solved analytically, however approximate solution methods, such as
259: 306:. Owing to their simplicity, slab waveguides are often used as toy models but also find application in on-chip devices like 651: 55: 65:
Optical waveguides can be classified according to their geometry (planar, strip, or fiber waveguides), mode structure (
1290: 1274: 691: 1270: 461: 47: 248: 646: 641: 319: 307: 170: 110: 66: 442: 377: 70: 800:
Marcatili, E. A. J. (1969). "Dielectric rectangular waveguide and directional coupler for integrated optics".
1171:
Khrapko, Rostislav; Lai, Changyi; Casey, Julie; Wood, William A.; Borrelli, Nicholas F. (15 December 2014).
311: 176: 1214:"Leaky Surface Plasmon Polariton Modes at an Interface Between Metal and Uniaxially Anisotropic Materials" 676: 221: 224:
can be solved by analytical or numerical methods for a full-field description of a dielectric waveguide.
931: 874: 614: 500: 51: 24: 496: 492: 1107:"Optical Manufacturing: Femtosecond-laser direct-written waveguides produce quantum circuits in glass" 1225: 1184: 1137: 1071: 1032: 964: 903: 846: 344: 40: 1060:"Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength" 701: 686: 636: 420: 294:
A dielectric slab waveguide consists of three dielectric layers with different refractive indices.
1295: 862: 836: 666: 142: 723:"Augmented reality and virtual reality displays: emerging technologies and future perspectives" 1153: 1087: 998: 990: 982: 919: 760: 742: 631: 182: 59: 1233: 1192: 1145: 1079: 1040: 1017: 972: 952: 911: 854: 809: 750: 734: 671: 602: 338: 323: 149: 109:. Some rays in the higher index medium are left out of the pairing (red) and are trapped by 74: 28: 951:
Talukdar, Tahmid H.; Allen, Gabriel D.; Kravchenko, Ivan; Ryckman, Judson D. (2019-08-05).
456:
is basically a strip of the layer confined between cladding layers. The simplest case is a
97: 626: 164:. Each ray in air (black) can be mapped to a ray in the glass (blue), as shown in Figure 1229: 1188: 1141: 1075: 1036: 968: 907: 850: 813: 755: 722: 485: 477: 141:
The basic principles behind optical waveguides can be described using the concepts of
1284: 681: 588: 550: 202: 126: 86: 36: 866: 721:
Xiong, Jianghao; Hsiang, En-Lin; He, Ziqian; Zhan, Tao; Wu, Shin-Tson (2021-10-25).
606: 416: 1251: 193:
Using total internal reflection, we can trap and guide the light in a dielectric
1016:
M. Hochberg; T. Baehr-Jones; C. Walker; J. Witzens; C. Gunn; A. Scherer (2005).
481: 465: 371: 237: 1238: 1213: 738: 333:, the field in domain II in the diagram is propagating and can be treated as a 290: 661: 598: 562: 334: 161: 153: 986: 858: 746: 1258: 1044: 696: 534: 433:
There are 2 technologies: diffractive waveguides and reflective waveguides.
330: 32: 1157: 1091: 1002: 923: 764: 579: 540: 1149: 1083: 977: 915: 1271:
AdvR nonlinear waveguides in rubidium-doped potassium titanyl phosphate
262: in this section. Unsourced material may be challenged and removed. 82: 43:
made of plastic and glass, liquid light guides, and liquid waveguides.
1197: 1172: 994: 174:. They are incident on the glass-air interface at an angle above the 1059: 468:. They are commonly used as the basis of such optical components as 841: 326:
of the middle layer is larger than that of the surrounding layers.
610: 578: 289: 96: 78: 1173:"Accumulated self-focusing of ultraviolet light in silica glass" 601:
material surrounded by another dielectric material with a lower
105:, establishing a correspondence between rays in the two media, 1058:
S. Y. Lin; E. Chow; S. G. Johnson; J. D. Joannopoulos (2000).
568: 231: 220:
Ray optics only gives a rough picture of how waveguides work.
583:
The propagation of light through a multi-mode optical fiber.
