Knowledge (XXG)

Neural coding

Source 📝

426:, which occurs within the brain on the order of milliseconds. The brain must obtain a large quantity of information based on a relatively short neural response. Additionally, if low firing rates on the order of ten spikes per second must be distinguished from arbitrarily close rate coding for different stimuli, then a neuron trying to discriminate these two stimuli may need to wait for a second or more to accumulate enough information. This is not consistent with numerous organisms which are able to discriminate between stimuli in the time frame of milliseconds, suggesting that a rate code is not the only model at work. 350:
information, a more consistent, regular firing rate would have been evolutionarily advantageous, and neurons would have utilized this code over other less robust options. Temporal coding supplies an alternate explanation for the “noise," suggesting that it actually encodes information and affects neural processing. To model this idea, binary symbols can be used to mark the spikes: 1 for a spike, 0 for no spike. Temporal coding allows the sequence 000111000111 to mean something different from 001100110011, even though the mean firing rate is the same for both sequences, at 6 spikes/10 ms.
699:) attempt to automatically find a small number of representative patterns which, when combined in the right proportions, reproduce the original input patterns. The sparse coding for the input then consists of those representative patterns. For example, the very large set of English sentences can be encoded by a small number of symbols (i.e. letters, numbers, punctuation, and spaces) combined in a particular order for a particular sentence, and so a sparse coding for English would be those symbols. 565:
directions. However it fires the fastest for one direction and more slowly depending on how close the target was to the neuron's "preferred" direction. If each neuron represents movement in its preferred direction, and the vector sum of all neurons is calculated (each neuron has a firing rate and a preferred direction), the sum points in the direction of motion. In this manner, the population of neurons codes the signal for the motion. This particular population code is referred to as
573:
nerve. The first ALSR representation was for steady-state vowels; ALSR representations of pitch and formant frequencies in complex, non-steady state stimuli were later demonstrated for voiced-pitch, and formant representations in consonant-vowel syllables. The advantage of such representations is that global features such as pitch or formant transition profiles can be represented as global features across the entire nerve simultaneously via both rate and place coding.
459:
given odorants. This type of extra information could help in recognizing a certain odor, but is not completely necessary, as average spike count over the course of the animal's sniffing was also a good identifier. Along the same lines, experiments done with the olfactory system of rabbits showed distinct patterns which correlated with different subsets of odorants, and a similar result was obtained in experiments with the locust olfactory system.
1005:. If the number of basis vectors n is equal to the dimensionality k of the input set, the coding is said to be critically complete. In this case, smooth changes in the input vector result in abrupt changes in the coefficients, and the coding is not able to gracefully handle small scalings, small translations, or noise in the inputs. If, however, the number of basis vectors is larger than the dimensionality of the input set, the coding is 204:
statistically or probabilistically. They may be characterized by firing rates, rather than as specific spike sequences. In most sensory systems, the firing rate increases, generally non-linearly, with increasing stimulus intensity. Under a rate coding assumption, any information possibly encoded in the temporal structure of the spike train is ignored. Consequently, rate coding is inefficient but highly robust with respect to the ISI '
447:
In studies dealing with the front cortical portion of the brain in primates, precise patterns with short time scales only a few milliseconds in length were found across small populations of neurons which correlated with certain information processing behaviors. However, little information could be determined from the patterns; one possible theory is they represented the higher-order processing taking place in the brain.
109:. These differ from action potentials because information about the strength of a stimulus directly correlates with the strength of the neurons' output. The signal decays much faster for graded potentials, necessitating short inter-neuron distances and high neuronal density. The advantage of graded potentials is higher information rates capable of encoding more states (i.e. higher fidelity) than spiking neurons. 292:, at least, information is not simply encoded in firing but also in the timing and duration of non-firing, quiescent periods. There is also evidence from retinal cells, that information is encoded not only in the firing rate but also in spike timing. More generally, whenever a rapid response of an organism is required a firing rate defined as a spike-count over a few hundred milliseconds is simply too slow. 659: 443:
similar responses in terms of spike count. The temporal component of the pattern elicited by each tastant may be used to determine its identity (e.g., the difference between two bitter tastants, such as quinine and denatonium). In this way, both rate coding and temporal coding may be used in the gustatory system – rate for basic tastant type, temporal for more specific differentiation.
647: 128:) between two successive spikes in a spike train often vary, apparently randomly. The study of neural coding involves measuring and characterizing how stimulus attributes, such as light or sound intensity, or motor actions, such as the direction of an arm movement, are represented by neuron action potentials or spikes. In order to describe and analyze neuronal firing, 2092: 237:. As the weight of the stimulus increased, the number of spikes recorded from sensory nerves innervating the muscle also increased. From these original experiments, Adrian and Zotterman concluded that action potentials were unitary events, and that the frequency of events, and not individual event magnitude, was the basis for most inter-neuronal communication. 401:
what neural coding strategy is being used. Temporal coding in the narrow sense refers to temporal precision in the response that does not arise solely from the dynamics of the stimulus, but that nevertheless relates to properties of the stimulus. The interplay between stimulus and encoding dynamics makes the identification of a temporal code difficult.
553:
theoretical point of view, population coding is one of a few mathematically well-formulated problems in neuroscience. It grasps the essential features of neural coding and yet is simple enough for theoretic analysis. Experimental studies have revealed that this coding paradigm is widely used in the sensory and motor areas of the brain.
476:
control spikes and therefore certain behaviors of the mouse (e.g., making the mouse turn left). Researchers, through optogenetics, have the tools to effect different temporal codes in a neuron while maintaining the same mean firing rate, and thereby can test whether or not temporal coding occurs in specific neural circuits.
309:(t;t+Δt) summed over all repetitions of the experiment divided by the number K of repetitions is a measure of the typical activity of the neuron between time t and t+Δt. A further division by the interval length Δt yields time-dependent firing rate r(t) of the neuron, which is equivalent to the spike density of PSTH ( 305:(PSTH). The time t is measured with respect to the start of the stimulation sequence. The Δt must be large enough (typically in the range of one or a few milliseconds) so that there is a sufficient number of spikes within the interval to obtain a reliable estimate of the average. The number of occurrences of spikes n 564:
activity pattern across the population. The moving direction of the object is retrieved from the population activity, to be immune from the fluctuation existing in a single neuron's signal. When monkeys are trained to move a joystick towards a lit target, a single neuron will fire for multiple target
328:
As an experimental procedure, the time-dependent firing rate measure is a useful method to evaluate neuronal activity, in particular in the case of time-dependent stimuli. The obvious problem with this approach is that it can not be the coding scheme used by neurons in the brain. Neurons can not wait
253:
The spike-count rate, also referred to as temporal average, is obtained by counting the number of spikes that appear during a trial and dividing by the duration of trial. The length T of the time window is set by the experimenter and depends on the type of neuron recorded from and to the stimulus. In
244:
neurons, partly due to the relative ease of measuring rates experimentally. However, this approach neglects all the information possibly contained in the exact timing of the spikes. During recent years, more and more experimental evidence has suggested that a straightforward firing rate concept based
143:
With the development of large-scale neural recording and decoding technologies, researchers have begun to crack the neural code and have already provided the first glimpse into the real-time neural code as memory is formed and recalled in the hippocampus, a brain region known to be central for memory
1040:
Sparse coding may be a general strategy of neural systems to augment memory capacity. To adapt to their environments, animals must learn which stimuli are associated with rewards or punishments and distinguish these reinforced stimuli from similar but irrelevant ones. Such tasks require implementing
683:
As a consequence, sparseness may be focused on temporal sparseness ("a relatively small number of time periods are active") or on the sparseness in an activated population of neurons. In this latter case, this may be defined in one time period as the number of activated neurons relative to the total
617:
present in the two spike trains about a stimulus feature. However, this was later demonstrated to be incorrect. Correlation structure can increase information content if noise and signal correlations are of opposite sign. Correlations can also carry information not present in the average firing rate
429:
To account for the fast encoding of visual stimuli, it has been suggested that neurons of the retina encode visual information in the latency time between stimulus onset and first action potential, also called latency to first spike or time-to-first-spike. This type of temporal coding has been shown
584:
Typically an encoding function has a peak value such that activity of the neuron is greatest if the perceptual value is close to the peak value, and becomes reduced accordingly for values less close to the peak value. It follows that the actual perceived value can be reconstructed from the overall
458:
of mice, first-spike latency relative to the start of a sniffing action seemed to encode much of the information about an odor. This strategy of using spike latency allows for rapid identification of and reaction to an odorant. In addition, some mitral/tufted cells have specific firing patterns for
446:
Research on mammalian gustatory system has shown that there is an abundance of information present in temporal patterns across populations of neurons, and this information is different from that which is determined by rate coding schemes. Groups of neurons may synchronize in response to a stimulus.
