Knowledge (XXG)

Radio telescope

Source đź“ť

727: 707: 31: 813: 479: 797: 399: 691: 659: 627: 1013:(LOFAR), finished in 2012, is located in western Europe and consists of about 81,000 small antennas in 48 stations distributed over an area several hundreds of kilometers in diameter and operates between 1.25 and 30 m wavelengths. VLBI systems using post-observation processing have been constructed with antennas thousands of miles apart. Radio interferometers have also been used to obtain detailed images of the anisotropies and the polarization of the 194: 46: 931: 848: 214: 675: 2510: 330: 265:(wavelength about 14.6 meters). It was mounted on a turntable that allowed it to rotate in any direction, earning it the name "Jansky's merry-go-round." It had a diameter of approximately 100 ft (30 m) and stood 20 ft (6 m) tall. By rotating the antenna, the direction of the received interfering radio source (static) could be pinpointed. A small shed to the side of the antenna housed an 2570: 2594: 2520: 2546: 2582: 2558: 643: 726: 781: 519:
Although the dish is 500 meters in diameter, only a 300-meter circular area on the dish is illuminated by the feed antenna at any given time, so the actual effective aperture is 300 meters. Construction was begun in 2007 and completed July 2016 and the telescope became operational September 25, 2016.
378:
of the radio waves being observed. This dictates the dish size a radio telescope needs for a useful resolution. Radio telescopes that operate at wavelengths of 3 meters to 30 cm (100 MHz to 1 GHz) are usually well over 100 meters in diameter. Telescopes working at wavelengths shorter
518:
is in a cabin suspended above the dish on cables. The active dish is composed of 4,450 moveable panels controlled by a computer. By changing the shape of the dish and moving the feed cabin on its cables, the telescope can be steered to point to any region of the sky up to 40° from the zenith.
926:
will add to each other while two waves that have opposite phases will cancel each other out. This creates a combined telescope that is equivalent in resolution (though not in sensitivity) to a single antenna whose diameter is equal to the spacing of the antennas furthest apart in the array.
309:. He built the first parabolic "dish" radio telescope, 9 metres (30 ft) in diameter, in his back yard in Wheaton, Illinois in 1937. He repeated Jansky's pioneering work, identifying the Milky Way as the first off-world radio source, and he went on to conduct the first sky survey at 538:); most other telescopes employ passive detection, i.e., receiving only. Arecibo was another stationary dish telescope like FAST. Arecibo's 305 m (1,001 ft) dish was built into a natural depression in the landscape, the antenna was steerable within an angle of about 20° of the 902:. Recent advances in the stability of electronic oscillators also now permit interferometry to be carried out by independent recording of the signals at the various antennas, and then later correlating the recordings at some central processing facility. This process is known as 706: 132:
are very far away, the radio waves coming from them are extremely weak, so radio telescopes require very large antennas to collect enough radio energy to study them, and extremely sensitive receiving equipment. Radio telescopes are typically large
867:, which means combining the signals from multiple antennas so that they simulate a larger antenna, in order to achieve greater resolution. Astronomical radio interferometers usually consist either of arrays of parabolic dishes (e.g., the 269:
pen-and-paper recording system. After recording signals from all directions for several months, Jansky eventually categorized them into three types of static: nearby thunderstorms, distant thunderstorms, and a faint steady hiss above
357:
arrays similar to "TV antennas" or large stationary reflectors with movable focal points. Since the wavelengths being observed with these types of antennas are so long, the "reflector" surfaces can be constructed from coarse wire
690: 352:
is very large. As a consequence, the types of antennas that are used as radio telescopes vary widely in design, size, and configuration. At wavelengths of 30 meters to 3 meters (10–100 MHz), they are generally either
2200: 948:
A high-quality image requires a large number of different separations between telescopes. Projected separation between any two telescopes, as seen from the radio source, is called a baseline. For example, the
321:
created technology which was applied to radio astronomy after the war, and radio astronomy became a branch of astronomy, with universities and research institutes constructing large radio telescopes.
626: 1262: 642: 588:, which also was the world's largest fully steerable telescope for 30 years until the Green Bank antenna was constructed. The third-largest fully steerable radio telescope is the 76-meter 1858: 1750: 615:
A more typical radio telescope has a single antenna of about 25 meters diameter. Dozens of radio telescopes of about this size are operated in radio observatories all over the world.
812: 395:
for parts of the spectrum most useful for observing the universe are coordinated in the Scientific Committee on Frequency Allocations for Radio Astronomy and Space Science.
30: 1632: 633: 499: 487: 1848: 658: 274:, of unknown origin. Jansky finally determined that the "faint hiss" repeated on a cycle of 23 hours and 56 minutes. This period is the length of an astronomical 530:, though it suffered catastrophic collapse on 1 December 2020. Arecibo was one of the world's few radio telescope also capable of active (i.e., transmitting) 1838: 750:
Since 1965, humans have launched three space-based radio telescopes. The first one, KRT-10, was attached to Salyut 6 orbital space station in 1979. In 1997,
990: 697: 612:, at a diameter of 110 m (360 ft), is expected to become the world's largest fully steerable single-dish radio telescope when completed in 2028. 1773: 994: 172:
using an antenna built to study radio receiver noise. The first purpose-built radio telescope was a 9-meter parabolic dish constructed by radio amateur
674: 113:
portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night.
