Knowledge (XXG)

Length measurement

Source 📝

365: 842: 50: 400:
a half wavelength. The result is the two beams are in opposition to each other at reassembly, and the recombined light intensity drops to zero (clouds). Thus, as the spacing between the mirrors is adjusted, the observed light intensity cycles between reinforcement and cancellation as the number of wavelengths of path difference changes, and the observed intensity alternately peaks (bright sun) and dims (dark clouds). This behavior is called
396:(CC) that return the two components to the beam splitter again to be reassembled. The corner cube serves to displace the incident from the reflected beam, which avoids some complications caused by superposing the two beams. The distance between the left-hand corner cube and the beam splitter is compared to that separation on the fixed leg as the left-hand spacing is adjusted to compare the length of the object to be measured. 277:. Thus, when light is used in a transit-time approach, length measurements are not subject to knowledge of the source frequency (apart from possible frequency dependence of the correction to relate the medium to classical vacuum), but are subject to the error in measuring transit times, in particular, errors introduced by the response times of the pulse emission and detection instrumentation. An additional uncertainty is the 483:. These refractive index corrections can be found more accurately by adding frequencies, for example, frequencies at which propagation is sensitive to the presence of water vapor. This way non-ideal contributions to the refractive index can be measured and corrected for at another frequency using established theoretical models. 898:) to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known 1887:
The corner cube reflects the incident light in a parallel path that is displaced from the beam incident upon the corner cube. That separation of incident and reflected beams reduces some technical difficulties introduced when the incident and reflected beams are on top of each other. For a discussion
782:
of images with theoretical results from computer modeling. Such elaborate methods are required because the image depends on the three-dimensional geometry of the measured feature, for example, the contour of an edge, and not just upon one- or two-dimensional properties. The underlying limitations are
399:
In the top panel the path is such that the two beams reinforce each other after reassembly, leading to a strong light pattern (sun). The bottom panel shows a path that is made a half wavelength longer by moving the left-hand mirror a quarter wavelength further away, increasing the path difference by
904:
The ladder analogy arises because no single technique can measure distances at all ranges encountered in astronomy. Instead, one method can be used to measure nearby distances, a second can be used to measure nearby to intermediate distances, and so on. Each rung of the ladder provides information
486:
It may be noted again, by way of contrast, that the transit-time measurement of length is independent of any knowledge of the source frequency, except for a possible dependence of the correction relating the measurement medium to the reference medium of classical vacuum, which may indeed depend on
463:
source where the wavelength can be held stable. Regardless of stability, however, the precise frequency of any source has linewidth limitations. Other significant errors are introduced by the interferometer itself; in particular: errors in light beam alignment, collimation and fractional fringe
823:
where distances between atoms can be measured. It is based on the effect where nuclear spin cross-relaxation after excitation by a radio pulse depends on the distance between the nuclei. Unlike spin-spin coupling, NOE propagates through space and does not require that the atoms are connected by
376:
In many practical circumstances, and for precision work, measurement of dimension using transit-time measurements is used only as an initial indicator of length and is refined using an interferometer. Generally, transit time measurements are preferred for longer lengths, and interferometers for
312:
a code of ones and zeros is emitted at a known time from multiple satellites, and their times of arrival are noted at a receiver along with the time they were sent (encoded in the messages). Assuming the receiver clock can be related to the synchronized clocks on the satellites, the
244:
For small or microscopic objects, microphotography where the length is calibrated using a graticule can be used. A graticule is a piece that has lines for precise lengths etched into it. Graticules may be fitted into the eyepiece or they may be used on the measurement plane.
778:. This instrument bounces electrons off the object to be measured in a high vacuum enclosure, and the reflected electrons are collected as a photodetector image that is interpreted by a computer. These are not transit-time measurements, but are based upon comparison of 824:
bonds, so it is a true distance measurement instead of a chemical measurement. Unlike diffraction measurements, NOESY does not require a crystalline sample, but is done in solution state and can be applied to substances that are difficult to crystallize.
631:. This wavelength can be measured in terms of inter-atomic spacing using a crystal diffraction pattern, and related to the metre through an optical measurement of the lattice spacing on the same crystal. This process of extending calibration is called 253:
The basic idea behind a transit-time measurement of length is to send a signal from one end of the length to be measured to the other, and back again. The time for the round trip is the transit time Δt, and the length ℓ is then 2ℓ = Δt*"v", with
2452: 930:
of two lengths can be made by comparing the two transit times of light along the lengths. Such time-of-flight methodology may or may not be more accurate than the determination of a length as a multiple of the fundamental length unit.
787:), determined, as already discussed, by the electron beam energy. The calibration of these scanning electron microscope measurements is tricky, as results depend upon the material measured and its geometry. A typical wavelength is 90:, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Knowledge (XXG). 2289:
Relating one step on the distance ladder to another involves a process of calibration, that is, the use of an established method of measurement to give absolute meaning to the relative measurements provided by some other
713:. In conjunction with a standardized model of the Earth's surface, a location on that surface may be determined with high accuracy. Ranging methods without accurate time synchronization of the receiver are called 599: 100: 495:
For small objects, different methods are used that also depend upon determining size in units of wavelengths. For instance, in the case of a crystal, atomic spacings can be determined using
449:
a defined value of 299,792,458 m/s, the error in a measured length in wavelengths is increased by this conversion to metres by the error in measuring the frequency of the light source.