533:
Optical waveguides find their most important application in
790:"Silicon Photonics", by Graham T. Reed, Andrew P. Knights 298:
Perhaps the simplest optical waveguide is the dielectric
777:
Ramo, Simon, John R. Whinnery, and Theodore van Duzer,
380: 347: 77:
distribution (step or gradient index), and material (
50:
or as the transmission medium in local and long-haul
593:
Optical fiber is typically a circular cross-section
1018:"Segmented Waveguides in Thin Silicon-on-Insulator" 520:Segmented waveguide and photonic crystal waveguide 407: 362: 205:in which light is guided along a high index glass 129:in which light is guided along a high index glass 613:materials are used for certain applications and 1252:https://doi.org/10.1016/j.optlastec.2022.108546 779:Fields and Waves in Communications Electronics 117:This mechanism can be used to trap light in a 781:, 2 ed., John Wiley and Sons, New York, 1984. 617:can be used for short-distance applications. 605:. Optical fibers are most commonly made from 46:Optical waveguides are used as components in 8: 936:: CS1 maint: multiple names: authors list ( 879:: CS1 maint: multiple names: authors list ( 1025:Journal of the Optical Society of America B 186:in more-advanced formulations based on the 180:. These extra rays correspond to a higher 152:bends toward the normal by the process of 101:Light refracts at a dielectric interface, 1259:https://doi.org/10.1016/j.rio.2021.100147 1237: 1212:Liu, Hsuan-Hao; Chang, Hung-Chun (2013). 1196: 976: 840: 754: 443:Planar transmission line § Imageline 408:{\displaystyle (\omega ,{\vec {\beta }})} 391: 390: 379: 349: 348: 346: 278:Learn how and when to remove this message 539: 148:Light passing into a medium with higher 713: 929: 872: 16:Physical structure guiding light waves 7: 312:acousto-optic filters and modulators 260:adding citations to reliable sources 23:is a physical structure that guides 125:This is the basic principle behind 814:10.1002/j.1538-7305.1969.tb01166.x 54:systems. They can also be used in 14: 727:Light: Science & Applications 415:which can be used to construct a 337:. The field in domains I and III 145:, as illustrated in the diagram. 657:Erbium-doped waveguide amplifier 474:wavelength division multiplexers 236: 829:Journal of Lightwave Technology 363:{\displaystyle {\vec {\beta }}} 247:needs additional citations for 402: 396: 381: 354: 1: 652:Equilibrium mode distribution 56:optical head-mounted displays 470:Mach–Zehnder interferometers 692:Waveguide (radio frequency) 497:Extended Marcatili's method 462:integrated optical circuits 48:integrated optical circuits 1312: 1239:10.1109/JPHOT.2013.2288298 739:10.1038/s41377-021-00658-8 586: 560: 440: 308:arrayed waveguide gratings 31:. Common types of optical 647:Electromagnetic radiation 642:Digital planar holography 529:Laser-inscribed waveguide 437:Two-dimensional waveguide 428:end-fire or butte coupled 320:total internal reflection 228:Dielectric slab waveguide 171:total internal reflection 143:geometrical or ray optics 111:total internal reflection 93:Total internal reflection 859:10.1109/JLT.2012.2199464 39:waveguides, transparent 1177:Applied Physics Letters 1045:10.1364/JOSAB.22.001493 575:Optical fiber waveguide 209:in a lower index glass 133:in a lower index glass 1218:IEEE Photonics Journal 1105:Meany, Thomas (2014). 677:Photonic-crystal fiber 584: 545: 409: 364: 295: 162:time-reversal symmetry 138: 615:plastic optical fiber 582: 543: 458:rectangular waveguide 410: 365: 293: 100: 52:optical communication 41:dielectric waveguides 25:electromagnetic waves 1150:10.1364/OL.26.000042 1084:10.1364/ol.25.001297 978:10.1364/OE.27.022485 595:dielectric waveguide 378: 345: 256:improve this article 1230:2013IPhoJ...500806L 1189:2014ApPhL.105x4110K 1142:2001OptL...26...42S 1076:2000OptL...25.1297L 1037:2005JOSAB..22.1493H 969:2019OExpr..2722485T 963:(16): 22485–22498. 