1539: 2478: 2229: 1952: 1789: 1109: 872: 585: 906:. Interferometry does increase the total signal collected, but its primary purpose is to vastly increase the resolution through a process called 419: 2190: 1912: 1393: 1366: 1192: 466: 796: 2166: 2060: 462: 780: 561:, which consists of a 576-meter circle of rectangular radio reflectors, each of which can be pointed towards a central conical receiver. 2158: 1409: 1992: 1202: 1175: 1149: 1094: 883: 2629: 1828: 1650: 1593: 1512: 1226: 903: 2389: 1758: 1660: 713: 665: 577: 2264: 1882: 998: 911: 2245: 1982: 1818: 934: 286:, and by comparing his observations with optical astronomical maps, Jansky concluded that the radiation was coming from the 1165: 2624: 1668: 1532: 733: 503: 2536: 600:, England, completed in 1957. The fourth-largest fully steerable radio telescopes are six 70-meter dishes: three Russian 2614: 2432: 2110: 2010: 966: 146: 1497:
Rohlfs, K., & Wilson, T. L. (2004). Tools of radio astronomy. Astronomy and astrophysics library. Berlin: Springer.
564:
The above stationary dishes are not fully "steerable"; they can only be aimed at points in an area of the sky near the
387:
The increasing use of radio frequencies for communication makes astronomical observations more and more difficult (see
2453: 2344: 2210: 2118: 1932: 1734: 1587: 1583: 1258: 1014: 864: 836: 568:, and cannot receive from sources near the horizon. The largest fully steerable dish radio telescope is the 100 meter 295: 165: 2174: 478: 2523: 1684: 506:. The 500-meter-diameter (1,600 ft) dish with an area as large as 30 football fields is built into a natural 2619: 1972: 1892: 1609: 1599: 407: 86: 469:
in 5 different frequency bands, centered on 23 GHz, 33 GHz, 41 GHz, 61 GHz, and 94 GHz.
2513: 2182: 2150: 2050: 1726: 1614: 1525: 1099: 1018: 986: 593: 345: 98: 2422: 2412: 1876: 1742: 1104: 942: 605: 523: 434:", also known as the "21 centimeter line": 1,420.40575177 MHz, used by many radio telescopes including 282:
to come back to the same location in the sky. Thus Jansky suspected that the hiss originated outside of the
1338: 2134: 2020: 1025: 204: 2427: 2394: 2314: 1922: 1868: 1808: 1708: 609: 398: 180:
in 1937. The sky survey he performed is often considered the beginning of the field of radio astronomy.
1288: 1239: 2495: 2284: 2142: 1700: 1676: 982: 941:
consisting of 66 12-metre (39 ft), and 7-metre (23 ft) diameter radio telescopes designed to work at
649: 569: 527: 392: 333: 141:
and space probes. They may be used individually or linked together electronically in an array. Radio
2598: 2468: 2279: 2274: 2269: 2126: 2030: 1902: 1313: 1010: 954: 576:, United States, constructed in 2000. The largest fully steerable radio telescope in Europe is the 455: 354: 250: 169: 997:
surveys of radio sources. An example of a large physically connected radio telescope array is the
2586: 2574: 2448: 2417: 2364: 2324: 2294: 2237: 2002: 1781: 1083: 907: 868: 371: 35: 863:
One of the most notable developments came in 1946 with the introduction of the technique called
2473: 2319: 1642: 1508: 1389: 1383: 1222: 1198: 1171: 1145: 974: 899: 483: 448: 367: 230: 193: 177: 161: 134: 106: 102: 1139: 957:
has 27 telescopes with 351 independent baselines at once, which achieves a resolution of 0.2
2550: 2463: 2359: 2354: 2289: 2040: 1692: 1449: 1435: 1413: 1043: 950: 852: 681: 589: 511: 314: 287: 279: 930: 886:). All of the telescopes in the array are widely separated and are usually connected using 2384: 2329: 1548: 1119: 1051: 1037: 847: 842: 535: 306: 94: 90: 74: 1091:– distributed computing to search data tapes for primordial black holes, pulsars, and ETI 546:, giving use of a 270-meter diameter portion of the dish for any individual observation. 652:, Green Bank, West Virginia, US, the largest fully steerable radio telescope dish (2002) 45: 2458: 2339: 1481: 938: 876: 856: 349: 242: 238: 200: 78: 62: 213: 2608: 2379: 2334: 2309: 978: 923: 895: 887: 880: 573: 554: 531: 431: 403: 388: 291: 266: 329: 2562: 2304: 1577: 1500: 543: 515: 363: 318: 283: 275: 229:
The first radio antenna used to identify an astronomical radio source was built by
379:
than 30 cm (above 1 GHz) range in size from 3 to 90 meters in diameter.
2483: 2374: 2369: 2299: 1463: 970: 962: 958: 439: 435: 374:
of a dish antenna is determined by the ratio of the diameter of the dish to the
302: 219: 173: 142: 17: 1088: 424: 375: 271: 254: 150: 110: 82: 2488: 1716: 1343: 1114: 1047: 891: 550: 498:
The world's largest filled-aperture (i.e. full dish) radio telescope is the
491: 262: 258: 234: 138: 39: 1266: 414:
Some of the more notable frequency bands used by radio telescopes include:
458:
had several receivers that together covered the whole 1–10 GHz range.