421:
For very brief stimuli, a neuron's maximum firing rate may not be fast enough to produce more than a single spike. Due to the density of information about the abbreviated stimulus contained in this single spike, it would seem that the timing of the spike itself would have to convey more information
400:
The temporal structure of a spike train or firing rate evoked by a stimulus is determined both by the dynamics of the stimulus and by the nature of the neural encoding process. Stimuli that change rapidly tend to generate precisely timed spikes (and rapidly changing firing rates in PSTHs) no matter
332:
Nevertheless, the experimental time-dependent firing rate measure can make sense, if there are large populations of independent neurons that receive the same stimulus. Instead of recording from a population of N neurons in a single run, it is experimentally easier to record from a single neuron and
261:
The spike-count rate can be determined from a single trial, but at the expense of losing all temporal resolution about variations in neural response during the course of the trial. Temporal averaging can work well in cases where the stimulus is constant or slowly varying and does not require a fast
528:
signals reflect population (network) oscillations. The phase-of-firing code is often categorized as a temporal code although the time label used for spikes (i.e. the network oscillation phase) is a low-resolution (coarse-grained) reference for time. As a result, often only four discrete values for
475:
to open, depolarizing the cell and producing a spike. When blue light is not sensed by the cell, the channel closes, and the neuron ceases to spike. The pattern of the spikes matches the pattern of the blue light stimuli. By inserting channelrhodopsin gene sequences into mouse DNA, researchers can
357:
patterns. However, functions of the brain are more temporally precise than the use of only rate encoding seems to allow. In other words, essential information could be lost due to the inability of the rate code to capture all the available information of the spike train. In addition, responses are
654:
A typical population code involves neurons with a Gaussian tuning curve whose means vary linearly with the stimulus intensity, meaning that the neuron responds most strongly (in terms of spikes per second) to a stimulus near the mean. The actual intensity could be recovered as the stimulus level
580:
and the ability to represent a number of different stimulus attributes simultaneously. Population coding is also much faster than rate coding and can reflect changes in the stimulus conditions nearly instantaneously. Individual neurons in such a population typically have different but overlapping
442:
is useful for studying temporal coding because of its fairly distinct stimuli and the easily discernible responses of the organism. Temporally encoded information may help an organism discriminate between different tastants of the same category (sweet, bitter, sour, salty, umami) that elicit very
412:
The issue of temporal coding is distinct and independent from the issue of independent-spike coding. If each spike is independent of all the other spikes in the train, the temporal character of the neural code is determined by the behavior of time-dependent firing rate r(t). If r(t) varies slowly
152:
The link between stimulus and response can be studied from two opposite points of view. Neural encoding refers to the map from stimulus to response. The main focus is to understand how neurons respond to a wide variety of stimuli, and to construct models that attempt to predict responses to other
679:
The sparse code is when each item is encoded by the strong activation of a relatively small set of neurons. For each item to be encoded, this is a different subset of all available neurons. In contrast to sensor-sparse coding, sensor-dense coding implies that all information from possible sensor
552:
Population coding is a method to represent stimuli by using the joint activities of a number of neurons. In population coding, each neuron has a distribution of responses over some set of inputs, and the responses of many neurons may be combined to determine some value about the inputs. From the
572:
Place-time population codes, termed the averaged-localized-synchronized-response (ALSR) code, have been derived for neural representation of auditory acoustic stimuli. This exploits both the place or tuning within the auditory nerve, as well as the phase-locking within each nerve fiber auditory
434:
of macaques, the timing of the first spike relative to the start of the stimulus was found to provide more information than the interval between spikes. However, the interspike interval could be used to encode additional information, which is especially important when the spike rate reaches its
345:
are found to carry information, the neural code is often identified as a temporal code. A number of studies have found that the temporal resolution of the neural code is on a millisecond time scale, indicating that precise spike timing is a significant element in neural coding. Such codes, that
1081:
anterior paired lateral (APL) neurons. Systematic activation and blockade of each leg of this feedback circuit shows that Kenyon cells activate APL neurons and APL neurons inhibit Kenyon cells. Disrupting the Kenyon cell–APL feedback loop decreases the sparseness of Kenyon cell odor responses,
666:
This type of code is used to encode continuous variables such as joint position, eye position, color, or sound frequency. Any individual neuron is too noisy to faithfully encode the variable using rate coding, but an entire population ensures greater fidelity and precision. For a population of
479:
Optogenetic technology also has the potential to enable the correction of spike abnormalities at the root of several neurological and psychological disorders. If neurons do encode information in individual spike timing patterns, key signals could be missed by attempting to crack the code while
203:
Rate coding is a traditional coding scheme, assuming that most, if not all, information about the stimulus is contained in the firing rate of the neuron. Because the sequence of action potentials generated by a given stimulus varies from trial to trial, neuronal responses are typically treated
349:
Neurons exhibit high-frequency fluctuations of firing-rates which could be noise or could carry information. Rate coding models suggest that these irregularities are noise, while temporal coding models suggest that they encode information. If the nervous system only used rate codes to convey
165:
A sequence, or 'train', of spikes may contain information based on different coding schemes. In some neurons the strength with which a postsynaptic partner responds may depend solely on the 'firing rate', the average number of spikes per unit time (a 'rate code'). At the other end, a complex
1056:
has suggested that sparse coding increases the capacity of associative memory by reducing overlap between representations. Experimentally, sparse representations of sensory information have been observed in many systems, including vision, audition, touch, and olfaction. However, despite the
985:-like distribution, but peakier than Gaussian, with many zero values, some small absolute values, fewer larger absolute values, and very few very large absolute values. Thus, many of the basis vectors are active. Hard sparseness, on the other hand, indicates that there are many zero values, 300:
The time-dependent firing rate is defined as the average number of spikes (averaged over trials) appearing during a short interval between times t and t+Δt, divided by the duration of the interval. It works for stationary as well as for time-dependent stimuli. To experimentally measure the
1082:
increases inter-odor correlations, and prevents flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor-specificity of memories.
316:
For sufficiently small Δt, r(t)Δt is the average number of spikes occurring between times t and t+Δt over multiple trials. If Δt is small, there will never be more than one spike within the interval between t and t+Δt on any given trial. This means that r(t)Δt is also the
404:
In temporal coding, learning can be explained by activity-dependent synaptic delay modifications. The modifications can themselves depend not only on spike rates (rate coding) but also on spike timing patterns (temporal coding), i.e., can be a special case of
618:
of two pairs of neurons. A good example of this exists in the pentobarbital-anesthetized marmoset auditory cortex, in which a pure tone causes an increase in the number of correlated spikes, but not an increase in the mean firing rate, of pairs of neurons.
667:
unimodal tuning curves, i.e. with a single peak, the precision typically scales linearly with the number of neurons. Hence, for half the precision, half as many neurons are required. In contrast, when the tuning curves have multiple peaks, as in
523:
It has been shown that neurons in some cortical sensory areas encode rich naturalistic stimuli in terms of their spike times relative to the phase of ongoing network oscillatory fluctuations, rather than only in terms of their spike count. The
385:) are candidates for temporal codes. As there is no absolute time reference in the nervous system, the information is carried either in terms of the relative timing of spikes in a population of neurons (temporal patterns) or with respect to an 993:
small absolute values, fewer larger absolute values, and very few very large absolute values, and thus few of the basis vectors are active. This is appealing from a metabolic perspective: less energy is used when fewer neurons are firing.
105:. Information about the stimulus is encoded in this pattern of action potentials and transmitted into and around the brain. Beyond this, specialized neurons, such as those of the retina, can communicate more information through 266:— and this is the situation usually encountered in experimental protocols. Real-world input, however, is hardly stationary, but often changing on a fast time scale. For example, even when viewing a static image, humans perform 613:, or "spikes", within a spike train may carry additional information above and beyond the simple timing of the spikes. Early work suggested that correlation between spike trains can only reduce, and never increase, the total 684:
number of neurons in the population. This seems to be a hallmark of neural computations since compared to traditional computers, information is massively distributed across neurons. Sparse coding of natural images produces
480:
looking only at mean firing rates. Understanding any temporally encoded aspects of the neural code and replicating these sequences in neurons could allow for greater control and treatment of neurological disorders such as
1057:
accumulating evidence for widespread sparse coding and theoretical arguments for its importance, a demonstration that sparse coding improves the stimulus-specificity of associative memory has been difficult to obtain.
838: 968: 85:: voltage spikes that can travel down axons. Sensory neurons change their activities by firing sequences of action potentials in various temporal patterns, with the presence of external sensory stimuli, such as 544:. Within a cycle of gamma oscillation, each neuron has its own preferred relative firing time. As a result, an entire population of neurons generates a firing sequence that has a duration of up to about 15 ms. 301:
time-dependent firing rate, the experimenter records from a neuron while stimulating with some input sequence. The same stimulation sequence is repeated several times and the neuronal response is reported in a
2633:
Han X, Qian X, Stern P, Chuong AS, Boyden ES. "Informational lesions: optical perturbations of spike timing and neural synchrony via microbial opsin gene fusions." Cambridge, Massachusetts: MIT Media Lad,
1077:
is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. Sparseness is controlled by a negative feedback circuit between Kenyon cells and
211:
During rate coding, precisely calculating firing rate is very important. In fact, the term "firing rate" has a few different definitions, which refer to different averaging procedures, such as an
3208:
Onken, A; Grünewälder, S; Munk, MHJ; Obermayer, K (2009), "Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation",
1316:
Sengupta B, Laughlin SB, Niven JE (2014) Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency. PLOS Computational Biology 10(1): e1003439.
756: 358:
different enough between similar (but not identical) stimuli to suggest that the distinct patterns of spikes contain a higher volume of information than is possible to include in a rate code.
2849:
Maunsell JH, Van Essen DC (May 1983). "Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation".
585:
pattern of activity in the set of neurons. Vector coding is an example of simple averaging. A more sophisticated mathematical technique for performing such a reconstruction is the method of
529:
the phase are enough to represent all the information content in this kind of code with respect to the phase of oscillations in low frequencies. Phase-of-firing code is loosely based on the
886: 655:
corresponding to the mean of the neuron with the greatest response. However, the noise inherent in neural responses means that a maximum likelihood estimation function is more accurate.
589:
based on a multivariate distribution of the neuronal responses. These models can assume independence, second order correlations, or even more detailed dependencies such as higher order
177:
Whether neurons use rate coding or temporal coding is a topic of intense debate within the neuroscience community, even though there is no clear definition of what these terms mean.
671:
that represent space, the precision of the population can scale exponentially with the number of neurons. This greatly reduces the number of neurons required for the same precision.
2932:
Sachs, Murray B.; Young, Eric D. (November 1979). "Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers".
254:
practice, to get sensible averages, several spikes should occur within the time window. Typical values are T = 100 ms or T = 500 ms, but the duration may also be longer or shorter (
2892: 285:. It has led to the idea that a neuron transforms information about a single input variable (the stimulus strength) into a single continuous output variable (the firing rate). 471:
allow neurologists to control spikes in individual neurons, offering electrical and spatial single-cell resolution. For example, blue light causes the light-gated ion channel
157:
refers to the reverse map, from response to stimulus, and the challenge is to reconstruct a stimulus, or certain aspects of that stimulus, from the spike sequences it evokes.
3770:
Pati, Y. C.; Rezaiifar, R.; Krishnaprasad, P. S. (November 1993). "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition".
888:
for each input vector, so that a linear combination of the basis vectors with proportions given by the coefficients results in a close approximation to the input vector:
520:. This type of code takes into account a time label for each spike according to a time reference based on phase of local ongoing oscillations at low or high frequencies. 560:(MT), neurons are tuned to the direction of object motion. In response to an object moving in a particular direction, many neurons in MT fire with a noise-corrupted and 2117: 692:
of simple cells in the visual cortex. The capacity of sparse codes may be increased by simultaneous use of temporal coding, as found in the locust olfactory system.