1348: 2456: 2487: 940: 1785: 2035:. Corresponding to the uncertainty in frequency is an uncertainty in wavelength. In contrast, the speed of light in ideal vacuum is not dependent upon frequency at all. 698:. Older methodologies that use a set of known information (usually distance or target sizes) to make the measurement, have been in regular use since the 18th century. 2166: 1341: 304:. For example, in one radar system, pulses of electromagnetic radiation are sent out by the vehicle (interrogating pulses) and trigger a response from a 1239: 110:
Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
890:(also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A 1638: 1229: 820: 459:
This methodology for length determination requires a careful specification of the wavelength of the light used, and is one reason for employing a
118: 412:
it is found how many wavelengths long the measured path is compared to the fixed leg. In this way, measurements are made in units of wavelengths
641:
for different ranges of astronomical length. Both calibrate different methods for length measurement using overlapping ranges of applicability.
1648: 1334: 317:
can be found and used to provide the distance to each satellite. Receiver clock error is corrected by combining the data from four satellites.
2432: 2345: 2319: 2282: 2229: 2204: 2066: 2012: 1979: 1946: 1911: 1872: 1767: 1700: 320:
Such techniques vary in accuracy according to the distances over which they are intended for use. For example, LORAN-C is accurate to about
866: 2027:
An atomic transition is affected by disturbances, such as collisions with other atoms and frequency shifts from atomic motion due to the
1613: 1737: 2362: 705:
measurements. The time difference between several received signals is used to determine exact distances (upon multiplication by the
894:
distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand
540: 192:. The most commonly used approaches are the rulers, followed by transit-time methods and the interferometer methods based upon the 1824: 2112:
Peter J. Mohr; Barry N. Taylor; David B. Newell (2008). "CODATA recommended values of the fundamental physical constants: 2006".
810: 464:
determination. Corrections also are made to account for departures of the medium (for example, air) from the reference medium of
340:
or, in specific applications, tens of centimetres. Time-of-flight systems for robotics (for example, Laser Detection and Ranging
401: 2482: 1250: 849: 487:
the frequency of the source. Where a pulse train or some other wave-shaping is used, a range of frequencies may be involved.
420:. The length in wavelengths can be converted to a length in units of metres if the selected transition has a known frequency 215:. Measurement techniques for three-dimensional structures very small in every dimension use specialized instruments such as 308:. The time interval between the sending and the receiving of a pulse is monitored and used to determine a distance. In the 258:
the speed of propagation of the signal, assuming that is the same in both directions. If light is used for the signal, its
333: 131:
Content in this edit is translated from the existing German Knowledge (XXG) article at ]; see its history for attribution.
1399: 1255: 1218: 775: 637:. The use of metrological traceability to connect different regimes of measurement is similar to the idea behind the 1265: 1098: 1049: 668: 364: 1653: 1149: 1084: 1079: 816: 687: 676: 633: 309: 231:
the simplest kind of length measurement tool: lengths are defined by printed marks or engravings on a stick. The
2361:
NG Orji; Garcia-Gutierrez; Bunday; Bishop; Cresswell; Allen; Allgair; et al. (2007). Archie, Chas N (ed.).
770:
Measuring dimensions of localized structures (as opposed to large arrays of atoms like a crystal), as in modern
1889: 695: 381: 126: 147: 1618: 1608: 1603: 1285: 798: 691: 140: 38: 739:
method requires multiple measurements to obtain a range by taking multiple bearings instead of appropriate
519:
Similar techniques can provide the dimensions of small structures repeated in large periodic arrays like a
1643: 1633: 1394: 1300: 1270: 887: 834: 638: 95: 1996: 1623: 1315: 1295: 1213: 1111: 806: 531: 659:
Active methods use unilateral transmission and passive reflection. Active rangefinding methods include
2377: 2131: 1934: 1860: 1800: 1663: 1658: 1369: 1357: 952: 755: 748: 710: 417: 914:
In some systems of units, unlike the current SI system, lengths are fundamental units (for example,
841: 530:, extending measurement capabilities. For non-relativistic electrons in an electron microscope, the 1628: 1474: 1414: 1290: 1260: 1197: 1155: 1034: 1005: 967: 527: 520: 475:
The measurement also requires careful specification of the medium in which the light propagates. A
200: 31: 2477: 2393: 2121: 1559: 1389: 1186: 1129: 1044: 1019: 870: 771: 740: 390:(BS) to travel two paths. The light is recombined by bouncing the two components off a pair of 2472: 2428: 2341: 2329: 2315: 2303: 2278: 2225: 2200: 2062: 2050: 2008: 1975: 1942: 1907: 1895: 1868: 1852: 1816: 1763: 1733: 1717: 1696: 1449: 1429: 1280: 1103: 985: 779: 660: 620: 496: 341: 328:
enhanced GPS, in which a correction signal is transmitted from terrestrial stations (that is,
122: 2268: 2246: 2188: 2081:
For example, the index of refraction of air can be found based upon entering a wavelength in
1963: 1755: 62: 2448: 2420: 2385: 2139: 2082: 1928: 1808: 1444: 1409: 1275: 802: 453: 329: 293: 286: 216: 1509: 1181: 628: 2087: 2381: 2135: 1938: 1864: 1804: 472:
depending upon the length measured, the wavelength and the type of interferometer used.