2349: 2091: 1062:, radio telescopes are able to "image" most astronomical objects such as 819: 787: 763: 597: 145:
are preferentially located far from major centers of population to avoid
1314:"China Exclusive: China starts building world's largest radio telescope" 1942: 1071: 290:
and was strongest in the direction of the center of the galaxy, in the
89:
in the sky. Radio telescopes are the main observing instrument used in
58: 54: 38:
as seen in 1969, when it was used to receive live televised video from
1962: 1567: 1067: 1063: 1059: 1055: 759: 565: 558: 539: 246: 129: 125: 117: 1197:(2 ed.). Springer Science & Business Media. pp. 8–10. 2557: 2201:
Special Astrophysical Observatory of the Russian Academy of Science
237:, in 1932. Jansky was assigned the task of identifying sources of 2081: 1517: 1238:
Ley, Willy; Menzel, Donald H.; Richardson, Robert S. (June 1965).
1006: 929: 846: 803: 755: 751: 737: 717: 601: 507: 397: 328: 154: 50: 44: 29: 1563: 1002: 919: 915: 581: 359: 337: 121: 1521: 1138:
Marr, Jonathan M.; Snell, Ronald L.; Kurtz, Stanley E. (2015).
313:
radio frequencies, discovering other radio sources. The rapid
310: 522:
The world's second largest filled-aperture telescope was the
137:
similar to those employed in tracking and communicating with
1263:
Commonwealth Scientific and Industrial Research Organisation
977:
interferometer was also developed independently in 1946 by
549:
The largest individual radio telescope of any kind is the
1339:"China Finishes Building World's Largest Radio Telescope" 199:
Full-size replica of the first radio telescope, Jansky's
157:, motor vehicles, and other man-made electronic devices. 1859:
Combined Array for Research in Millimeter-wave Astronomy
1024:
The world's largest physically connected telescope, the
160:
Radio waves from space were first detected by engineer
1368:
China Begins Operating World's Largest Radio Telescope
1141:
Fundamentals of Radio Astronomy: Observational Methods
278:, the time it takes any "fixed" object located on the 105:
are the main observing instrument used in traditional
2534: 1042:
Many astronomical objects are not only observable in
1194:
The Invisible Universe: The Story of Radio Astronomy
1170:. Encyclopædia Britannica, Inc. 2008. p. 1583. 918:
from the different telescopes on the principle that
2441: 2403: 2257: 2222: 2109: 2074: 1801: 1623: 1608: 1555: 305:, was one of the pioneers of what became known as 222:'s "dish" radio telescope, Wheaton, Illinois, 1937 1963:Multi-Element Radio Linked Interferometer Network 871:), arrays of one-dimensional antennas (e.g., the 27:Directional radio antenna used in radio astronomy 1507:. New York: Grosset & Dunlap. pp. 390–399. 1028:(SKA), is planned to start operations in 2025. 973:for interferometry and aperture synthesis. The 875:) or two-dimensional arrays of omnidirectional 634:Five-hundred-meter Aperture Spherical Telescope 500:Five-hundred-meter Aperture Spherical Telescope 1849:Canadian Hydrogen Intensity Mapping Experiment 1054:. Besides observing energetic objects such as 1533: 8: 1839:Australian Square Kilometre Array Pathfinder 1633:500 meter Aperture Spherical Telescope 989:mapped the radio sky to produce the famous 843:Radio astronomy § Radio interferometry 698:Goldstone Deep Space Communications Complex 494:(bottom) radio telescopes at the same scale 1620: 1540: 1526: 1518: 684:, Jodrell Bank Observatory, England (1957) 245:service. Jansky's antenna was an array of 116:Since astronomical radio sources such as 101:emitted by astronomical objects, just as 1953:Molonglo Observatory Synthesis Telescope 1790:Warkworth Radio Astronomical Observatory 1110:Search for extraterrestrial intelligence 904:Very Long Baseline Interferometry (VLBI) 873:Molonglo Observatory Synthesis Telescope 636:(FAST), under construction, China (2016) 586:Max Planck Institute for Radio Astronomy 477: 2541: 1130: 910:. This technique works by superposing ( 859:formed of 27 parabolic dish telescopes. 