81:
Neurons have an ability uncommon among the cells of the body to propagate signals rapidly over large distances by generating characteristic electrical pulses called
1013:
is estimated to be overcomplete by a factor of 500, so that, for example, a 14 x 14 patch of input (a 196-dimensional space) is coded by roughly 100,000 neurons.
333:
average over N repeated runs. Thus, the time-dependent firing rate coding relies on the implicit assumption that there are always populations of neurons.
537:. Another feature of this code is that neurons adhere to a preferred order of spiking between a group of sensory neurons, resulting in firing sequence. 430:
also in the auditory and somato-sensory system. The main drawback of such a coding scheme is its sensitivity to intrinsic neuronal fluctuations. In the
3110:
Schneidman, E; Berry, MJ; Segev, R; Bialek, W (2006), "Weak Pairwise Correlations Imply Strongly Correlated Network States in a Neural Population",
590: 3487: 492:. Regulation of spike intervals in single cells more precisely controls brain activity than the addition of pharmacological agents intravenously. 435:
limit, as in high-contrast situations. For this reason, temporal coding may play a part in coding defined edges rather than gradual transitions.
2733: 764: 3797: 2307: 1945: 1343: 1301: 891: 467:
The specificity of temporal coding requires highly refined technology to measure informative, reliable, experimental data. Advances made in
4144:
Olshausen, B. A.; Field, D. J. (1996). "Emergence of simple-cell receptive field properties by learning a sparse code for natural images".
120:
of an action potential (about 1 ms) is ignored, an action potential sequence, or spike train, can be characterized simply by a series of
4246: 2899: 2618:
Karl Diesseroth, Lecture. "Personal Growth Series: Karl Diesseroth on Cracking the Neural Code." Google Tech Talks. November 21, 2008.
1699: 346:
communicate via the time between spikes are also referred to as interpulse interval codes, and have been supported by recent studies.
240:
In the following decades, measurement of firing rates became a standard tool for describing the properties of all types of sensory or
1961:
Butts DA, Weng C, Jin J, et al. (September 2007). "Temporal precision in the neural code and the timescales of natural vision".
4138: 4124: 3425: 3405: 1664: 406: 1032:
representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves.
1042: 981:. These refer to the distribution of basis vector coefficients for typical inputs. A coding with soft sparseness has a smooth 281:
Despite its shortcomings, the concept of a spike-count rate code is widely used not only in experiments, but also in models of
1182:
Brown EN, Kass RE, Mitra PP (May 2004). "Multiple neural spike train data analysis: state-of-the-art and future challenges".
2383:
Wainrib, Gilles; Michèle, Thieullen; Khashayar, Pakdaman (7 April 2010). "Intrinsic variability of latency to first-spike".
3018:
Miller, M.I.; Sachs, M.B. (1983). "Representation of stop consonants in the discharge patterns of auditory-nerve fibrers".
422:
than simply the average frequency of action potentials over a given period of time. This model is especially important for
2322:
Sjöström, Jesper, and Wulfram Gerstner. "Spike-timing dependent plasticity." Spike-timing dependent plasticity 35 (2010).
170:' is based on the precise timing of single spikes. They may be locked to an external stimulus such as in the visual and 1132: 3616:"A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields" 2975:
Miller, M.I.; Sachs, M.B. (June 1984). "Representation of voice pitch in discharge patterns of auditory-nerve fibers".
1766:"Intracellular Calcium Dynamics Permit a Purkinje Neuron Model to Perform Toggle and Gain Computations Upon its Inputs" 717: 3346:
Merzenich, MM (Jun 1996). "Primary cortical representation of sounds by the coordination of action-potential timing".
1009:. Overcomplete codings smoothly interpolate between input vectors and are robust under input noise. The human primary 541: 1551: 847: 707:
Most models of sparse coding are based on the linear generative model. In this model, the symbols are combined in a
3821:
Needell, D.; Tropp, J.A. (2009-05-01). "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples".
1122: 1025: 507: 4251: 3883:
Vinje, WE; Gallant, JL (2000). "Sparse coding and decorrelation in primary visual cortex during natural vision".
2806:
Wu S, Amari S, Nakahara H (May 2002). "Population coding and decoding in a neural field: a computational study".
2332:
Gollisch, T.; Meister, M. (22 February 2008). "Rapid Neural Coding in the Retina with Relative Spike Latencies".
1157: 1092: 1053: 58: 3727:
Zhang, Zhifeng; Mallat, Stephane G.; Davis, Geoffrey M. (July 1994). "Adaptive time-frequency decompositions".
973:
The codings generated by algorithms implementing a linear generative model can be classified into codings with
576:
Population coding has a number of other advantages as well, including reduction of uncertainty due to neuronal
378: 342: 393:, is that spikes occurring at specific phases of an oscillatory cycle are more effective in depolarizing the 1102: 577: 413:
with time, the code is typically called a rate code, and if it varies rapidly, the code is called temporal.
354: 2012: 365:), employ those features of the spiking activity that cannot be described by the firing rate. For example, 4241: 3900: 3775: 3181: 2647:
Montemurro, Marcelo A.; Rasch, Malte J.; Murayama, Yusuke; Logothetis, Nikos K.; Panzeri, Stefano (2008).
2028:
J. Leo van Hemmen, TJ Sejnowski. 23 Problems in Systems Neuroscience. Oxford Univ. Press, 2006. p.143-158.
1563: 1049:
respond to any given stimulus and each neuron responds to only a few stimuli out of all possible stimuli.
759: 489: 318: 1482:"Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus" 525: 42: 3534: 116:
and shape, they are typically treated as identical stereotyped events in neural coding studies. If the
3262:
Johnson, KO (Jun 1980). "Sensory discrimination: neural processes preceding discrimination decision".
4153: 4077: 3892: 3736: 3502: 3450: 3355: 3217: 3129: 3062: 3027: 2941: 2730: 2341: 2187: 1970: 1884: 1588: 1493: 1434: 1021: 557: 374: 3905: 3780: 373:
with respect to background oscillations, characteristics based on the second and higher statistical
3186: 1162: 982: 594: 561: 517: 390: 386: 129: 3615: 3488:"Emergence of simple-cell receptive field properties by learning a sparse code for natural images" 4177: 3856: 3830: 3803: 3646: 3526: 3379: 3119: 3000: 2874: 2831: 2713: 2500: 2408: 2365: 2276: 2156: 2070: 2045:
Theunissen, F; Miller, JP (1995). "Temporal Encoding in Nervous Systems: A Rigorous Definition".
1994: 1916: 1391: 1207: 1147: 708: 614: 586: 423: 271: 133: 117: 1872: 1366:
Stein RB, Gossen ER, Jones KE (May 2005). "Neuronal variability: noise or part of the signal?".
2475:
Hallock, Robert M.; Di Lorenzo, Patricia M. (2006). "Temporal coding in the gustatory system".
4220: 4169: 4134: 4120: 4059: 4010: 3969: 3918: 3848: 3793: 3752: 3709: 3638: 3589: 3518: 3468: 3421: 3401: 3371: 3328: 3279: 3245: 3155: 3092: 3043: 2992: 2957: 2866: 2823: 2788: 2705: 2670: 2598: 2549: 2492: 2457: 2400: 2357: 2303: 2295: 2268: 2260: 2221: 2203: 2148: 2111: 2062: 1986: 1941: 1908: 1900: 1848: 1797: 1746: 1695: 1670: 1660: 1616: 1521: 1462: 1383: 1339: 1297: 1256: 1248: 1199: 566: 481: 329:
for the stimuli to repeatedly present in an exactly same manner before generating a response.
82: 50: 46: 1717:"The impulses produced by sensory nerve endings: Part II: The response of a single end organ" 1409: 4210: 4202: 4161: 4049: 4041: 4000: 3959: 3949: 3910: 3840: 3785: 3744: 3699: 3630: 3579: 3571: 3510: 3458: 3363: 3318: 3310: 3271: 3235: 3225: 3191: 3145: 3137: 3082: 3074: 3035: 2984: 2949: 2858: 2815: 2778: 2768: 2697: 2660: 2588: 2580: 2539: 2531: 2484: 2447: 2439: 2392: 2349: 2252: 2211: 2195: 2140: 2054: 1978: 1892: 1838: 1828: 1787: 1777: 1736: 1728: 1606: 1596: 1511: 1501: 1452: 1442: 1375: 1329: 1238: 1191: 1137: 1127: 1066: 1017: 635: 631: 610: 513: 501: 472: 439: 394: 353:
Until recently, scientists had put the most emphasis on rate encoding as an explanation for
289: 197: 106: 4191:"On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus" 3439:"Resolution of nested neuronal representations can be exponential in the number of neurons" 581:
selectivities, so that many neurons, but not necessarily all, respond to a given stimulus.
4090:
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination
2757:"Synchrony makes neurons fire in sequence, and stimulus properties determine who is ahead" 2737: 2131:
Kostal L, Lansky P, Rospars JP (November 2007). "Neuronal coding and spiking randomness".
1152: 1142: 1107: 1074: 1046: 689: 282: 241: 230: 171: 154: 125: 121: 3665: 2239:
Jolivet, Renaud; Rauch, Alexander; Lüscher, Hans-Rudolf; Gerstner, Wulfram (2006-08-01).
4157: 4089: 3896: 3740: 3506: 3454: 3359: 3221: 3133: 3031: 2945: 2345: 2191: 1974: 1888: 1592: 1497: 1438: 4215: 4190: 4054: 4029: 3964: 3937: 3584: 3559: 3323: 3298: 3240: 3150: 3087: 2783: 2756: 2593: 2568: 2544: 2519: 2452: 2427: 2216: 2175: 1843: 1816: 1792: 1765: 1741: 1716: 1516: 1481: 1457: 1422: 455: 222:
In rate coding, learning is based on activity-dependent synaptic weight modifications.
144:
formation. Neuroscientists have initiated several large-scale brain decoding projects.