2028: 1721: 1584: 1579: 1504: 1404: 1191: 1166: 962: 706: 702: 479:
is made to relate the medium used to the reference vacuum, taken in SI units to be the
405: 369: 259: 193: 1782:
An example of a system combining the pulse and interferometer methods is described by
2466: 1589: 1569: 1539: 1464: 1459: 1092: 990: 856: 724:
With other systems ranging is obtained from passive radiation measurements only: the
386: 212: 2397: 736: 1786:"Absolute measurement of a long, arbitrary distance to less than an optical fringe" 1549: 1534: 1524: 1519: 1514: 1489: 1454: 1424: 1374: 1320: 1245: 1234: 1208: 1134: 1039: 1000: 980: 972: 923: 683: 235:
was initially defined using a ruler before more accurate methods became available.
2158: 241:
are a common method for precise measurement or calibration of measurement tools.
2444: 1439: 1419: 1326: 1310: 1305: 1144: 1124: 995: 784: 714: 653: 392: 238: 204: 189: 185: 2424: 2143: 1564: 1554: 1499: 1484: 1469: 1434: 1384: 1171: 1161: 1054: 1029: 1014: 1010: 899: 281:
relating the medium used to the reference vacuum, taken in SI units to be the
17: 2304:"Photomask critical dimension metrology in the scanning electron microscope" 1479: 1223: 1202: 1139: 926:) and are not defined by times of transit. Even in such units, however, the 759: 732: 729: 2047:
A discussion of interferometer errors is found in the article cited above:
1820: 1812: 1544: 1379: 1176: 735:
of the object generates the signal that is used to determine range. This
263: 181: 2031:, leading to a range of frequencies for the transition referred to as a 499:. The present best value for the lattice parameter of silicon, denoted 2372:. Metrology, Inspection, and Process Control for Microlithography XXI. 1529: 1067: 957: 452:
By using sources of several wavelengths to generate sum and difference
129:
to the source of your translation. A model attribution edit summary is
2389: 384:: the two panels show a laser source emitting a light beam split by a 895: 480: 465: 282: 274: 177: 905:
that can be used to determine the distances at the next higher rung.
783:
the beam width and the wavelength of the electron beam (determining
701:
Special ranging makes use of actively synchronized transmission and
656:
from the observer to a target, especially a far and moving target.
2126: 1494: 1107: 1088: 1024: 744: 725: 672: 664: 460: 363: 345: 301: 297: 232: 228: 208: 1930:
Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry
1574: 380:
The figure shows schematically how length is determined using a
87: 2051:"Chapter 11: Precise wavelength measurements of tunable lasers" 1330: 2148:
See section 8: Measurements involving silicon crystals, p. 46.
809:. Calibration is attempted using standard samples measured by 718: 43: 2267:
Mark H. Jones; Robert J. Lambourne; David John Adams (2004).
747:, otherwise the system is just capable of providing a simple 594:{\displaystyle \lambda _{e}={\frac {h}{\sqrt {2m_{e}eV}}}\ ,} 2453:
Creative Commons Attribution-ShareAlike 3.0 Unported License
2224:(3rd ed.). Oxford University Press. 2009. p. 16. 758:. A commonly used term for residing terrestrial objects is 754:
Combining several measurements in a time sequence leads to
30:"Range estimation" redirects here. Not to be confused with 2363:"TEM calibration methods for critical dimension standards" 1964:"§4.4 Basic principles of electronic distance measurement" 1857:
Handbook of optical metrology: principles and applications
99:
to this template: there are already 1,848 articles in the
468:. Resolution using wavelengths is in the range of ΔL/L ≈ 608:
the electrical voltage drop traversed by the electron,
27:
Ways in which length, distance or range can be measured
2185:
A discussion of various types of gratings is found in
2163:
The NIST reference on constants, units and uncertainty
879:
Dashed black lines: Uncertain calibration ladder step.
1691:
Donald Clausing (2006). "Receiver clock correction".