776: 622: 420:United States National Radio Quiet Zone 406:(or opacity) to various wavelengths of 1503:(1979). Isaac Asimov's Book of facts; 700:, Mojave Desert, California, US (1958) 696:The 70 meter DSS 14 "Mars" antenna at 2454:Cosmic microwave background radiation 2191:Pushchino Radio Astronomy Observatory 1913:Large Latin American Millimeter Array 668:, in Bad MĂĽnstereifel, Germany (1971) 467:cosmic microwave background radiation 7: 2519: 2167:National Radio Astronomy Observatory 2061:Westerbork Synthesis Radio Telescope 1410:"Microwave Probing of the Invisible" 463:Wilkinson Microwave Anisotropy Probe 2159:Mullard Radio Astronomy Observatory 1365:Wong, Gillian (25 September 2016), 736:, Galenki, Russia, second of three 336:, a 326.5 MHz dipole array in 203:array of 1932, preserved at the US 1993:Northern Extended Millimeter Array 1219:The Early Years of Radio Astronomy 1095:List of astronomical observatories 740:in the former Soviet Union, (1984) 720:in the former Soviet Union, (1978) 25: 1829:Australia Telescope Compact Array 1651:Caltech Submillimeter Observatory 1594:Very Long Baseline Interferometry 2592: 2580: 2568: 2556: 2544: 2518: 2509: 2508: 1070:, and even radio emissions from 811: 795: 779: 725: 705: 689: 673: 657: 641: 625: 578:Effelsberg 100-m Radio Telescope 444:1,406 MHz and 430 MHz 344:The range of frequencies in the 212: 192: 34:The 64-meter radio telescope at 1883:Giant Metrewave Radio Telescope 1751:UTR-2 decameter radio telescope 1167:Britannica Concise Encyclopedia 999:Giant Metrewave Radio Telescope 510:depression in the landscape in 61:. Consists of an array of 2040 53:low frequency radio telescope, 1983:Northern Cross Radio Telescope 1819:Atacama Large Millimeter Array 1221:. Cambridge University Press. 935:Atacama Large Millimeter Array 391:). Negotiations to defend the 1: 1240:"The Observatory on the Moon" 1144:. CRC Press. pp. 21–24. 207:in Green Bank, West Virginia. 2433:Gravitational-wave astronomy 2011:Primeval Structure Telescope 1482:"What are Radio Telescopes?" 922:that coincide with the same 534:of near-Earth objects (see: 502:(FAST) completed in 2016 by 402:Plot of Earth's atmospheric 147:electromagnetic interference 2345:Christiaan Alexander Muller 2211:Vermilion River Observatory 2119:Algonquin Radio Observatory 1584:Astronomical interferometer 1388:. OUP Oxford. p. 139. 1015:Cosmic Microwave Background 865:astronomical interferometry 855:in Socorro, New Mexico, an 837:Astronomical interferometer 758:. The last one was sent by 584:, Germany, operated by the 301:An amateur radio operator, 235:Bell Telephone Laboratories 166:Bell Telephone Laboratories 135:parabolic ("dish") antennas 2646: 1685:Large Millimeter Telescope 1464:"What is Radio Astronomy?" 1318:English.peopledaily.com.cn 1191:Verschuur, Gerrit (2007). 1035: 985:. In the early 1950s, the 961:at 3 cm wavelengths. 943:sub-millimeter wavelengths 840: 834: 366:. At shorter wavelengths 241:that might interfere with 87:astronomical radio sources 2504: 1973:Murchison Widefield Array 1893:Green Bank Interferometer 1717:RATAN-600 Radio Telescope 1600:Astronomical radio source 1385:A Dictionary of Astronomy 1032:Astronomical observations 1009:. The largest array, the 716:, Crimea, first of three 451:: 1,420 to 1,666 MHz 408:electromagnetic radiation 368:parabolic "dish" antennas 2630:Astronomical instruments 2183:Onsala Space Observatory 2175:Nançay Radio Observatory 2151:Jodrell Bank Observatory 2051:Very Long Baseline Array 1727:Sardinia Radio Telescope 1242:. For Your Information. 1100:List of radio telescopes 1021:interferometer in 2004. 987:Cambridge Interferometer 746:Radiotelescopes in space 594:Jodrell Bank Observatory 542:by moving the suspended 438:in its discovery of the 346:electromagnetic spectrum 99:electromagnetic spectrum 2413:Submillimetre astronomy 2025:Australia, South Africa 1877:Event Horizon Telescope 1217:Sullivan, W.T. (1984). 1105:List of telescope types 606:NASA Deep Space Network 524:Arecibo radio telescope 418:Every frequency in the 2135:Green Bank Observatory 2021:Square Kilometre Array 1244:Galaxy Science Fiction 1026:Square Kilometre Array 945: 860: 495: 411: 341: 205:Green Bank Observatory 184:Early radio telescopes 66: 42: 2428:High-energy astronomy 2315:Sebastian von Hoerner 1923:Long Wavelength Array 1869:European VLBI Network 1809:Allen Telescope Array 1709:Qitai Radio Telescope 1439:vol.158, p. 339, 1946 1382:Ridpath, Ian (2012). 