3704: 3687: 1243: 1226: 4235: 2988: 2241:"Predicting spike timing of neocortical pyramidal neurons by simple threshold models" 2144: 2074: 1817:"The sodium-potassium pump is an information processing element in brain computation" 1611: 1576: 1395: 1280: 1117: 1112: 1029: 1010: 841: 485: 431: 321:
of trials on which a spike occurred between those times. Equivalently, r(t)Δt is the
167: 137: 70: 4105: 3807: 3172:
Amari, SL (2001), "Information Geometry on Hierarchy of Probability Distributions",
2504: 2488: 2160: 1024:
algorithm which finds the "best matching" projections of multidimensional data, and
4181: 4117:
Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
4109: 3860: 3530: 3463: 3438: 3398:
Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
3383: 3078: 3004: 2878: 2835: 2773: 2717: 2412: 2369: 2280: 1998: 1937:
Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
1920: 1732: 658: 468: 226: 66: 38: 3914: 3650: 1211: 362: 310: 275: 255: 200:, or "spike firing", increases. Rate coding is sometimes called frequency coding. 4005: 3988: 3954: 3230: 1935: 1689: 1552:
https://www.simonsfoundation.org/life-sciences/simons-collaboration-global-brain/
1506: 1447: 1333: 1288: 1284: 1097: 1070: 696: 695:
Given a potentially large set of input patterns, sparse coding algorithms (e.g.
534: 451: 322: 3844: 2819: 2701: 2584: 2535: 2443: 1317: 389:(phase of firing). One way in which temporal codes are decoded, in presence of 270:, rapid changes of the direction of gaze. The image projected onto the retinal 192:
firing communication states that as the intensity of a stimulus increases, the
53:. Based on the theory that sensory and other information is represented in the 4206: 3789: 3634: 3575: 3275: 2862: 2665: 2648: 2619: 2396: 2256: 2013:"A consensus layer V pyramidal neuron can sustain interpulse-interval coding " 1062: 530: 41:
field concerned with characterising the hypothetical relationship between the
3852: 3756: 2264: 2207: 1904: 1833: 1782: 1601: 1562:
Burcas G.T & Albright T.D. Gauging sensory representations in the brain.
1252: 2353: 2240: 1896: 1674: 1078: 668: 646: 193: 113: 98: 4224: 4063: 4014: 3973: 3922: 3642: 3593: 3472: 3332: 3314: 3249: 3159: 3096: 2827: 2792: 2755:
Havenith MN, Yu S, Biederlack J, Chen NH, Singer W, Nikolić D (June 2011).
2709: 2674: 2649:"Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex" 2602: 2553: 2496: 2461: 2404: 2361: 2272: 2225: 2152: 1990: 1912: 1852: 1801: 1750: 1525: 1466: 1387: 1281:"Spike arrival times: A highly efficient coding scheme for neural networks" 1260: 1203: 17: 4173: 3713: 3688:"Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?" 3522: 3375: 3283: 3047: 2996: 2870: 2066: 1659:. Kistler, Werner M., 1969-. Cambridge, U.K.: Cambridge University Press. 1620: 3772:
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
2961: 2731:
Spike arrival times: A highly efficient coding scheme for neural networks
1654: 833:{\displaystyle {\vec {b_{1}}},\ldots ,{\vec {b_{n}}}\in \mathbb {R} ^{k}} 267: 263: 3141: 2199: 1982: 714:
More formally, given a k-dimensional set of real-numbered input vectors
245:
on temporal averaging may be too simplistic to describe brain activity.
4076:
A sparse memory is a precise memory. Oxford Science blog. 28 Feb 2014.
3938:"Sparse representation of sounds in the unanesthetized auditory cortex" 2058: 1564:
http://www.vcl.salk.edu/Publications/PDF/Buracas_Albright_1999_TINS.pdf
963:{\displaystyle {\vec {\xi }}\approx \sum _{j=1}^{n}s_{j}{\vec {b}}_{j}} 685: 3748: 3195: 3124: 233:
in 1926. In this simple experiment different weights were hung from a
4165: 3514: 3367: 3039: 2953: 627: 606: 234: 189: 62: 4045: 3299:"Correlations and the encoding of information in the nervous system" 1656:
Spiking neuron models : single neurons, populations, plasticity
1379: 1539: 1195: 4078:
http://www.ox.ac.uk/news/science-blog/sparse-memory-precise-memory
3835: 3664:
Lee, Honglak; Battle, Alexis; Raina, Rajat; Ng, Andrew Y. (2006).
657: 645: 205: 102: 94: 90: 86: 54: 3063:"Receptive fields of single neurones in the cat's striate cortex" 2174:
Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark (2016-12-15).
1873:"Rapid Neural Coding in the Retina with Relative Spike Latencies" 512:
Phase-of-firing code is a neural coding scheme that combines the
1423:"Neural population-level memory traces in the mouse hippocampus" 302: 3989:"Synaptic mechanisms underlying sparse coding of active touch" 1335:
Spiking Neuron Models: Single Neurons, Populations, Plasticity
3560:"A temporal channel for information in sparse sensory coding" 2688:
Fries P, Nikolić D, Singer W (July 2007). "The gamma cycle".
2518:
Carleton, Alan; Accolla, Riccardo; Simon, Sidney A. (2010).
1575:
Gerstner W, Kreiter AK, Markram H, Herz AV (November 1997).
758:, the goal of sparse coding is to determine n k-dimensional 634:, or "spike", is independent of each other spike within the 3873:
Kanerva, Pentti. Sparse distributed memory. MIT press, 1988
840:, corresponding to neuronal receptive fields, along with a 540:
Phase code has been shown in visual cortex to involve also
124:
point events in time. The lengths of interspike intervals (
45:
and the neuronal responses, and the relationship among the
4129:
Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W.
3987:
Crochet, S; Poulet, JFA; Kremer, Y; Petersen, CCH (2011).
3416:
Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W.
2569:"Neural and behavioral mechanisms of olfactory perception" 1410:
http://www.scientificamerican.com/article/the-memory-code/
296:
Time-dependent firing rate (averaging over several trials)
112:
Although action potentials can vary somewhat in duration,
2740:, SJ Thorpe - Parallel processing in neural systems, 1990 381:, spike randomness, or precisely timed groups of spikes ( 1028:, a representation learning method which aims to find a 341:
When precise spike timing or high-frequency firing-rate
174:
or be generated intrinsically by the neural circuitry.
27:
Method by which information is represented in the brain
894: 850: 767: 720: 2040: 2038: 2036: 2034: 4030:"Sparse odor representation and olfactory learning" 2750: 2748: 2746: 2294:Geoffrois, E.; Edeline, J.M.; Vibert, J.F. (1994). 1480:Zhang, H; Chen, G; Kuang, H; Tsien, JZ (Nov 2013). 1290:
Parallel processing in neural systems and computers
962: 880: 832: 750: 274:changes therefore every few hundred milliseconds ( 4133:. Cambridge, Massachusetts: The MIT Press; 1999. 4119:. Cambridge, Massachusetts: The MIT Press; 2001. 3673:Advances in Neural Information Processing Systems 3420:. Cambridge, Massachusetts: The MIT Press; 1999. 3400:. Cambridge, Massachusetts: The MIT Press; 2001. 2086: 2084: 751:{\displaystyle {\vec {\xi }}\in \mathbb {R} ^{k}} 3020:The Journal of the Acoustical Society of America 2934:The Journal of the Acoustical Society of America 2893:"Intro to Sensory Motor Systems Ch. 38 page 766" 844:n-dimensional vector of weights or coefficients 4028:Ito, I; Ong, RCY; Raman, B; Stopfer, M (2008). 1940:. Massachusetts Institute of Technology Press. 1688:Kandel, E.; Schwartz, J.; Jessel, T.M. (1991). 325:that a spike occurs during this time interval. 2614: 2612: 1550:The Simons Collaboration on the Global Brain. 881:{\displaystyle {\vec {s}}\in \mathbb {R} ^{n}} 3686:Olshausen, Bruno A.; Field, David J. (1997). 2642: 2640: 2629: 2627: 8: 4092:." Nature Neuroscience 17.4 (2014): 559-568. 3936:Hromádka, T; Deweese, MR; Zador, AM (2008). 3437:Mathis A, Herz AV, Stemmler MB (July 2012). 2176:"Oscillatory integration windows in neurons" 2116:: CS1 maint: multiple names: authors list ( 1318:https://doi.org/10.1371/journal.pcbi.1003439 288:There is a growing body of evidence that in 215:(rate as a single-neuron spike count) or an 3823:Applied and Computational Harmonic Analysis 3614:Rehn, Martin; Sommer, Friedrich T. (2007). 