916:10.1364/ol.8.000063 908:1983OptL....8...63K 851:2012JLwT...30.2388W 702:Zero-mode waveguide 687:Transmission medium 637:Dielectric constant 421:dispersion relation 222:Maxwell's equations 1291:Optical components 802:Bell Syst. Tech. J 667:Lightguide display 585: 546: 493:Marcatili's method 405: 360: 296: 139: 1198:10.1063/1.4904098 1111:Laser Focus World 1070:(17): 1297–1299. 835:(14): 2388–2401. 632:Cutoff wavelength 399: 357: 288: 287: 280: 183:density of states 60:augmented reality 21:optical waveguide 1303: 1244: 1243: 1241: 1209: 1203: 1202: 1200: 1168: 1162: 1161: 1125: 1119: 1118: 1102: 1096: 1095: 1055: 1049: 1048: 1031:(7): 1493–1497. 1022: 1013: 1007: 1006: 980: 948: 942: 941: 935: 927: 891: 885: 884: 878: 870: 844: 824: 818: 817: 808:(7): 2071–2102. 797: 791: 788: 782: 775: 769: 768: 758: 718: 672:Photonic crystal 609:, however other 603:refractive index 597:consisting of a 414: 412: 411: 406: 401: 400: 392: 369: 367: 366: 361: 359: 358: 350: 324:refractive index 304:planar waveguide 302:, also called a 283: 276: 272: 269: 263: 240: 232: 188:Green's function 150:refractive index 75:refractive index 29:optical spectrum 1311: 1310: 1306: 1305: 1304: 1302: 1301: 1300: 1281: 1280: 1267: 1248: 1247: 1211: 1210: 1206: 1170: 1169: 1165: 1127: 1126: 1122: 1104: 1103: 1099: 1057: 1056: 1052: 1020: 1015: 1014: 1010: 950: 949: 945: 928: 893: 892: 888: 871: 826: 825: 821: 799: 798: 794: 789: 785: 776: 772: 720: 719: 715: 710: 627:ARROW waveguide 623: 591: 577: 565: 559: 531: 522: 509: 454:strip waveguide 450: 448:Strip waveguide 445: 439: 376: 375: 343: 342: 284: 273: 267: 264: 253: 241: 230: 95: 17: 12: 11: 5: 1309: 1307: 1299: 1298: 1293: 1283: 1282: 1279: 1278: 1266: 1265:External links 1263: 1246: 1245: 1224:(6): 4800806. 1204: 1183:(24): 244110. 1163: 1130:Optics Letters 1120: 1097: 1064:Optics Letters 1050: 1008: 957:Optics Express 943: 886: 819: 792: 783: 770: 712: 711: 709: 706: 705: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 629: 622: 619: 587:Main article: 576: 573: 561:Main article: 558: 555: 530: 527: 521: 518: 508: 505: 501:Kumar's method 486:planar process 449: 446: 438: 435: 404: 398: 395: 389: 386: 383: 356: 353: 300:slab waveguide 286: 285: 244: 242: 235: 229: 226: 177:critical angle 94: 91: 15: 13: 10: 9: 6: 4: 3: 2: 1308: 1297: 1294: 1292: 1289: 1288: 1286: 1276: 1272: 1269: 1268: 1264: 1262: 1260: 1255: 1253: 1240: 1235: 1231: 1227: 1223: 1219: 1215: 1208: 1205: 1199: 1194: 1190: 1186: 1182: 1178: 1174: 1167: 1164: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1124: 1121: 1116: 1112: 1108: 1101: 1098: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1054: 1051: 1046: 1042: 1038: 1034: 1030: 1026: 1019: 1012: 1009: 1004: 1000: 996: 992: 988: 984: 979: 974: 970: 966: 962: 958: 954: 947: 944: 939: 933: 925: 921: 917: 913: 909: 905: 901: 897: 890: 887: 882: 876: 868: 864: 860: 856: 852: 848: 843: 838: 834: 830: 823: 820: 815: 811: 807: 803: 796: 793: 787: 784: 780: 774: 771: 766: 762: 757: 752: 748: 744: 740: 736: 732: 728: 724: 717: 714: 707: 703: 700: 698: 695: 693: 690: 688: 685: 683: 682:Prism coupler 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 624: 620: 618: 616: 612: 608: 604: 600: 596: 590: 589:Optical fiber 581: 574: 572: 570: 564: 556: 554: 552: 551:self-focusing 542: 538: 536: 528: 526: 519: 517: 514: 513:rib waveguide 507:Rib waveguide 506: 504: 503:, are known. 