543: 300:
and the nearly obsolete Long Range Aid to Navigation
368:
Measuring a length in wavelengths of light using an
83: 1970:(2nd ed.). PHI Learning Pvt. Ltd. pp. 62 1205:, measure usually includes a time component as well 262:depends upon the medium in which it propagates; in 2419:. Berlin, Heidelberg: Springer Berlin Heidelberg. 869:technique is applicable to all populations of the 593: 456:, absolute distance measurements become possible. 862:Light Purple boxes: Geometric distance technique. 424:. The length as a certain number of wavelengths 876:Solid black lines: Well calibrated ladder step. 289:of the medium larger than one slows the light. 2308:Handbook of photomask manufacturing technology 2167:National Institute of Standards and Technology 819:spectroscopy (NOESY) is a specialized type of 336:(WAAS)) can bring accuracy to a few metres or 125:accompanying your translation by providing an 74:Click for important translation instructions. 61:expand this article with text translated from 1342: 977:used in metal working to measure size of gaps 296:systems for boats and aircraft, for example, 8: 2488:Length, distance, or range measuring devices 2443:This article incorporates material from the 2055:Experimental method in the physical sciences 941:Length, distance, or range measuring devices 2053:. In Thomas Lucatorto; et al. (eds.). 1997:"§7.3 Electromagnetic distance measurement" 1846: 1844: 848:Light green boxes: Technique applicable to 682:Other devices which measure distance using 526:Such measurements allow the calibration of 2273:. Cambridge University Press. pp. 88 1695:(4th ed.). McGraw-Hill Professional. 1349: 1335: 1327: 855:Light blue boxes: Technique applicable to 219:coupled with intensive computer modeling. 2336:(2nd ed.). SPIE Press. pp. 313 2270:An introduction to galaxies and cosmology 2193:Physical optics: principles and practices 2125: 2043: 2041: 1756:"Interferometry and transit-time methods" 1240:Frequency-modulated continuous-wave radar 1158:of electromagnetic waves in the GHz-range 797:Other small dimension techniques are the 570: 557: 548: 542: 1859:. Vol. 10. CRC Press. p. 366. 840: 515:corresponding to a resolution of ΔL/L ≈ 292:Transit-time measurement underlies most 37:For broader coverage of this topic, see 2003:(4th ed.). Laxton's. pp. 136 1892:and other types of interferometer, see 1718:"§22.1.4: Time-of-flight range sensors" 1716:Robert B Fisher; Kurt Konolige (2008). 1682: 1230:Distance measuring equipment (aviation) 821:nuclear magnetic resonance spectroscopy 652:is technique that measures distance or 2220:"Electron wavelength and relativity". 2085:into the calculator provided by NIST: 104: 1762:. Butterworth-Heinemann. p. 89. 7: 2088:"Refractive index of air calculator" 867:planetary nebula luminosity function 332:(DGPS)) or via satellites (that is, 137:{{Translated|de|Entfernungsmessung}} 2222:High-resolution electron microscopy 176:) refers to the many ways in which 1752:For an overview, see for example, 791:and a typical resolution is about 25: 1693:The Aviator's Guide to Navigation 1235:Ellipsometry#Imaging ellipsometry 828:Astronomical distance measurement 199:For objects such as crystals and 1125:Distance-based road exit numbers 833:This section is an excerpt from 811:transmission electron microscope 344:and Light Detection and Ranging 48: 2451:", which is licensed under the 2417:Electronic Distance Measurement 2057:. Academic Press. pp. 311 2159:"Lattice parameter of silicon" 2049:Miao Zhu; John L Hall (1997). 1760:Instrumentation reference book 1251:Low-energy electron microscopy 428:is related to the metre using 416:corresponding to a particular 352:and have an accuracy of about 135:You may also add the template 1: 2092:Engineering metrology toolbox 1900:Optical systems and processes 1853:"Chapter 15: Length and size" 1726:Springer handbook of robotics 751:from any single measurement. 