3486:Olshausen, Bruno A; Field, David J (1996). 2620:https://www.youtube.com/watch?v=5SLdSbp6VjM 997:Another measure of coding is whether it is 258:in the textbook 'Spiking Neuron Models' ). 2520:"Coding in the mammalian gustatory system" 662:Neural responses are noisy and unreliable. 516:count code with a time reference based on 4214: 4053: 4004: 3963: 3953: 3904: 3834: 3779: 3703: 3583: 3462: 3322: 3239: 3229: 3185: 3149: 3123: 3086: 2782: 2772: 2664: 2592: 2543: 2451: 2300:Computation in Neurons and Neural Systems 2215: 1842: 1832: 1791: 1781: 1740: 1610: 1600: 1515: 1505: 1456: 1446: 1242: 954: 943: 942: 935: 925: 914: 896: 895: 893: 872: 868: 867: 852: 851: 849: 824: 820: 819: 803: 797: 796: 775: 769: 768: 766: 742: 738: 737: 722: 721: 719: 688:-like oriented filters that resemble the 533:phenomena observed in place cells of the 3297:Panzeri; Schultz; Treves; Rolls (1999). 2477:Neuroscience & Biobehavioral Reviews 1871:Gollisch, T.; Meister, M. (2008-02-22). 1274: 1272: 1270: 609:firing claims that correlations between 3609: 3607: 3605: 3603: 3558:Gupta, N; Stopfer, M (6 October 2014). 3174:IEEE Transactions on Information Theory 1770:Frontiers in Computational Neuroscience 1577:"Neural codes: firing rates and beyond" 1361: 1359: 1357: 1355: 1174: 2109: 626:The independent-spike coding model of 3623:Journal of Computational Neuroscience 2922:Science. 1986 Sep 26;233(4771):1416-9 2245:Journal of Computational Neuroscience 2047:Journal of Computational Neuroscience 1866: 1864: 1862: 1648: 1646: 1644: 1642: 1640: 1638: 1636: 1634: 1632: 1630: 1421:Chen, G; Wang, LP; Tsien, JZ (2009). 1045:in which only a few neurons out of a 7: 3666:"Efficient sparse coding algorithms" 3061:Hubel DH, Wiesel TN (October 1959). 1934:Dayan, Peter; Abbott, L. F. (2001). 249:Spike-count rate (average over time) 225:Rate coding was originally shown by 4195:Neurobiology of Learning and Memory 2097:© Current Biology 1995, Vol 5 No 12 630:firing claims that each individual 2091:Zador, Stevens, Charles, Anthony. 1283:. In Eckmiller, R.; Hartmann, G.; 417:Temporal coding in sensory systems 25: 4131:Spikes: Exploring the Neural Code 3418:Spikes: Exploring the Neural Code 2296:"Learning by Delay Modifications" 1296:. North-Holland. pp. 91–94. 407:spike-timing-dependent plasticity 4189:Tsien, JZ.; et al. (2014). 2145:10.1111/j.1460-9568.2007.05880.x 1540:http://braindecodingproject.org/ 605:The correlation coding model of 556:For example, in the visual area 217:average over several repetitions 2573:Current Opinion in Neurobiology 2489:10.1016/j.neubiorev.2006.07.005 2432:Current Opinion in Neurobiology 1715:Adrian ED, Zotterman Y (1926). 650:Plot of typical position coding 3464:10.1103/PhysRevLett.109.018103 3079:10.1113/jphysiol.1959.sp006308 2774:10.1523/JNEUROSCI.2817-10.2011 2298:. In Eeckman, Frank H. (ed.). 1733:10.1113/jphysiol.1926.sp002281 1338:. Cambridge University Press. 948: 901: 857: 809: 781: 727: 450:As with the visual system, in 219:(rate of PSTH) of experiment. 1: 3915:10.1126/science.287.5456.1273 3705:10.1016/s0042-6989(97)00169-7 1332:; Kistler, Werner M. (2002). 1244:10.1016/S0896-6273(00)81193-9 4006:10.1016/j.neuron.2011.02.022 3955:10.1371/journal.pbio.0060016 3231:10.1371/journal.pcbi.1000577 2989:10.1016/0378-5955(84)90054-6 2426:Victor, Johnathan D (2005). 2302:. Springer. pp. 133–8. 1815:Forrest MD (December 2014). 1691:Principles of Neural Science 1581:Proc. Natl. Acad. Sci. U.S.A 1507:10.1371/journal.pone.0079454 1448:10.1371/journal.pone.0008256 1225:Johnson, K. O. (June 2000). 1133:Models of neural computation 1069:, sparse odor coding by the 463:Temporal coding applications 361:Temporal codes (also called 303:Peri-Stimulus-Time Histogram 1653:Gerstner, Wulfram. (2002). 542:high-frequency oscillations 184:Traditional View: Rate Code 161:Hypothesized coding schemes 4268: 4247:Computational neuroscience 3845:10.1016/j.acha.2008.07.002 2820:10.1162/089976602753633367 2702:10.1016/j.tins.2007.05.005 2585:10.1016/j.conb.2008.08.015 2536:10.1016/j.tins.2010.04.002 2444:10.1016/j.conb.2005.08.002 1694:(3rd ed.). Elsevier. 1123:Feature integration theory 1016:Other models are based on 711:to approximate the input. 508:Phase resetting in neurons 505: 499: 369:after the stimulus onset, 140:have been widely applied. 4207:10.1016/j.nlm.2013.06.019 4115:Dayan P & Abbott LF. 3790:10.1109/ACSSC.1993.342465 3635:10.1007/s10827-006-0003-9 3576:10.1016/j.cub.2014.08.021 3396:Dayan P & Abbott LF. 3276:10.1152/jn.1980.43.6.1793 2863:10.1152/jn.1983.49.5.1127 2666:10.1016/j.cub.2008.02.023 2567:Wilson, Rachel I (2008). 2397:10.1007/s00422-010-0384-8 2257:10.1007/s10827-006-7074-5 2093:"The enigma of the brain" 1158:Sparse distributed memory 1093:Artificial neural network 1054:sparse distributed memory 387:ongoing brain oscillation 188:The rate coding model of 4088:Lin, Andrew C., et al. " 3774:. pp. 40–44 vol.1. 1834:10.3389/fphys.2014.00472 1783:10.3389/fncom.2014.00086 1602:10.1073/pnas.94.24.12740 1538:Brain Decoding Project. 622:Independent-spike coding 379:probability distribution 2524:Trends in Neurosciences 2354:10.1126/science.1149639 1897:10.1126/science.1149639 1821:Frontiers in Physiology 1103:Biological neuron model 703:Linear generative model 355:post-synaptic potential 3315:10.1098/rspb.1999.0736 2385:Biological Cybernetics 964: 930: 882: 834: 752: 663: 651: 591:maximum entropy models 61:, it is believed that 49:of the neurons in the 4104:Földiák P, Endres D, 2428:"Spike train metrics" 2180:Nature Communications 1279:Thorpe, S.J. (1990). 965: 910: 883: 835: 753: 661: 649: 526:local field potential 506:Further information: 432:primary visual cortex 148:Encoding and decoding 47:electrical activities 35:neural representation 1052:Theoretical work on 1043:associative memories 1022:sparse approximation 892: 848: 765: 718: 680:locations is known. 496:Phase-of-firing code 395:post-synaptic neuron 4158:1996Natur.381..607O 3897:2000Sci...287.1273V 3891:(5456): 1273–1276. 3741:1994OptEn..33.2183D 3729:Optical Engineering 3507:1996Natur.381..607O 3455:2012PhRvL.109a8103M 3360:1996Natur.381..610D 3222:2009PLSCB...5E0577O 3142:10.1038/nature04701 3134:2006Natur.440.1007S 3118:(7087): 1007–1012, 3032:1983ASAJ...74..502M 2946:1979ASAJ...66.1381Y 2346:2008Sci...319.1108G 2340:(5866): 1108–1111. 2200:10.1038/ncomms13808 2192:2016NatCo...713808G 1983:10.1038/nature06105 1975:2007Natur.449...92B 1889:2008Sci...319.1108G 1883:(5866): 1108–1111. 1764:Forrest MD (2014). 1593:1997PNAS...9412740G 1498:2013PLoSO...879454Z 1439:2009PLoSO...4.8256C 1163:Vector quantization 1036:Biological evidence 1026:dictionary learning 999:critically complete 490:Parkinson's disease 452:mitral/tufted cells 391:neural oscillations 367:time-to-first-spike 130:statistical methods 59:networks of neurons 4112:, 3(1):2984, 2008. 2736:2012-02-15 at the 2059:10.1007/bf00961885 2011:Singh & Levy, 1368:Nat. Rev. Neurosci 1148:Neural oscillation 1041:stimulus-specific 960: 878: 830: 748: 697:sparse autoencoder 664: 652: 615:mutual information 601:Correlation coding 587:maximum likelihood 424:sound localization 134:probability theory 4040:(10): 1177–1184. 3799:978-0-8186-4120-6 3749:10.1117/12.173207 3698:(23): 3311–3325. 3501:(6583): 607–609. 3309:(1423): 1001–12. 