502: 498: 494: 489: 487: 483: 479: 475: 471: 467: 463: 459: 455: 447: 444: 436: 434: 431: 429: 424: 422: 418: 393: 387: 384: 373: 351: 340: 336: 332: 327: 325: 321: 315: 313: 309: 305: 301: 292: 282: 279: 271: 268:February 2021 261: 257: 251: 250: 245:This section 243: 239: 234: 233: 227: 225: 223: 218: 216: 212: 208: 204: 200: 196: 191: 189: 185: 184: 179: 178: 173: 172: 167: 163: 159: 155: 151: 146: 144: 136: 132: 128: 124: 120: 116: 112: 108: 104: 99: 92: 90: 88: 87:semiconductor 84: 80: 76: 72: 68: 63: 61: 57: 53: 49: 44: 42: 38: 37:optical fiber 34: 30: 26: 22: 1256: 1249: 1221: 1217: 1207: 1180: 1176: 1166: 1133: 1129: 1123: 1114: 1110: 1100: 1067: 1063: 1053: 1028: 1024: 1011: 960: 956: 946: 932:cite journal 902:(1): 63–65. 899: 895: 889: 875:cite journal 832: 828: 822: 805: 801: 795: 786: 778: 773: 730: 726: 716: 607:silica glass 594: 592: 566: 547: 532: 523: 512: 510: 490: 482:laser diodes 466:laser diodes 457: 453: 451: 432: 427: 425: 417:band diagram 339:evanescently 328: 316: 303: 299: 297: 274: 265: 254:Please help 249:verification 246: 219: 214: 210: 206: 203:fiber optics 198: 194: 192: 181: 175: 169: 165: 157: 147: 140: 134: 130: 127:fiber optics 122: 118: 114: 106: 102: 64: 45: 20: 18: 1136:(1): 42–3. 372:wave vector 67:single-mode 1285:Categories 842:1504.02963 708:References 662:Leaky mode 599:dielectric 563:Light tube 557:Light pipe 441:See also: 335:plane wave 154:refraction 71:multi-mode 33:waveguides 1296:Photonics 987:1094-4087 896:Opt. Lett 747:2047-7538 697:Waveguide 535:photonics 397:→ 394:β 385:ω 355:→ 352:β 195:waveguide 119:waveguide 1158:18033501 1092:18066198 1003:31510540 924:19714136 867:23182579 765:34697292 621:See also 478:cavities 213:(Figure 211:cladding 197:(Figure 156:(Figure 135:cladding 35:include 1226:Bibcode 1185:Bibcode 1138:Bibcode 1072:Bibcode 1033:Bibcode 995:1546510 965:Bibcode 904:Bibcode 847:Bibcode 756:8546092 464:and in 322:if the 83:polymer 27:in the 1156:  1090:  1001:  993:  985:  922:  865:  763:  753:  745:  476:. The 370:, the 1021:(PDF) 863:S2CID 837:arXiv 733:(1). 611:glass 331:modes 79:glass 1154:PMID 1117:(7). 1088:PMID 999:PMID 991:OSTI 983:ISSN 938:link 920:PMID 881:link 761:PMID 743:ISSN 569:LEDs 499:and 472:and 310:and 207:core 131:core 1275:KTP 1234:doi 1193:doi 1181:105 1146:doi 1080:doi 1041:doi 973:doi 912:doi 855:doi 810:doi 751:PMC 735:doi 480:of 419:or 258:by 217:). 89:). 73:), 58:in 19:An 1287:: 1261:. 1254:. 1232:. 1220:. 1216:. 1191:. 1179:. 1175:. 1152:. 1144:. 1134:26 1132:. 1115:50 1113:. 1109:. 1086:. 1078:. 1068:25 1066:. 1062:. 1039:. 1029:22 1027:. 1023:. 997:. 989:. 981:. 971:. 961:27 959:. 955:. 934:}} 930:{{ 918:. 910:. 898:. 877:}} 873:{{ 861:. 853:. 845:. 833:30 831:. 806:48 804:. 759:. 749:. 741:. 731:10 729:. 725:. 511:A 495:, 488:. 452:A 423:. 314:. 190:. 158:a. 123:d. 121:. 115:c. 113:. 103:a. 85:, 81:, 69:, 62:. 1277:) 1273:( 1242:. 1236:: 1228:: 1222:5 1201:. 1195:: 1187:: 1160:. 1148:: 1140:: 1094:. 1082:: 1074:: 1047:. 1043:: 1035:: 1005:. 975:: 967:: 940:) 926:. 914:: 906:: 900:8 883:) 869:. 857:: 849:: 839:: 816:. 812:: 767:. 737:: 403:) 388:, 382:( 281:) 275:( 270:) 266:( 252:. 215:d 199:c 166:b 137:. 107:b

Index

electromagnetic waves
optical spectrum
waveguides
optical fiber
dielectric waveguides
integrated optical circuits
optical communication
optical head-mounted displays
augmented reality
single-mode
multi-mode
refractive index
glass
polymer
semiconductor

total internal reflection
fiber optics
geometrical or ray optics
refractive index
refraction
time-reversal symmetry
total internal reflection
critical angle
density of states
Green's function
fiber optics
Maxwell's equations

verification

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.