933: 857:interferometric array 850: 771:Space radiotelescopes 619:Gallery of big dishes 610:Qitai Radio Telescope 514:and cannot move; the 481: 427:: 608 to 614 MHz 401: 332: 48: 33: 2625:Astronomical imaging 2496:Solar radio emission 2285:Jocelyn Bell Burnell 2143:Haystack Observatory 1677:Green Bank Telescope 1661:Effelsberg Telescope 1453:vol.157, p.158, 1946 983:University of Sydney 831:Radio interferometry 650:Green Bank Telescope 570:Green Bank Telescope 528:Arecibo, Puerto Rico 393:frequency allocation 334:Ooty radio telescope 315:development of radar 253:designed to receive 176:in his back yard in 93:, which studies the 2615:American inventions 2469:Pulsar timing array 2275:Edward George Bowen 2265:Elizabeth Alexander 2127:Arecibo Observatory 2031:Submillimeter Array 1933:Low-Frequency Array 1903:Korean VLBI Network 1769:Southern Hemisphere 1680:(West Virginia, US) 1259:"The Dish turns 45" 1246:. pp. 132–150. 1011:Low-Frequency Array 955:Socorro, New Mexico 898:, or other type of 604:, and three in the 456:Arecibo Observatory 355:directional antenna 257:radio signals at a 233:, an engineer with 170:Holmdel, New Jersey 2449:Aperture synthesis 2418:Infrared astronomy 2355:Joseph Lade Pawsey 2325:Kenneth Kellermann 2295:Nan Dieter-Conklin 2003:One-Mile Telescope 1782:Parkes Observatory 1416:on August 31, 2007 1269:on August 24, 2008 1084:Aperture synthesis 967:group in Cambridge 946: 908:aperture synthesis 869:One-Mile Telescope 861: 496: 482:Comparison of the 412: 372:angular resolution 348:that makes up the 342: 149:(EMI) from radio, 109:which studies the 103:optical telescopes 67: 43: 36:Parkes Observatory 2532: 2531: 2474:Radio propagation 2423:Optical astronomy 2320:Karl Guthe Jansky 2130:(Puerto Rico, US) 2105: 2104: 1897:West Virginia, US 1646:(Puerto Rico, US) 1643:Arecibo Telescope 1395:978-0-19-960905-5 1052:radio wavelengths 900:transmission line 786:KRT-10 dish of a 754:sent the second, 370:predominate. The 231:Karl Guthe Jansky 178:Wheaton, Illinois 162:Karl Guthe Jansky 107:optical astronomy 73:is a specialized 16:(Redirected from 2637: 2620:Radio telescopes 2597: 2596: 2595: 2585: 2584: 2583: 2573: 2572: 2571: 2561: 2560: 2549: 2548: 2547: 2540: 2522: 2521: 2512: 2511: 2489:HD 164595 signal 2464:Odd radio circle 2442:Related articles 2360:Ruby Payne-Scott 2290:Arthur Covington 2280:Ronald Bracewell 2250: 2242: 2234: 2215: 2206: 2196: 2187: 2179: 2171: 2163: 2155: 2147: 2139: 2131: 2123: 2097: 2087: 2066: 2056: 2046: 2041:Very Large Array 2036: 2026: 2016: 2007: 1998: 1988: 1978: 1968: 1958: 1948: 1938: 1928: 1918: 1917:Argentina/Brazil 1908: 1898: 1888: 1873: 1864: 1854: 1844: 1834: 1824: 1814: 1794: 1786: 1778: 1770: 1763: 1759:Yevpatoria RT-70 1755: 1747: 1739: 1731: 1722: 1713: 1705: 1697: 1693:Lovell Telescope 1689: 1681: 1673: 1665: 1656: 1647: 1638: 1621: 1610:Radio telescopes 1542: 1535: 1528: 1519: 1486: 1485: 1478: 1472: 1471: 1460: 1454: 1446: 1440: 1432: 1426: 1425: 1423: 1421: 1412:. Archived from 1406: 1400: 1399: 1379: 1373: 1372: 1362: 1356: 1355: 1353: 1352: 1335: 1329: 1328: 1326: 1325: 1310: 1304: 1303: 1301: 1300: 1289:"Microstructure" 1285: 1279: 1278: 1276: 1274: 1265:. Archived from 1254: 1248: 1247: 1235: 1229: 1215: 1209: 1208: 1188: 1182: 1181: 1162: 1156: 1155: 1135: 981:'s group at the 951:Very Large Array 853:Very Large Array 815: 799: 783: 729: 714:Yevpatoria RT-70 709: 693: 677: 661: 645: 629: 590:Lovell Telescope 512:Guizhou province 288:Milky Way Galaxy 280:celestial sphere 216: 196: 21: 18:Radio telescopes 2645: 2644: 2640: 2639: 2638: 2636: 2635: 2634: 2605: 2604: 2603: 2593: 2591: 2581: 2579: 2569: 2567: 2555: 2545: 2543: 2535: 2533: 2528: 2500: 2437: 2405: 2399: 2385:Gart Westerhout 2253: 2248: 2240: 2232: 2218: 2213: 2204: 2194: 2193:(PRAO ASC LPI, 2185: 2177: 2169: 2161: 2153: 2145: 2137: 2129: 2121: 2101: 2095: 2085: 2070: 2064: 2054: 2044: 2034: 2024: 2014: 2005: 1996: 1986: 1976: 1966: 1956: 1946: 1936: 1926: 1916: 1906: 1896: 1886: 1871: 1862: 