3196:10.1109/18.930911 2309:978-0-7923-9465-5 1947:978-0-262-04199-7 1408:The Memory Code. 1345:978-0-521-89079-3 1330:Gerstner, Wulfram 1303:978-0-444-88390-2 951: 904: 860: 812: 784: 730: 611:action potentials 567:population vector 548:Population coding 383:temporal patterns 213:average over time 198:action potentials 107:graded potentials 83:action potentials 16:(Redirected from 4259: 4252:Neural circuitry 4228: 4218: 4185: 4166:10.1038/381607a0 4093: 4086: 4080: 4074: 4068: 4067: 4057: 4025: 4019: 4018: 4008: 3999:(6): 1160–1175. 3984: 3978: 3977: 3967: 3957: 3933: 3927: 3926: 3908: 3880: 3874: 3871: 3865: 3864: 3838: 3818: 3812: 3811: 3783: 3767: 3761: 3760: 3735:(7): 2183–2192. 3724: 3718: 3717: 3707: 3683: 3677: 3676: 3670: 3661: 3655: 3654: 3620: 3611: 3598: 3597: 3587: 3555: 3549: 3548: 3546: 3545: 3539: 3533:. Archived from 3515:10.1038/381607a0 3492: 3483: 3477: 3476: 3466: 3434: 3428: 3414: 3408: 3394: 3388: 3387: 3368:10.1038/381610a0 3343: 3337: 3336: 3326: 3294: 3288: 3287: 3259: 3253: 3252: 3243: 3233: 3216:(11): e1000577, 3210:PLOS Comput Biol 3205: 3199: 3198: 3189: 3180:(5): 1701–1711, 3169: 3163: 3162: 3153: 3127: 3107: 3101: 3100: 3090: 3058: 3052: 3051: 3040:10.1121/1.389816 3015: 3009: 3008: 2977:Hearing Research 2972: 2966: 2965: 2954:10.1121/1.383532 2940:(5): 1381–1403. 2929: 2923: 2920: 2914: 2913: 2911: 2910: 2904: 2898:. Archived from 2897: 2889: 2883: 2882: 2846: 2840: 2839: 2803: 2797: 2796: 2786: 2776: 2752: 2741: 2728: 2722: 2721: 2685: 2679: 2678: 2668: 2644: 2635: 2631: 2622: 2616: 2607: 2606: 2596: 2564: 2558: 2557: 2547: 2515: 2509: 2508: 2483:(8): 1145–1160. 2472: 2466: 2465: 2455: 2423: 2417: 2416: 2380: 2374: 2373: 2329: 2323: 2320: 2314: 2313: 2291: 2285: 2284: 2236: 2230: 2229: 2219: 2171: 2165: 2164: 2139:(10): 2693–701. 2133:Eur. J. Neurosci 2128: 2122: 2121: 2115: 2107: 2105: 2103: 2088: 2079: 2078: 2042: 2029: 2026: 2020: 2009: 2003: 2002: 1958: 1952: 1951: 1931: 1925: 1924: 1868: 1857: 1856: 1846: 1836: 1812: 1806: 1805: 1795: 1785: 1761: 1755: 1754: 1744: 1712: 1706: 1705: 1685: 1679: 1678: 1650: 1625: 1624: 1614: 1604: 1572: 1566: 1560: 1554: 1548: 1542: 1536: 1530: 1529: 1519: 1509: 1477: 1471: 1470: 1460: 1450: 1418: 1412: 1406: 1400: 1399: 1363: 1350: 1349: 1326: 1320: 1314: 1308: 1307: 1295: 1276: 1265: 1264: 1246: 1222: 1216: 1215: 1179: 1138:Neural correlate 1128:Grandmother cell 1067:olfactory system 1018:matching pursuit 969: 967: 966: 961: 959: 958: 953: 952: 944: 940: 939: 929: 924: 906: 905: 897: 887: 885: 884: 879: 877: 876: 871: 862: 861: 853: 839: 837: 836: 831: 829: 828: 823: 814: 813: 808: 807: 798: 786: 785: 780: 779: 770: 757: 755: 754: 749: 747: 746: 741: 732: 731: 723: 690:receptive fields 632:action potential 531:phase precession 502:Phase precession 473:channelrhodopsin 440:gustatory system 290:Purkinje neurons 262:reaction of the 65:can encode both 21: 4267: 4266: 4262: 4261: 4260: 4258: 4257: 4256: 4232: 4231: 4188: 4152:(6583): 607–9. 4143: 4101: 4099:Further reading 4096: 4087: 4083: 4075: 4071: 4046:10.1038/nn.2192 4027: 4026: 4022: 3986: 3985: 3981: 3935: 3934: 3930: 3906:10.1.1.456.2467 3882: 3881: 3877: 3872: 3868: 3820: 3819: 3815: 3800: 3781:10.1.1.348.5735 3769: 3768: 3764: 3726: 3725: 3721: 3692:Vision Research 3685: 3684: 3680: 3668: 3663: 3662: 3658: 3618: 3613: 3612: 3601: 3570:(19): 2247–56. 3564:Current Biology 3557: 3556: 3552: 3543: 3541: 3537: 3490: 3485: 3484: 3480: 3443:Phys. Rev. Lett 3436: 3435: 3431: 3415: 3411: 3395: 3391: 3354:(6583): 610–3. 3345: 3344: 3340: 3296: 3295: 3291: 3270:(6): 1793–815. 3261: 3260: 3256: 3207: 3206: 3202: 3171: 3170: 3166: 3109: 3108: 3104: 3060: 3059: 3055: 3017: 3016: 3012: 2974: 2973: 2969: 2931: 2930: 2926: 2921: 2917: 2908: 2906: 2902: 2895: 2891: 2890: 2886: 2851:J. Neurophysiol 2848: 2847: 2843: 2814:(5): 999–1026. 2805: 2804: 2800: 2767:(23): 8570–84. 2754: 2753: 2744: 2738:Wayback Machine 2729: 2725: 2690:Trends Neurosci 2687: 2686: 2682: 2653:Current Biology 2646: 2645: 2638: 2632: 2625: 2617: 2610: 2566: 2565: 2561: 2517: 2516: 2512: 2474: 2473: 2469: 2425: 2424: 2420: 2382: 2381: 2377: 2331: 2330: 2326: 2321: 2317: 2310: 2293: 2292: 2288: 2238: 2237: 2233: 2173: 2172: 2168: 2130: 2129: 2125: 2108: 2101: 2099: 2090: 2089: 2082: 2044: 2043: 2032: 2027: 2023: 2010: 2006: 1960: 1959: 1955: 1948: 1933: 1932: 1928: 1870: 1869: 1860: 1814: 1813: 1809: 1763: 1762: 1758: 1714: 1713: 1709: 1702: 1687: 1686: 1682: 1667: 1652: 1651: 1628: 1587:(24): 12740–1. 1574: 1573: 1569: 1561: 1557: 1549: 1545: 1537: 1533: 1479: 1478: 1474: 1420: 1419: 1415: 1407: 1403: 1380:10.1038/nrn1668 1365: 1364: 1353: 1346: 1328: 1327: 1323: 1315: 1311: 1304: 1293: 1278: 1277: 1268: 1227:"Neural coding" 1224: 1223: 1219: 1181: 1180: 1176: 1172: 1167: 1153:Receptive field 1143:Neural decoding 1108:Binding problem 1088: 1038: 979:hard sparseness 977:and those with 975:soft sparseness 941: 931: 890: 889: 866: 846: 845: 818: 799: 771: 763: 762: 736: 716: 715: 705: 677: 644: 642:Position coding 624: 603: 558:medial temporal 550: 510: 504: 498: 465: 419: 371:phase-of-firing 339: 337:Temporal coding 308: 298: 283:neural networks 251: 231:Yngve Zotterman 186: 180: 172:auditory system 163: 155:Neural decoding 150: 138:point processes 136:and stochastic 132:and methods of 79: 28: 23: 22: 15: 12: 11: 5: 4265: 4263: 4255: 4254: 4249: 4244: 4234: 4233: 4230: 4229: 4186: 4141: 4127: 4113: 4100: 4097: 4095: 4094: 4081: 4069: 4020: 3979: 3928: 3875: 3866: 3829:(3): 301–321. 3813: 3798: 3762: 3719: 3678: 3656: 3629:(2): 135–146. 3599: 3550: 3478: 3429: 3409: 3389: 3338: 3289: 3264:J Neurophysiol 3254: 3200: 3187:10.1.1.46.5226 3164: 3102: 3053: 3026:(2): 502–517. 3010: 2983:(3): 257–279. 2967: 2924: 2915: 2884: 2857:(5): 1127–47. 2841: 2798: 2742: 2723: 2680: 2659:(5): 375–380. 2636: 2623: 2608: 2579:(4): 408–412. 2559: 2530:(7): 326–334. 2510: 2467: 2438:(5): 585–592. 2418: 2375: 2324: 2315: 2308: 2286: 2231: 2166: 2123: 2080: 2053:(2): 149–162. 2030: 2021: 2004: 1969:(7158): 92–5. 1953: 1946: 1926: 1858: 1807: 1756: 1727:(2): 151–171. 1707: 1701:978-0444015624 1700: 1680: 1665: 1626: 1567: 1555: 1543: 1531: 1492:(11): e79454. 1472: 1413: 1401: 1351: 1344: 1321: 1309: 1302: 1266: 1237:(3): 563–566. 1217: 1196:10.1038/nn1228 1173: 1171: 1168: 1166: 1165: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1089: 1087: 1084: 1037: 1034: 957: 950: 947: 938: 934: 928: 923: 920: 917: 913: 909: 903: 900: 875: 870: 865: 859: 856: 827: 822: 817: 811: 806: 802: 795: 792: 789: 783: 778: 774: 745: 740: 735: 729: 726: 709:linear fashion 704: 701: 676: 673: 643: 640: 623: 620: 602: 599: 549: 546: 500:Main article: 497: 494: 464: 461: 456:olfactory bulb 438:The mammalian 418: 415: 338: 335: 306: 297: 294: 272:photoreceptors 250: 247: 185: 182: 162: 159: 149: 146: 118:brief duration 78: 75: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4264: 4253: 4250: 4248: 4245: 4243: 4242:Neural coding 4240: 4239: 4237: 4226: 4222: 4217: 4212: 4208: 4204: 4200: 4196: 4192: 4187: 4183: 4179: 4175: 4171: 4167: 4163: 4159: 4155: 4151: 4147: 4142: 4140: 4139:0-262-68108-0 4136: 4132: 4128: 4126: 4125:0-262-04199-5 4122: 4118: 4114: 4111: 4107: 4106:Sparse coding 4103: 4102: 4098: 4091: 4085: 4082: 4079: 4073: 4070: 4065: 4061: 4056: 4051: 4047: 4043: 4039: 4035: 4031: 4024: 4021: 4016: 4012: 4007: 4002: 3998: 3994: 3990: 3983: 3980: 3975: 3971: 3966: 3961: 3956: 3951: 3947: 3943: 3939: 3932: 3929: 3924: 3920: 3916: 3912: 3907: 3902: 3898: 3894: 3890: 3886: 3879: 3876: 3870: 3867: 3862: 3858: 3854: 3850: 3846: 3842: 3837: 3832: 3828: 3824: 3817: 3814: 3809: 3805: 3801: 3795: 3791: 3787: 3782: 3777: 3773: 3766: 3763: 3758: 3754: 3750: 3746: 3742: 3738: 3734: 3730: 3723: 3720: 3715: 3711: 3706: 3701: 3697: 3693: 3689: 3682: 3679: 3674: 3667: 3660: 3657: 3652: 3648: 3644: 3640: 3636: 3632: 3628: 3624: 3617: 3610: 3608: 3606: 3604: 3600: 3595: 3591: 3586: 3581: 3577: 3573: 3569: 3565: 3561: 3554: 3551: 3540:on 2015-11-23 3536: 3532: 3528: 3524: 3520: 3516: 3512: 3508: 3504: 3500: 3496: 3489: 3482: 3479: 3474: 3470: 3465: 3460: 3456: 3452: 3449:(1): 018103. 