709:). This principle is used in 404:and the machine is called an 334:Wide Area Augmentation System 266:the speed is a defined value 1689:A brief rundown is found at 1400:Coordinate-measuring machine 1256:Orders of magnitude (length) 1219:Angular measuring instrument 776:scanning electron microscope 509:a = 543.102 0504(89) × 10 m, 2247:"Metrological traceability" 2189:"§3.2 Diffraction gratings" 1902:. SPIE Press. pp. 176 1855:. In Tōru Yoshizawa (ed.). 477:refractive index correction 360:Interferometer measurements 279:refractive index correction 273:in the reference medium of 148:Knowledge (XXG):Translation 107:will aid in categorization. 2504: 2328:Harry J. Levinson (2005). 2310:. CRC Press. pp. 457 2302:Michael T. Postek (2005). 2094:. NIST. September 23, 2010 1266:Range ambiguity resolution 1099:Radar distance measurement 1050:Ultrasonic thickness gauge 938: 918:in the older SI units and 832: 82:Machine translation, like 36: 29: 2425:10.1007/978-3-642-80233-1 2334:Principles of lithography 2195:. CRC Press. pp. 46 2144:10.1103/revmodphys.80.633 1968:Fundamentals of Surveying 1896:"§8.7 Using corner cubes" 1728:. Springer. pp. 528 1598: 1365: 1085:Ultrasonic ranging module 1080:Electronic distance meter 817:Nuclear Overhauser effect 696:stereoscopic rangefinders 634:metrological traceability 310:global positioning system 63:the corresponding article 2187:Abdul Al-Azzawi (2006). 1995:W Whyte; R Paul (1997). 1890:Michelson interferometer 1639:Machine and metalworking 717:, used, for example, in 491:Diffraction measurements 382:Michelson interferometer 249:Transit-time measurement 2306:. In Syed Rizvi (ed.). 1888:of this version of the 1649:Measuring and alignment 1286:Depression range finder 1074:Based on time-of-flight 799:atomic force microscope 677:ultrasonic rangefinding 146:For more guidance, see 39:Dimensional measurement 2415:Rüeger, J. M. (1996). 2330:"Chapter 9: Metrology" 1894:Joseph Shamir (1999). 1720:. In Bruno Siciliano; 1301:Rangefinding telemeter 1271:Cosmic distance ladder 910:Other systems of units 888:cosmic distance ladder 883: 835:Cosmic distance ladder 645:Far and moving targets 639:cosmic distance ladder 595: 373: 2483:Scientific techniques 1851:René Schödel (2009). 1316:Telemeter chronograph 1296:Range-finder painting 1214:Travelling microscope 1112:time-of-flight camera 850:star-forming galaxies 844: 807:helium ion microscope 596: 532:de Broglie wavelength 367: 119:copyright attribution 1927:Jesse Zheng (2005). 1813:10.1364/ol.29.001153 1614:Cutting and abrasive 1450:Laser measuring tool 774:, is done using the 756:tracking and tracing 711:satellite navigation 541: 528:electron microscopes 348:) aim at lengths of 201:diffraction gratings 166:distance measurement 2382:2007SPIE.6518E..10O 2370:Proceedings of SPIE 2136:2008RvMP...80..633M 1939:2005ofmc.book.....Z 1865:2009homp.book.....Y 1805:2004OptL...29.1153Y 1754:Walt Boyes (2008). 1360:and alignment tools 1291:Fire-control system 1261:Pulse-Doppler radar 1156:runtime measurement 1062:Non-contact devices 865:Light Red box: The 772:integrated circuits 615:the electron mass, 521:diffraction grating 32:Interval estimation 2455:but not under the 1560:Thread pitch gauge 1390:Combination square 1187:Positioning system 1130:Linear referencing 1045:Thread pitch gauge 1020:Pacing (surveying) 884: 871:Virgo Supercluster 780:Fourier transforms 591: 374: 162:Length measurement 127:interlanguage link 2434:978-3-540-61159-2 2390:10.1117/12.713368 2347:978-0-8194-5660-1 2321:978-0-8247-5374-0 2284:978-0-521-54623-2 2231:978-0-19-955275-7 2206:978-0-8493-8297-0 2068:978-0-12-475977-0 2014:978-0-7506-1771-0 1981:978-81-203-4198-2 1948:978-0-387-23009-2 1913:978-0-8194-3226-1 1874:978-0-8493-3760-4 1799:(10): 1153–1155. 1769:978-0-7506-8308-1 1702:978-0-07-147720-8 1673: 1672: 1370:Architect's scale 1281:Dazzle camouflage 1104:Laser rangefinder 953:Architect's scale 621:elementary charge 587: 583: 582: 497:X-ray diffraction 418:atomic transition 377:shorter lengths. 