1852: 1842: 1832: 1822: 1812: 1802:Interferometers 1797: 1792: 1784: 1776: 1768: 1761: 1753: 1745: 1743:Usuda Telescope 1737: 1729: 1720: 1711: 1703: 1695: 1687: 1679: 1671: 1663: 1654: 1645: 1636: 1625: 1612: 1604: 1574:Radio telescope 1551: 1549:Radio astronomy 1546: 1494: 1492:Further reading 1489: 1480: 1479: 1475: 1462: 1461: 1457: 1447: 1443: 1433: 1429: 1419: 1417: 1408: 1407: 1403: 1396: 1381: 1380: 1376: 1364: 1363: 1359: 1350: 1348: 1337: 1336: 1332: 1323: 1321: 1312: 1311: 1307: 1298: 1296: 1287: 1286: 1282: 1272: 1270: 1256: 1255: 1251: 1237: 1236: 1232: 1216: 1212: 1205: 1190: 1189: 1185: 1178: 1164: 1163: 1159: 1152: 1137: 1136: 1132: 1128: 1120:Radar telescope 1080: 1040: 1038:Radio astronomy 1034: 845: 839: 833: 828: 827: 826: 823: 816: 807: 800: 791: 784: 773: 772: 762:in 2011 called 748: 741: 730: 721: 710: 701: 694: 685: 678: 669: 662: 653: 646: 637: 630: 621: 536:radar astronomy 476: 385: 327: 307:radio astronomy 227: 226: 225: 224: 223: 217: 209: 208: 197: 186: 97:portion of the 95:radio frequency 91:radio astronomy 81:used to detect 71:radio telescope 28: 23: 22: 15: 12: 11: 5: 2643: 2641: 2633: 2632: 2627: 2622: 2617: 2607: 2606: 2602: 2601: 2589: 2577: 2565: 2553: 2530: 2529: 2527: 2526: 2516: 2505: 2502: 2501: 2499: 2498: 2493: 2492: 2491: 2486: 2476: 2471: 2466: 2461: 2459:Interferometry 2456: 2451: 2445: 2443: 2439: 2438: 2436: 2435: 2430: 2425: 2420: 2415: 2409: 2407: 2401: 2400: 2398: 2397: 2392: 2387: 2382: 2377: 2372: 2367: 2362: 2357: 2352: 2347: 2342: 2340:Bernard Lovell 2337: 2332: 2327: 2322: 2317: 2312: 2307: 2302: 2297: 2292: 2287: 2282: 2277: 2272: 2270:John G. Bolton 2267: 2261: 2259: 2255: 2254: 2252: 2251: 2243: 2238:ESA New Norcia 2235: 2226: 2224: 2220: 2219: 2217: 2216: 2208: 2198: 2188: 2180: 2172: 2164: 2156: 2148: 2140: 2132: 2124: 2115: 2113: 2107: 2106: 2103: 2102: 2100: 2099: 2089: 2078: 2076: 2072: 2071: 2069: 2068: 2058: 2048: 2045:New Mexico, US 2038: 2028: 2018: 2008: 2000: 1990: 1980: 1970: 1960: 1950: 1940: 1930: 1927:New Mexico, US 1920: 1910: 1900: 1890: 1880: 1874: 1866: 1863:California, US 1856: 1846: 1836: 1826: 1816: 1813:California, US 1805: 1803: 1799: 1798: 1796: 1795: 1787: 1779: 1777:(South Africa) 1771: 1765: 1764: 1756: 1748: 1740: 1732: 1724: 1714: 1706: 1701:Ooty Telescope 1698: 1690: 1682: 1674: 1666: 1658: 1648: 1640: 1629: 1627: 1618: 1606: 1605: 1603: 1602: 1597: 1591: 1581: 1571: 1559: 1557: 1553: 1552: 1547: 1545: 1544: 1537: 1530: 1522: 1516: 1515: 1498: 1493: 1490: 1488: 1487: 1473: 1468:Public Website 1455: 1441: 1427: 1401: 1394: 1374: 1357: 1330: 1305: 1280: 1249: 1230: 1210: 1204:978-0387683607 1203: 1183: 1177:978-1593394929 1176: 1157: 1151:978-1498770194 1150: 1129: 1127: 1124: 1123: 1122: 1117: 1112: 1107: 1102: 1097: 1092: 1086: 1079: 1076: 1046:but also emit 1036:Main article: 1033: 1030: 975:Lloyd's mirror 939:Atacama desert 835:Main article: 832: 829: 825: 824: 817: 810: 808: 801: 794: 792: 785: 778: 775: 774: 770: 769: 768: 747: 744: 743: 742: 731: 724: 722: 711: 704: 702: 695: 688: 686: 679: 672: 670: 664:The 100 meter 663: 656: 654: 648:The 100 meter 647: 640: 638: 632:The 500 meter 631: 624: 620: 617: 608:. The planned 475: 472: 471: 470: 459: 452: 445: 442: 428: 422: 384: 381: 350:radio spectrum 326: 323: 243:radiotelephone 218: 211: 210: 198: 191: 190: 189: 188: 187: 185: 182: 79:radio receiver 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2642: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2612: 2610: 2600: 2590: 2588: 2578: 2576: 2566: 2564: 2559: 2554: 2552: 2542: 2538: 2525: 2517: 2515: 2507: 2506: 2503: 2497: 2494: 2490: 2487: 2485: 2482: 2481: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2446: 2444: 2440: 2434: 2431: 2429: 2426: 2424: 2421: 2419: 2416: 2414: 2411: 2410: 2408: 2402: 2396: 2395:Robert Wilson 2393: 2391: 2388: 2386: 2383: 2381: 2380:Govind Swarup 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2343: 2341: 2338: 2336: 2335:John D. Kraus 2333: 2331: 2330:Frank J. Kerr 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2310:Antony Hewish 2308: 2306: 2303: 2301: 2298: 2296: 2293: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2262: 