3448: 3444: 3440: 3433: 3430: 3427: 3426:0-262-68108-0 3423: 3419: 3413: 3410: 3407: 3406:0-262-04199-5 3403: 3399: 3393: 3390: 3385: 3381: 3377: 3373: 3369: 3365: 3361: 3357: 3353: 3349: 3342: 3339: 3334: 3330: 3325: 3320: 3316: 3312: 3308: 3304: 3303:Proc Biol Sci 3300: 3293: 3290: 3285: 3281: 3277: 3273: 3269: 3265: 3258: 3255: 3251: 3247: 3242: 3237: 3232: 3227: 3223: 3219: 3215: 3211: 3204: 3201: 3197: 3193: 3188: 3183: 3179: 3175: 3168: 3165: 3161: 3157: 3152: 3147: 3143: 3139: 3135: 3131: 3126: 3125:q-bio/0512013 3121: 3117: 3113: 3106: 3103: 3098: 3094: 3089: 3084: 3080: 3076: 3073:(3): 574–91. 3072: 3068: 3064: 3057: 3054: 3049: 3045: 3041: 3037: 3033: 3029: 3025: 3021: 3014: 3011: 3006: 3002: 2998: 2994: 2990: 2986: 2982: 2978: 2971: 2968: 2963: 2959: 2955: 2951: 2947: 2943: 2939: 2935: 2928: 2925: 2919: 2916: 2905:on 2012-05-11 2901: 2894: 2888: 2885: 2880: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2845: 2842: 2837: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2808:Neural Comput 2802: 2799: 2794: 2790: 2785: 2780: 2775: 2770: 2766: 2762: 2758: 2751: 2749: 2747: 2743: 2739: 2735: 2732: 2727: 2724: 2719: 2715: 2711: 2707: 2703: 2699: 2696:(7): 309–16. 2695: 2691: 2684: 2681: 2676: 2672: 2667: 2662: 2658: 2654: 2650: 2643: 2641: 2637: 2630: 2628: 2624: 2621: 2615: 2613: 2609: 2604: 2600: 2595: 2590: 2586: 2582: 2578: 2574: 2570: 2563: 2560: 2555: 2551: 2546: 2541: 2537: 2533: 2529: 2525: 2521: 2514: 2511: 2506: 2502: 2498: 2494: 2490: 2486: 2482: 2478: 2471: 2468: 2463: 2459: 2454: 2449: 2445: 2441: 2437: 2433: 2429: 2422: 2419: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2379: 2376: 2371: 2367: 2363: 2359: 2355: 2351: 2347: 2343: 2339: 2335: 2328: 2325: 2319: 2316: 2311: 2305: 2301: 2297: 2290: 2287: 2282: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2246: 2242: 2235: 2232: 2227: 2223: 2218: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2170: 2167: 2162: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2127: 2124: 2119: 2113: 2098: 2094: 2087: 2085: 2081: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2041: 2039: 2037: 2035: 2031: 2025: 2022: 2018: 2014: 2008: 2005: 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1957: 1954: 1949: 1943: 1939: 1938: 1930: 1927: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1867: 1865: 1863: 1859: 1854: 1850: 1845: 1840: 1835: 1830: 1826: 1822: 1818: 1811: 1808: 1803: 1799: 1794: 1789: 1784: 1779: 1775: 1771: 1767: 1760: 1757: 1752: 1748: 1743: 1738: 1734: 1730: 1726: 1722: 1718: 1711: 1708: 1703: 1697: 1693: 1692: 1684: 1681: 1676: 1672: 1668: 1666:0-511-07817-X 1662: 1658: 1657: 1649: 1647: 1645: 1643: 1641: 1639: 1637: 1635: 1633: 1631: 1627: 1622: 1618: 1613: 1608: 1603: 1598: 1594: 1590: 1586: 1582: 1578: 1571: 1568: 1565: 1559: 1556: 1553: 1547: 1544: 1541: 1535: 1532: 1527: 1523: 1518: 1513: 1508: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1473: 1468: 1464: 1459: 1454: 1449: 1444: 1440: 1436: 1433:(12): e8256. 1432: 1428: 1424: 1417: 1414: 1411: 1405: 1402: 1397: 1393: 1389: 1385: 1381: 1377: 1374:(5): 389–97. 1373: 1369: 1362: 1360: 1358: 1356: 1352: 1347: 1341: 1337: 1336: 1331: 1325: 1322: 1319: 1313: 1310: 1305: 1299: 1292: 1291: 1286: 1282: 1275: 1273: 1271: 1267: 1262: 1258: 1254: 1250: 1245: 1240: 1236: 1232: 1228: 1221: 1218: 1213: 1209: 1205: 1201: 1197: 1193: 1190:(5): 456–61. 1189: 1185: 1184:Nat. Neurosci 1178: 1175: 1169: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1118:Deep learning 1116: 1114: 1113:Cognitive map 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1090: 1085: 1083: 1080: 1076: 1075:mushroom body 1072: 1068: 1065: 1064: 1058: 1055: 1050: 1048: 1044: 1035: 1033: 1031: 1030:sparse matrix 1027: 1023: 1019: 1014: 1012: 1011:visual cortex 1008: 1004: 1000: 995: 992: 988: 984: 980: 976: 971: 955: 945: 936: 932: 926: 921: 918: 915: 911: 907: 898: 873: 863: 854: 843: 825: 815: 804: 800: 793: 790: 787: 776: 772: 761: 760:basis vectors 743: 733: 724: 712: 710: 702: 700: 698: 693: 691: 687: 681: 675:Sparse coding 674: 672: 670: 660: 656: 648: 641: 639: 637: 633: 629: 621: 619: 616: 612: 608: 600: 598: 596: 592: 588: 582: 579: 574: 570: 568: 563: 559: 554: 547: 545: 543: 538: 536: 532: 527: 521: 519: 515: 509: 503: 495: 493: 491: 487: 486:schizophrenia 483: 477: 474: 470: 462: 460: 457: 453: 448: 444: 441: 436: 433: 427: 425: 416: 414: 410: 408: 402: 398: 396: 392: 388: 384: 380: 376: 372: 368: 364: 359: 356: 351: 347: 344: 336: 334: 330: 326: 324: 320: 314: 312: 304: 295: 293: 291: 286: 284: 279: 277: 273: 269: 265: 259: 257: 248: 246: 243: 238: 236: 232: 228: 223: 220: 218: 214: 209: 207: 201: 199: 195: 191: 183: 181: 178: 175: 173: 169: 168:temporal code 160: 158: 156: 147: 145: 141: 139: 135: 131: 127: 123: 119: 115: 110: 108: 104: 100: 96: 92: 88: 84: 76: 74: 73:information. 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 31:Neural coding 19: 4198: 4194: 4149: 4145: 4130: 4116: 4110:Scholarpedia 4084: 4072: 4037: 4034:Nat Neurosci 4033: 4023: 3996: 3992: 3982: 3945: 3941: 3931: 3888: 3884: 3878: 3869: 3826: 3822: 3816: 3771: 3765: 3732: 3728: 3722: 3695: 3691: 3681: 3672: 3659: 3626: 3622: 3567: 3563: 3553: 3542:. Retrieved 3535:the original 3498: 3494: 3481: 3446: 3442: 3432: 3417: 3412: 3397: 3392: 3351: 3347: 3341: 3306: 3302: 3292: 3267: 3263: 3257: 3213: 3209: 3203: 3177: 3173: 3167: 3115: 3111: 3105: 3070: 3066: 3056: 3023: 3019: 3013: 2980: 2976: 2970: 2937: 2933: 2927: 2918: 2907:. Retrieved 2900:the original 2887: 2854: 2850: 2844: 2811: 2807: 2801: 2764: 2760: 2726: 2693: 2689: 2683: 2656: 2652: 2576: 2572: 2562: 2527: 2523: 2513: 2480: 2476: 2470: 2435: 2431: 2421: 2391:(1): 43–56. 2388: 2384: 2378: 2337: 2333: 2327: 2318: 2299: 2289: 2251:(1): 35–49. 2248: 2244: 2234: 2183: 2179: 2169: 2136: 2132: 2126: 2100:. Retrieved 2096: 2050: 2046: 2024: 2016: 2007: 1966: 1962: 1956: 1936: 1929: 1880: 1876: 1827:(472): 472. 1824: 1820: 1810: 1773: 1769: 1759: 1724: 1720: 1710: 1690: 1683: 1655: 1584: 1580: 1570: 1558: 1546: 1534: 1489: 1485: 1475: 1430: 1426: 1416: 1404: 1371: 1367: 1334: 1324: 1312: 1289: 1234: 1230: 1220: 1187: 1183: 1177: 1071:Kenyon cells 1061: 1059: 1051: 1039: 1015: 1007:overcomplete 1006: 1003:overcomplete 1002: 998: 996: 990: 986: 978: 974: 972: 713: 706: 694: 682: 678: 665: 653: 625: 604: 583: 575: 571: 555: 551: 539: 522: 518:oscillations 511: 478: 469:optogenetics 466: 449: 445: 437: 428: 420: 411: 403: 399: 382: 370: 366: 360: 352: 348: 343:fluctuations 340: 331: 327: 315: 299: 287: 280: 260: 252: 239: 227:Edgar Adrian 224: 221: 216: 212: 210: 202: 187: 179: 176: 164: 151: 142: 111: 80: 39:neuroscience 34: 30: 29: 4201:: 200–210. 2761:J. Neurosci 1098:Autoencoder 636:spike train 578:variability 562:bell-shaped 535:hippocampus 377:of the ISI 363:spike codes 323:probability 311:Chapter 1.5 276:Chapter 1.5 256:Chapter 1.5 196:or rate of 122:all-or-none 18:Rate coding 4236:Categories 3948:(1): e16. 3544:2016-03-29 3067:J. Physiol 2909:2014-02-03 1285:Hauske, G. 1170:References 1063:Drosophila 1047:population 991:hardly any 669:grid cells 482:depression 3942:PLOS Biol 3901:CiteSeerX 3853:1063-5203 3836:0803.2392 3776:CiteSeerX 3757:1560-2303 3182:CiteSeerX 2265:1573-6873 2208:2041-1723 2186:: 13808. 2102:August 4, 2075:206786736 1905:0036-8075 1721:J Physiol 1396:205500218 1253:0896-6273 1079:GABAergic 949:→ 912:∑ 908:≈ 902:→ 899:ξ 864:∈ 858:→ 816:∈ 810:→ 791:… 782:→ 734:∈ 728:→ 725:ξ 194:frequency 153:stimuli. 