170:range measurement 159: 158: 75: 71: 16:(Redirected from 2495: 2438: 2402: 2401: 2367: 2358: 2352: 2351: 2325: 2299: 2293: 2292: 2264: 2258: 2257: 2255: 2254: 2242: 2236: 2235: 2217: 2211: 2210: 2183: 2177: 2176: 2174: 2173: 2155: 2149: 2147: 2129: 2109: 2103: 2102: 2100: 2099: 2079: 2073: 2072: 2045: 2036: 2025: 2019: 2018: 1992: 1986: 1985: 1959: 1953: 1952: 1924: 1918: 1917: 1885: 1879: 1878: 1848: 1839: 1838: 1836: 1835: 1829: 1823:. Archived from 1790: 1780: 1774: 1773: 1750: 1744: 1743: 1713: 1707: 1706: 1687: 1445:Laser line level 1415:Engineer's scale 1410:Drafting machine 1351: 1344: 1337: 1328: 1276:Bradley A. Fiske 1035:Surveyor's wheel 968:Engineer's scale 803:focused ion beam 794: 790: 766:Other techniques 600: 598: 597: 592: 585: 584: 575: 574: 562: 558: 553: 552: 518: 481:classical vacuum 471: 466:classical vacuum 454:beat frequencies 441: 410:counting fringes 355: 351: 339: 330:differential GPS 327: 323: 306:responder beacon 294:radio navigation 287:refractive index 283:classical vacuum 275:classical vacuum 138: 132: 106: 105:|topic= 103:, and specifying 88:Google Translate 73: 69: 52: 51: 44: 21: 2503: 2502: 2498: 2497: 2496: 2494: 2493: 2492: 2463: 2462: 2435: 2414: 2411: 2409:Further reading 2406: 2405: 2365: 2360: 2359: 2355: 2348: 2327: 2322: 2301: 2300: 2296: 2285: 2266: 2265: 2261: 2252: 2250: 2245: 2243: 2239: 2232: 2219: 2218: 2214: 2207: 2186: 2184: 2180: 2171: 2169: 2157: 2156: 2152: 2111: 2110: 2106: 2097: 2095: 2086: 2080: 2076: 2069: 2048: 2046: 2039: 2026: 2022: 2015: 2001:Basic Surveying 1994: 1993: 1989: 1982: 1962:SK Roy (2010). 1961: 1960: 1956: 1949: 1926: 1925: 1921: 1914: 1893: 1886: 1882: 1875: 1850: 1849: 1842: 1833: 1831: 1827: 1788: 1784:Jun Ye (2004). 1783: 1781: 1777: 1770: 1753: 1751: 1747: 1740: 1715: 1714: 1710: 1703: 1690: 1688: 1684: 1679: 1674: 1669: 1668: 1594: 1510:Sliding T bevel 1361: 1355: 1325: 1182:Position sensor 1153: 1120: 1076: 1064: 1059: 976: 948: 946:Contact devices 943: 939:Main category: 937: 935:List of devices 912: 907: 906: 882: 838: 830: 792: 788: 768: 647: 629:Planck constant 613: 566: 544: 539: 538: 516: 493: 469: 447: 438: 433: 362: 353: 349: 337: 325: 321: 272: 251: 225: 223:Standard rulers 155: 154: 153: 136: 130: 76: 53: 49: 42: 35: 28: 23: 22: 15: 12: 11: 5: 2501: 2499: 2491: 2490: 2485: 2480: 2475: 2465: 2464: 2440: 2439: 2433: 2410: 2407: 2404: 2403: 2353: 2346: 2320: 2294: 2283: 2259: 2237: 2230: 2212: 2205: 2178: 2150: 2120:(2): 633–730. 2104: 2074: 2067: 2037: 2029:Doppler effect 2020: 2013: 1987: 1980: 1954: 1947: 1919: 1912: 1880: 1873: 1840: 1793:Optics Letters 1775: 1768: 1745: 1739:978-3540239574 1738: 1722:Oussama Khatib 1708: 1701: 1681: 1680: 1678: 1675: 1671: 1670: 1667: 1666: 1661: 1656: 1651: 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1604:Types of tools 1600: 1599: 1596: 1595: 1593: 1592: 1590:Winding sticks 1587: 1582: 1580:Weighing scale 1577: 1572: 1567: 1562: 1557: 1552: 1547: 1542: 1537: 1532: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1452: 1447: 1442: 1437: 1432: 1430:Gunter's chain 1427: 1422: 1417: 1412: 1407: 1405:Diagonal scale 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1366: 1363: 1362: 1356: 1354: 1353: 1346: 1339: 1331: 1324: 1323: 1318: 1313: 1308: 1303: 1298: 1293: 1288: 1283: 1278: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1237: 1232: 1227: 1221: 1216: 1211: 1206: 1200: 1195: 1194:, in astronomy 1192:Standard ruler 1189: 1184: 1179: 1174: 1169: 1167:Interferometer 1164: 1159: 1147: 1142: 1137: 1132: 1127: 1121: 1119: 1116: 1115: 1114: 1101: 1096: 1082: 1075: 1072: 1071: 1070: 1063: 1060: 1058: 1057: 1052: 1047: 1042: 1037: 1032: 1027: 1022: 1017: 1008: 1003: 998: 993: 988: 986:Gunter's chain 983: 978: 970: 965: 963:Diagonal scale 960: 955: 949: 947: 944: 936: 933: 911: 908: 881: 880: 877: 874: 863: 860: 853: 845: 839: 831: 829: 826: 767: 764: 707:speed of light 646: 643: 611: 602: 601: 590: 581: 578: 573: 569: 565: 561: 556: 551: 547: 513: 512: 511: 510: 492: 489: 445: 436: 406:interferometer 370:interferometer 361: 358: 270: 250: 247: 224: 221: 217:ion microscopy 213:electron beams 194:speed of light 157: 156: 152: 151: 144: 133: 111: 108: 96:adding a topic 91: 80: 77: 58: 57: 56: 54: 47: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2500: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2470: 2468: 2461: 2460: 2458: 2454: 2450: 2446: 2436: 2430: 2426: 2422: 2418: 2413: 2412: 