2260: 2256: 2247: 2244: 2239: 2236: 2231: 2228: 2227: 2225: 2221: 2212: 2209: 2202: 2199: 2192: 2189: 2184: 2181: 2176: 2173: 2168: 2165: 2160: 2157: 2152: 2149: 2144: 2141: 2136: 2133: 2128: 2125: 2120: 2117: 2116: 2114: 2112: 2111:Observatories 2108: 2093: 2090: 2083: 2080: 2079: 2077: 2073: 2062: 2059: 2052: 2049: 2042: 2039: 2032: 2029: 2022: 2019: 2012: 2009: 2004: 2001: 1994: 1991: 1984: 1981: 1974: 1971: 1964: 1961: 1954: 1951: 1944: 1941: 1934: 1931: 1924: 1921: 1914: 1911: 1904: 1901: 1894: 1891: 1884: 1881: 1878: 1875: 1870: 1867: 1860: 1857: 1850: 1847: 1840: 1837: 1830: 1827: 1820: 1817: 1810: 1807: 1806: 1804: 1800: 1791: 1788: 1783: 1780: 1775: 1772: 1767: 1766: 1760: 1757: 1752: 1749: 1744: 1741: 1736: 1733: 1728: 1725: 1718: 1715: 1710: 1707: 1702: 1699: 1694: 1691: 1686: 1683: 1678: 1675: 1670: 1669:Galenki RT-70 1667: 1662: 1659: 1652: 1649: 1644: 1641: 1634: 1631: 1630: 1628: 1622: 1619: 1616: 1611: 1607: 1601: 1598: 1595: 1592: 1589: 1585: 1582: 1579: 1575: 1572: 1569: 1565: 1561: 1560: 1558: 1554: 1550: 1543: 1538: 1536: 1531: 1529: 1524: 1523: 1520: 1514: 1513:0-8038-9347-7 1510: 1506: 1502: 1499: 1496: 1495: 1491: 1483: 1477: 1474: 1469: 1465: 1459: 1456: 1452: 1451: 1445: 1442: 1438: 1437: 1431: 1428: 1415: 1411: 1405: 1402: 1397: 1391: 1387: 1386: 1378: 1375: 1370: 1369: 1361: 1358: 1346: 1345: 1340: 1334: 1331: 1319: 1315: 1309: 1306: 1294: 1290: 1284: 1281: 1268: 1264: 1260: 1253: 1250: 1245: 1241: 1234: 1231: 1228: 1227:0-521-25485-X 1224: 1220: 1214: 1211: 1206: 1200: 1196: 1195: 1187: 1184: 1179: 1173: 1169: 1168: 1161: 1158: 1153: 1147: 1143: 1142: 1134: 1131: 1125: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1090: 1087: 1085: 1082: 1081: 1077: 1075: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1044:visible light 1039: 1031: 1029: 1027: 1022: 1020: 1016: 1012: 1008: 1004: 1001:, located in 1000: 996: 992: 988: 984: 980: 979:Joseph Pawsey 976: 972: 968: 964: 960: 956: 952: 944: 940: 936: 932: 928: 925: 921: 917: 914:) the signal 913: 909: 905: 901: 897: 896:optical fiber 893: 889: 888:coaxial cable 885: 882: 881:Tony Hewish's 878: 874: 870: 866: 858: 854: 849: 844: 838: 830: 821: 814: 809: 805: 798: 793: 789: 782: 777: 767: 765: 761: 757: 753: 745: 739: 735: 734:Galenki RT-70 732:The 70 meter 728: 723: 719: 715: 712:The 70 meter 708: 703: 699: 692: 687: 683: 680:The 76 meter 676: 671: 667: 660: 655: 651: 644: 639: 635: 628: 623: 618: 616: 613: 611: 607: 603: 599: 595: 591: 587: 583: 579: 575: 574:West Virginia 571: 567: 562: 560: 556: 555:Nizhny Arkhyz 553:located near 552: 547: 545: 541: 537: 533: 532:radar imaging 529: 525: 520: 517: 513: 509: 505: 501: 493: 490:(middle) and 489: 485: 480: 473: 468: 464: 460: 457: 453: 450: 446: 443: 441: 437: 433: 432:Hydrogen line 429: 426: 423: 421: 417: 416: 415: 409: 405: 404:transmittance 400: 396: 394: 390: 389:Open spectrum 382: 380: 377: 373: 369: 365: 361: 356: 351: 347: 339: 335: 331: 324: 322: 320: 316: 312: 308: 304: 299: 297: 293: 292:constellation 289: 285: 281: 277: 273: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 221: 215: 206: 202: 195: 183: 181: 179: 175: 171: 167: 163: 158: 156: 152: 148: 144: 143:observatories 140: 136: 131: 127: 123: 119: 114: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 64: 60: 56: 52: 47: 41: 37: 32: 19: 2599:Solar System 2404:Astronomy by 2365:Arno Penzias 2305:Cyril Hazard 1947:South Africa 1738:(Uzbekistan) 1578:Radio window 1573: 1505:Sky Watchers 1504: 1476: 1467: 1458: 1448: 1444: 1434: 1430: 1418:. Retrieved 1414:the original 1404: 1384: 1377: 1367: 1360: 1349:. Retrieved 1347:. 2016-07-06 1342: 1333: 1322:. Retrieved 1320:. 2008-12-26 1317: 1308: 1297:. Retrieved 1295:. 