114:amplitude 4225:23838072 4064:18794840 4015:21435560 3974:18232737 3923:10678835 3808:16513805 3643:17053994 3594:25264257 3473:23031134 3333:10610508 3250:19956759 3160:16625187 3097:14403679 2828:11972905 2793:21653861 2734:Archived 2710:17555828 2675:18328702 2603:18809492 2554:20493563 2505:14739301 2497:16979239 2462:16140522 2405:20372920 2362:18292344 2273:16633938 2226:27976720 2161:15367988 2153:18001270 2112:cite web 2017:PLoS ONE 1991:17805296 1913:18292344 1853:25566080 1802:25191262 1751:16993780 1675:57417395 1526:24302990 1486:PLOS ONE 1467:20016843 1427:PLOS ONE 1388:15861181 1287:(eds.). 1261:10896153 1204:15114358 1086:See also 983:Gaussian 628:neuronal 607:neuronal 569:coding. 319:fraction 268:saccades 264:organism 242:cortical 190:neuronal 77:Overview 51:ensemble 43:stimulus 4216:3769419 4182:4358477 4174:8637596 4154:Bibcode 4055:3124899 3965:2214813 3893:Bibcode 3885:Science 3861:1642637 3737:Bibcode 3714:9425546 3585:4189991 3531:4358477 3523:8637596 3503:Bibcode 3451:Bibcode 3384:4258853 3376:8637597 3356:Bibcode 3324:1689940 3284:7411183 3241:2776173 3218:Bibcode 3151:1785327 3130:Bibcode 3088:1363130 3048:6619427 3028:Bibcode 3005:4704044 2997:6480513 2942:Bibcode 2879:8708245 2871:6864242 2836:1122223 2784:6623348 2718:3070167 2594:2596880 2545:2902637 2453:2713191 2413:7121609 2370:1032537 2342:Bibcode 2334:Science 2281:8911457 2217:5171764 2188:Bibcode 2067:8521284 1999:4402057 1971:Bibcode 1921:1032537 1885:Bibcode 1877:Science 1844:4274886 1793:4138505 1742:1514782 1621:9398065 1589:Bibcode 1517:3841182 1494:Bibcode 1458:2788416 1435:Bibcode 1073:of the 1060:In the 686:wavelet 595:copulas 454:in the 375:moments 67:digital 63:neurons 37:) is a 4223:  4213:  4180:  4172:  4146:Nature 4137:  4123:  4062:  4052:  4013:  3993:Neuron 3972:  3962:  3921:  3903:  3859:  3851:  3806:  3796:  3778:  3755:  3712:  3651:294586 3649:  3641:  3592:  3582:  3529:  3521:  3495:Nature 3471:  3424:  3404:  3382:  3374:  3348:Nature 3331:  3321:  3282:  3248:  3238:  3184:  3158:  3148:  3112:Nature 3095:  3085:  3046:  3003:  2995:  2962:500976 2960:  2877:  2869:  2834:  2826:  2791:  2781:  2716:  2708:  2673:  2601:  2591:  2552:  2542:  2503:  2495:  2460:  2450:  2411:  2403:  2368:  2360:  2306:  2279:  2271:  2263:  2224:  2214:  2206:  2159:  2151:  2073:  2065:  2019:, 2017 1997:  1989:  1963:Nature 1944:  1919:  1911:  1903:  1851:  1841:  1800:  1790:  1776:: 86. 1749:  1739:  1698:  1673:  1663:  1619:  1609:  1524:  1514:  1465:  1455:  1394:  1386:  1342:  1300:  1259:  1251:  1231:Neuron 1212:562815 1210:  1202:  842:sparse 488:, and 313:in ). 235:muscle 71:analog 4178:S2CID 3857:S2CID 3831:arXiv 3804:S2CID 3669:(PDF) 3647:S2CID 3619:(PDF) 3538:(PDF) 3527:S2CID 3491:(PDF) 3380:S2CID 3120:arXiv 3001:S2CID 2903:(PDF) 2896:(PDF) 2875:S2CID 2832:S2CID 2714:S2CID 2634:2009. 2501:S2CID 2409:S2CID 2366:S2CID 2277:S2CID 2157:S2CID 2071:S2CID 1995:S2CID 1917:S2CID 1612:34168 1392:S2CID 1294:(PDF) 1208:S2CID 593:, or 514:spike 278:in ) 206:noise 103:touch 99:smell 95:taste 91:sound 87:light 55:brain 4221:PMID 4170:PMID 4135:ISBN 4121:ISBN 4060:PMID 4011:PMID 3970:PMID 3919:PMID 3849:ISSN 3794:ISBN 3753:ISSN 3710:PMID 3639:PMID 3590:PMID 3519:PMID 3469:PMID 3422:ISBN 3402:ISBN 3372:PMID 3329:PMID 3280:PMID 3246:PMID 3156:PMID 3093:PMID 3044:PMID 2993:PMID 2958:PMID 2867:PMID 2824:PMID 2789:PMID 2706:PMID 2671:PMID 2599:PMID 2550:PMID 2493:PMID 2458:PMID 2401:PMID 2358:PMID 2304:ISBN 2269:PMID 2261:ISSN 2222:PMID 2204:ISSN 2149:PMID 2118:link 2104:2012 2063:PMID 1987:PMID 1942:ISBN 1909:PMID 1901:ISSN 1849:PMID 1798:PMID 1747:PMID 1696:ISBN 1671:OCLC 1661:ISBN 1617:PMID 1522:PMID 1463:PMID 1384:PMID 1340:ISBN 1298:ISBN 1257:PMID 1249:ISSN 1200:PMID 1020:, a 229:and 126:ISIs 101:and 69:and 33:(or 4211:PMC 4203:doi 4199:105 4162:doi 4150:381 4050:PMC 4042:doi 4001:doi 3960:PMC 3950:doi 3911:doi 3889:287 3841:doi 3786:doi 3745:doi 3700:doi 3631:doi 3580:PMC 3572:doi 3511:doi 3499:381 3459:doi 3447:109 3364:doi 3352:381 3319:PMC 3311:doi 3307:266 3272:doi 3236:PMC 3226:doi 3192:doi 3146:PMC 3138:doi 3116:440 3083:PMC 3075:doi 3071:148 3036:doi 2985:doi 2950:doi 2859:doi 2816:doi 2779:PMC 2769:doi 2698:doi 2661:doi 2589:PMC 2581:doi 2540:PMC 2532:doi 2485:doi 2448:PMC 2440:doi 2393:doi 2389:103 2350:doi 2338:319 2253:doi 2212:PMC 2196:doi 2141:doi 2055:doi 1979:doi 1967:449 1893:doi 1881:319 1839:PMC 1829:doi 1788:PMC 1778:doi 1737:PMC 1729:doi 1607:PMC 1597:doi 1512:PMC 1502:doi 1453:PMC 1443:doi 1376:doi 1239:doi 1192:doi 1001:or 989:or 208:'. 57:by 4238:: 4219:. 4209:. 4197:. 4193:. 4176:. 4168:. 4160:. 4148:. 4108:, 4058:. 4048:. 4038:11 4036:. 4032:. 4009:. 3997:69 3995:. 3991:. 3968:. 3958:. 3944:. 3940:. 3917:. 3909:. 3899:. 3887:. 3855:. 3847:. 3839:. 3827:26 3825:. 3802:. 3792:. 3784:. 3751:. 3743:. 3733:33 3731:. 3708:. 3696:37 3694:. 3690:. 3671:. 3645:. 3637:. 3627:22 3625:. 3621:. 3602:^ 3588:. 3578:. 3568:24 3566:. 3562:. 3525:. 3517:. 3509:. 3497:. 3493:. 3467:. 3457:. 3445:. 3441:. 3378:. 3370:. 3362:. 3350:. 3327:. 3317:. 3305:. 3301:. 3278:. 3268:43 3266:. 3244:, 3234:, 3224:, 3212:, 3190:, 3178:47 3176:, 3154:, 3144:, 3136:, 3128:, 3114:, 3091:. 3081:. 3069:. 3065:. 3042:. 3034:. 3024:74 3022:. 2999:. 2991:. 2981:14 2979:. 2956:. 2948:. 2938:66 2936:. 2873:. 2865:. 2855:49 2853:. 2830:. 2822:. 2812:14 2810:. 2787:. 2777:. 2765:31 2763:. 2759:. 2745:^ 2712:. 2704:. 2694:30 2692:. 2669:. 2657:18 2655:. 2651:. 2639:^ 2626:^ 2611:^ 2597:. 2587:. 2577:18 2575:. 2571:. 2548:. 2538:. 2528:33 2526:. 2522:. 2499:. 2491:. 2481:30 2479:. 2456:. 2446:. 2436:15 2434:. 2430:. 2407:. 2399:. 2387:. 2364:. 2356:. 2348:. 2336:. 2275:. 2267:. 2259:. 2249:21 2247:. 2243:. 2220:. 2210:. 2202:. 2194:. 2182:. 2178:. 2155:. 2147:. 2137:26 2135:. 2114:}} 2110:{{ 2095:. 2083:^ 2069:. 2061:. 2049:. 2033:^ 2015:, 1993:. 1985:. 1977:. 1965:. 1915:. 1907:. 1899:. 1891:. 1879:. 1875:. 1861:^ 1847:. 1837:. 1823:. 1819:. 1796:. 1786:. 1772:. 1768:. 1745:. 1735:. 1725:61 1723:. 1719:. 1669:. 1629:^ 1615:. 1605:. 1595:. 1585:94 1583:. 1579:. 1520:. 1510:. 1500:. 1488:. 1484:. 1461:. 1451:. 1441:. 1429:. 1425:. 1390:. 1382:. 1370:. 1354:^ 1269:^ 1255:. 1247:. 1235:26 1233:. 1229:. 1206:. 1198:. 1186:. 987:no 970:. 638:. 597:. 484:, 409:. 397:. 97:, 93:, 89:, 4227:. 4205:: 4184:. 4164:: 4156:: 4066:. 4044:: 4017:. 4003:: 3976:. 3952:: 3946:6 3925:. 3913:: 3895:: 3863:. 3843:: 3833:: 3810:. 3788:: 3759:. 3747:: 3739:: 3716:. 3702:: 3675:. 3653:. 3633:: 3596:. 3574:: 3547:. 3513:: 3505:: 3475:. 3461:: 3453:: 3386:. 3366:: 3358:: 3335:. 3313:: 3286:. 3274:: 3228:: 3220:: 3214:5 3194:: 3140:: 3132:: 3122:: 3099:. 3077:: 3050:. 3038:: 3030:: 3007:. 2987:: 2964:. 2952:: 2944:: 2912:. 2881:. 2861:: 2838:. 2818:: 2795:. 2771:: 2720:. 2700:: 2677:. 2663:: 2605:. 2583:: 2556:. 2534:: 2507:. 2487:: 2464:. 2442:: 2415:. 2395:: 2372:. 2352:: 2344:: 2312:. 2283:. 2255:: 2228:. 2198:: 2190:: 2184:7 2163:. 2143:: 2120:) 2106:. 2077:. 2057:: 2051:2 2001:. 1981:: 1973:: 1950:. 1923:. 1895:: 1887:: 1855:. 1831:: 1825:5 1804:. 1780:: 1774:8 1753:. 1731:: 1704:. 1677:. 1623:. 1599:: 1591:: 1528:. 1504:: 1496:: 1490:8 1469:. 1445:: 1437:: 1431:4 1398:. 1378:: 1372:6 1348:. 1306:. 1263:. 1241:: 1214:. 1194:: 1188:7 956:j 946:b 937:j 933:s 927:n 922:1 919:= 916:j 874:n 869:R 855:s 826:k 821:R 805:n 801:b 794:, 788:, 777:1 773:b 744:k 739:R 307:K 166:' 20:)

Index

Rate coding
neuroscience
stimulus
electrical activities
ensemble
brain
networks of neurons
neurons
digital
analog
action potentials
light
sound
taste
smell
touch
graded potentials
amplitude
brief duration
all-or-none
ISIs
statistical methods
probability theory
point processes
Neural decoding
temporal code
auditory system
neuronal
frequency
action potentials

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.