2408: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2364: 2357: 2354: 2349: 2343: 2339: 2335: 2331: 2323: 2317: 2313: 2309: 2305: 2298: 2295: 2291: 2286: 2280: 2276: 2272: 2271: 2263: 2260: 2248: 2241: 2238: 2233: 2227: 2223: 2216: 2213: 2208: 2202: 2198: 2194: 2190: 2182: 2179: 2168: 2164: 2160: 2154: 2151: 2145: 2141: 2137: 2133: 2128: 2123: 2119: 2115: 2108: 2105: 2093: 2089: 2084: 2078: 2075: 2070: 2064: 2060: 2056: 2052: 2044: 2042: 2038: 2034: 2030: 2024: 2021: 2016: 2010: 2006: 2002: 1998: 1991: 1988: 1983: 1977: 1973: 1969: 1965: 1958: 1955: 1950: 1944: 1940: 1936: 1932: 1931: 1923: 1920: 1915: 1909: 1905: 1901: 1897: 1891: 1884: 1881: 1876: 1870: 1866: 1862: 1858: 1854: 1847: 1845: 1841: 1830:on 2012-05-04 1826: 1822: 1818: 1814: 1810: 1806: 1802: 1798: 1794: 1787: 1779: 1776: 1771: 1765: 1761: 1757: 1749: 1746: 1741: 1735: 1731: 1727: 1723: 1719: 1712: 1709: 1704: 1698: 1694: 1686: 1683: 1676: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1601: 1597: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1570:Vernier scale 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1465:Measuring rod 1463: 1461: 1460:Marking gauge 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1367: 1364: 1359: 1352: 1347: 1345: 1340: 1338: 1333: 1332: 1329: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1241: 1238: 1236: 1233: 1231: 1228: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1204: 1201: 1199: 1196: 1193: 1190: 1188: 1185: 1183: 1180: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1160: 1157: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1122: 1117: 1113: 1109: 1105: 1102: 1100: 1097: 1094: 1093:echo sounding 1090: 1086: 1083: 1081: 1078: 1077: 1073: 1069: 1066: 1065: 1061: 1056: 1053: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 991:Measuring rod 989: 987: 984: 982: 979: 974: 971: 969: 966: 964: 961: 959: 956: 954: 951: 950: 945: 942: 934: 932: 929: 925: 921: 917: 909: 903: 901: 897: 893: 889: 878: 875: 872: 868: 864: 861: 858: 857:population II 854: 851: 847: 846: 843: 836: 827: 825: 822: 818: 814: 812: 808: 804: 800: 795: 786: 781: 777: 773: 765: 763: 761: 757: 752: 750: 746: 742: 738: 734: 731: 727: 722: 721:positioning. 720: 716: 712: 708: 704: 699: 697: 693: 689: 685: 680: 678: 674: 670: 666: 662: 657: 655: 651: 644: 642: 640: 636: 635: 630: 626: 622: 618: 614: 607: 588: 579: 576: 571: 567: 563: 559: 554: 549: 545: 537: 536: 535: 533: 529: 524: 522: 508: 507: 506: 505: 504: 502: 498: 490: 488: 484: 482: 478: 473: 467: 462: 457: 455: 450: 448: 440: 431: 427: 423: 419: 415: 411: 407: 403: 397: 395: 394: 389: 388: 387:beam splitter 383: 378: 371: 366: 359: 357: 347: 343: 338:< 1 metre, 335: 331: 318: 316: 311: 307: 303: 299: 295: 290: 288: 284: 280: 276: 269: 265: 261: 257: 248: 246: 242: 240: 236: 234: 230: 222: 220: 218: 214: 210: 207:is used with 206: 202: 197: 195: 191: 187: 183: 179: 175: 171: 167: 163: 149: 145: 142: 134: 128: 124: 120: 116: 112: 109: 102: 101:main category 98: 97: 92: 89: 85: 81: 79: 78: 72: 66: 64: 59:You can help 55: 46: 45: 40: 33: 19: 18:Range finding 2449:Metre (unit) 2442: 2441: 2416: 2373: 2369: 2356: 2337: 2333: 2311: 2307: 2297: 2288: 2274: 2269: 2262: 2251:. Retrieved 2240: 2221: 2215: 2196: 2192: 2181: 2170:. Retrieved 2162: 2153: 2117: 2114:Rev Mod Phys 2113: 2107: 2096:. Retrieved 2091: 2077: 2058: 2054: 2032: 2023: 2004: 2000: 1990: 1971: 1967: 1957: 1933:. Springer. 1929: 1922: 1903: 1899: 1883: 1856: 1832:. Retrieved 1825:the original 1796: 1792: 1778: 1759: 1748: 1729: 1725: 1711: 1692: 1685: 1550:Tape measure 1535:Straightedge 1525:Steel square 1520:Spirit level 1515:Speed square 1490:Radius gauge 1455:Lesbian rule 1425:French curve 1375:Beam compass 1321:Tellurometer 1246:Length scale 1209:Tellurometer 1154:indirect by 1135:Meridian arc 1040:Tape measure 1001:Metric scale 981:Gauge blocks 973:Feeler gauge 927: 924:atomic units 919: 915: 913: 891: 885: 815: 796: 769: 753: 737:asynchronous 723: 700: 688:stadiametric 684:trigonometry 681: 658: 649: 648: 632: 624: 616: 609: 605: 603: 525: 514: 500: 494: 485: 476: 474: 458: 451: 443: 434: 429: 425: 421: 413: 409: 402:interference 398: 393:corner cubes 391: 385: 379: 375: 319: 315:transit time 314: 305: 291: 278: 267: 255: 252: 243: 239:Gauge blocks 237: 226: 198: 173: 169: 165: 161: 160: 123:edit summary 114: 94: 68: 60: 2445:Citizendium 1664:Woodworking 1440:Laser level 1420:Flat spline 1311:Tacheometry 1306:Slant range 1145:Rangefinder 996:Meter stick 916:wavelengths 785:diffraction 715:pseudorange 703:travel time 692:coincidence 654:slant range 205:diffraction 2467:Categories 2376:: 651810. 