1996-02-05 1293:Jb.man.ac.uk 1292: 1283: 1271:. Retrieved 1267:the original 1252: 1243: 1233: 1218: 1213: 1193: 1186: 1166: 1160: 1140: 1133: 1041: 1023: 947: 884:Pulsar Array 862: 749: 614: 563: 548: 544:feed antenna 521: 516:feed antenna 497: 413: 386: 364:chicken wire 343: 319:World War II 300: 284:Solar System 276:sidereal day 228: 159: 115: 70: 68: 2587:Outer space 2575:Spaceflight 2484:Wow! signal 2375:Martin Ryle 2370:Grote Reber 2300:Frank Drake 2241:(Australia) 2075:Space-based 2065:Netherlands 1937:Netherlands 1907:South Korea 1785:(Australia) 1735:Suffa RT-70 1273:October 16, 1017:, like the 971:Nobel Prize 969:obtained a 963:Martin Ryle 959:arc seconds 953:(VLA) near 912:interfering 822:dish (left) 526:located in 465:mapped the 440:Wow! signal 436:The Big Ear 383:Frequencies 303:Grote Reber 296:Sagittarius 174:Grote Reber 164:in 1932 at 83:radio waves 63:cage dipole 49:Antenna of 2609:Categories 2406:EM methods 1626:telescopes 1624:Individual 1501:Asimov, I. 1371:, ABC News 1351:2016-07-06 1324:2016-02-24 1299:2016-02-24 1126:References 1089:Astropulse 841:See also: 818:Assembled 790:on a stamp 666:Effelsberg 474:Big dishes 425:Channel 37 376:wavelength 272:shot noise 255:short wave 251:reflectors 151:television 139:satellites 111:light wave 65:elements. 2551:Astronomy 2390:Paul Wild 2223:Multi-use 2203:(SAORAS, 1977:Australia 1965:(MERLIN, 1957:Australia 1843:Australia 1833:Australia 1762:(Ukraine) 1754:(Ukraine) 1664:(Germany) 1344:Space.com 1115:Telescope 1048:radiation 892:waveguide 802:Japanese 551:RATAN-600 492:RATAN-600 449:Waterhole 311:very high 259:frequency 40:Apollo 11 2514:Category 2350:Jan Oort 2249:(Canada) 2233:(Canada) 2186:(Sweden) 2178:(France) 2122:(Canada) 2092:Spektr-R 1935:(LOFAR, 1915:(LLAMA, 1872:(Europe) 1861:(CARMA, 1851:(CHIME, 1841:(ASKAP, 1688:(Mexico) 1672:(Russia) 1556:Concepts 1420:June 13, 1078:See also 1064:galaxies 820:Spektr-R 788:Salyut-6 764:Spektr-R 598:Cheshire 362:such as 340:, India 261:of 20.5 130:galaxies 57:region, 2537:Portals 2524:Commons 2063:(WSRT, 2053:(VLBA, 2013:(PaST, 1955:(MOST, 1943:MeerKAT 1885:(GMRT, 1831:(ATCA, 1821:(ALMA, 1774:HartRAO 1746:(Japan) 1730:(Italy) 1712:(China) 1704:(India) 1635:(FAST, 1588:History 1562:Units ( 1257:CSIRO. 1072:planets 1068:nebulae 1060:quasars 1056:pulsars 937:in the 879:(e.g., 877:dipoles 486:(top), 484:Arecibo 317:during 247:dipoles 126:nebulas 118:planets 75:antenna 59:Ukraine 55:Kharkiv 2258:People 2205:Russia 2195:Russia 2096:Russia 2043:(VLA, 2033:(SMA, 2023:(SKA, 1997:France 1975:(MWA, 1925:(LWA, 1905:(KVN, 1895:(GBI, 1853:Canada 1811:(ATA, 1721:Russia 1653:(CSO, 1596:(VLBI) 1568:jansky 1511:  1450:Nature 1436:Nature 1392:  1225:  1201:  1174:  1148:  760:Russia 682:Lovell 566:zenith 559:Russia 540:zenith 267:analog 239:static 201:dipole 2563:Stars 2086:Japan 2082:HALCA 2015:China 1987:Italy 1887:India 1879:(EHT) 1823:Chile 1637:China 1007:India 924:phase 920:waves 916:waves 804:HALCA 756:HALCA 752:Japan 738:RT-70 718:RT-70 602:RT-70 580:near 508:karst 504:China 430:The " 325:Types 220:Reber 155:radar 122:stars 85:from 51:UTR-2 2479:SETI 2246:PARL 2230:DRAO 2214:(US) 2170:(US) 2162:(UK) 2154:(UK) 2146:(US) 2138:(US) 2006:(UK) 1793:(NZ) 1696:(UK) 1615:List 1566:and 1564:watt 1509:ISBN 1422:2007 1390:ISBN 1275:2008 1223:ISBN 1199:ISBN 1172:ISBN 1146:ISBN 1058:and 1003:Pune 993:and 851:The 806:dish 582:Bonn 488:FAST 461:The 454:The 447:The 360:mesh 338:Ooty 249:and 128:and 77:and 1050:at 1019:CBI 965:'s 596:in 592:at 572:in 294:of 263:MHz 168:in 2611:: 2055:US 2035:US 1967:UK 1655:US 1466:. 1341:. 1316:. 1291:. 1261:. 1074:. 1066:, 1005:, 995:3C 991:2C 894:, 890:, 766:. 557:, 298:. 153:, 124:, 120:, 69:A 2539:: 2207:) 2197:) 2098:) 2094:( 2088:) 2084:( 2067:) 2057:) 2047:) 2037:) 2027:) 2017:) 1999:) 1995:( 1989:) 1985:( 1979:) 1969:) 1959:) 1949:) 1945:( 1939:) 1929:) 1919:) 1909:) 1899:) 1889:) 1865:) 1855:) 1845:) 1835:) 1825:) 1815:) 1723:) 1719:( 1657:) 1639:) 1617:) 1613:( 1590:) 1586:( 1580:) 1576:( 1570:) 1541:e 1534:t 1527:v 1484:. 1470:. 1424:. 1398:. 1354:. 1327:. 1302:. 1277:. 1207:. 1180:. 1154:. 410:. 20:)

Index

Radio telescopes

Parkes Observatory
Apollo 11

UTR-2
Kharkiv
Ukraine
cage dipole
antenna
radio receiver
radio waves
astronomical radio sources
radio astronomy
radio frequency
electromagnetic spectrum
optical telescopes
optical astronomy
light wave
planets
stars
nebulas
galaxies
parabolic ("dish") antennas
satellites
observatories
electromagnetic interference
television
radar
Karl Guthe Jansky

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