2253:2011-04-10 2172:2011-04-04 2098:2011-12-08 1834:2011-11-30 1677:References 1565:Try square 1555:Theodolite 1500:Set square 1485:Protractor 1475:Micrometer 1470:Meterstick 1385:Chalk line 1198:Tachymeter 1172:Macrometer 1162:Hypsometer 1055:Yard stick 1030:Stadimeter 1015:curvimeter 1011:Opisometer 1006:Micrometer 928:comparison 900:luminosity 743:of active 324:GPS about 70:(May 2021) 2478:Metrology 2447:article " 2127:0801.0028 2033:linewidth 1480:Plumb-bob 1358:Measuring 1224:Altimeter 1203:Taximeter 1140:Milestone 859:galaxies. 760:surveying 733:signature 730:radiation 546:λ 141:talk page 93:Consider 65:in German 2473:SI units 2398:54698571 1821:15182016 1724:(eds.). 1619:Forestry 1609:Cleaning 1545:T-square 1380:Calipers 1226:, height 1177:Odometer 1118:See also 805:and the 350:10–100 m 264:SI units 190:measured 182:distance 117:provide 2378:Bibcode 2290:method. 2132:Bibcode 1935:Bibcode 1861:Bibcode 1801:Bibcode 1644:Masonry 1634:Kitchen 1585:Wiggler 1530:Stencil 1505:Skirret 1395:Compass 1068:Ranging 958:Caliper 896:parsecs 813:(TEM). 749:bearing 741:scaling 650:Ranging 517:3 × 10. 470:10 – 10 442:. With 354:5–10 mm 302:LORAN-C 188:can be 174:ranging 139:to the 121:in the 67:. 2431:  2396:  2344:  2318:  2281:  2249:. BIPM 2228:  2203:  2083:vacuum 2065:  2011:  1978:  1945:  1910:  1871:  1819:  1766:  1736:  1699:  1654:Mining 1624:Garden 1540:Square 1242:(FMCW) 892:direct 801:, the 789:0.5 Å, 675:, and 623:, and 586:  503:, is: 430:λ 426:λ 414:λ 209:X-rays 178:length 2394:S2CID 2366:(PDF) 2122:arXiv 1828:(PDF) 1789:(PDF) 1659:Power 1495:Ruler 1108:lidar 1089:sonar 1025:Ruler 920:bohrs 793:4 nm. 745:pings 726:noise 673:sonar 669:radar 665:lidar 661:laser 604:with 461:laser 408:. By 346:LIDAR 342:LADAR 326:10 m, 322:6 km, 298:radar 260:speed 233:metre 229:ruler 186:range 184:, or 168:, or 84:DeepL 2457:GFDL 2429:ISBN 2374:6518 2342:ISBN 2326:and 2316:ISBN 2279:ISBN 2244:See 2226:ISBN 2201:ISBN 2063:ISBN 2009:ISBN 1976:ISBN 1943:ISBN 1908:ISBN 1869:ISBN 1817:PMID 1764:ISBN 1734:ISBN 1697:ISBN 1629:Hand 1575:Vise 886:The 694:and 686:are 627:the 619:the 534:is: 285:. A 227:The 211:and 115:must 113:You 2421:doi 2386:doi 2140:doi 1809:doi 1435:Jig 1150:GPS 1013:or 922:in 728:or 719:GPS 667:), 439:/ f 86:or 2469:: 2427:. 2392:. 2384:. 2368:. 2340:. 2338:ff 2332:. 2314:. 2312:ff 2287:. 2277:. 2275:ff 2199:. 2197:ff 2191:. 2165:. 2161:. 2138:. 2130:. 2118:80 2116:. 2090:. 2061:. 2059:ff 2040:^ 2007:. 2005:ff 1999:. 1974:. 1972:ff 1966:. 1941:. 1906:. 1904:ff 1898:. 1867:. 1843:^ 1815:. 1807:. 1797:29 1795:. 1791:. 1758:. 1732:. 1730:ff 1110:, 1106:, 1091:, 902:. 762:. 690:, 679:. 671:, 523:. 432:= 356:. 203:, 196:. 180:, 164:, 2459:. 2437:. 2423:: 2400:. 2388:: 2380:: 2350:. 2324:. 2256:. 2234:. 2209:. 2175:. 2146:. 2142:: 2134:: 2124:: 2101:. 2071:. 2017:. 1984:. 1951:. 1937:: 1916:. 1877:. 1863:: 1837:. 1811:: 1803:: 1772:. 1742:. 1705:. 1350:e 1343:t 1336:v 1152:, 1095:) 1087:( 975:, 873:. 852:. 837:. 663:( 625:h 617:e 612:e 610:m 606:V 589:, 580:V 577:e 572:e 568:m 564:2 560:h 555:= 550:e 501:a 446:0 444:c 437:0 435:c 422:f 372:. 271:0 268:c 256:v 172:( 150:. 143:. 41:. 34:. 20:)

Index

Range finding
Interval estimation
Dimensional measurement
the corresponding article
DeepL
Google Translate
adding a topic
main category
copyright attribution
edit summary
interlanguage link
talk page
Knowledge (XXG):Translation
length
distance
range
measured
speed of light
diffraction gratings
diffraction
X-rays
electron beams
ion microscopy
ruler
metre
Gauge blocks
speed
SI units
classical vacuum
classical vacuum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.