Knowledge (XXG)

Rationalizable strategy

Source đź“ť

308: 368:). When player 2 plays left, then the payoff for player 1 playing the mixed strategy of up and down is 1, when player 2 plays right, the payoff for player 1 playing the mixed strategy is 0.5. Thus regardless of whether player 2 chooses left or right, player 1 gets more from playing this mixed strategy between up and down than if the player were to play the middle strategy. In this case, we should eliminate the middle strategy for player 1 since it's been dominated by the mixed strategy of playing up and down with probability ( 1014:. Consider the game on the right with payoffs of the column player omitted for simplicity. Notice that "b" is not strictly dominated by either "t" or "m" in the pure strategy sense, but it is still dominated by a strategy that would mix "t" and "m" with probability of each equal to 1/2. This is due to the fact that given any belief about the action of the column player, the mixed strategy will always yield higher expected payoff. This implies that "b" is not rationalizable. 415: 215: 262: 210: 205: 220: 277: 197: 177:
removing dominated strategies. In the first step, at most one dominated strategy is removed from the strategy space of each of the players since no rational player would ever play these strategies. This results in a new, smaller game. Some strategies—that were not dominated before—may be dominated in
185:
There are two versions of this process. One version involves only eliminating strictly dominated strategies. If, after completing this process, there is only one strategy for each player remaining, that strategy set is the unique Nash equilibrium. Moreover, iterated elimination of strictly dominated
1021:
to either "L" or "R" or any mix of the two. This is because an action that is not rationalizable can never be a best response to any opponent's strategy (pure or mixed). This would imply another version of the previous method of finding rationalizable strategies as those that survive the iterated
302:
There are instances when there is no pure strategy that dominates another pure strategy, but a mixture of two or more pure strategies can dominate another strategy. This is called Strictly Dominant Mixed Strategies. Some authors allow for elimination of strategies dominated by a mixed strategy in
124:. Both require players to respond optimally to some belief about their opponents' actions, but Nash equilibrium requires these beliefs to be correct, while rationalizability does not. Rationalizability was first defined, independently, by Bernheim (1984) and Pearce (1984). 1025:
In games with more than two players, however, there may be strategies that are not strictly dominated, but which can never be the best response. By the iterated elimination of all such strategies one can find the rationalizable strategies for a multiplayer game.
1034:
It can be easily proved that a Nash equilibrium is a rationalizable equilibrium; however, the converse is not true. Some rationalizable equilibria are not Nash equilibria. This makes the rationalizability concept a generalization of Nash equilibrium concept.
178:
the smaller game. The first step is repeated, creating a new even smaller game, and so on. The process stops when no dominated strategy is found for any player. This process is valid since it is assumed that rationality among players is
182:, that is, each player knows that the rest of the players are rational, and each player knows that the rest of the players know that he knows that the rest of the players are rational, and so on ad infinitum (see Aumann, 1976). 1009:
Conversely, for two-player games, the set of all rationalizable strategies can be found by iterated elimination of strictly dominated strategies. For this method to hold however, one also needs to consider strict domination by
246:. However, unlike the first process, elimination of weakly dominated strategies may eliminate some Nash equilibria. As a result, the Nash equilibrium found by eliminating weakly dominated strategies may not be the 186:
strategies is path independent. That is, if at any point in the process there are multiple strictly dominated strategies, then it doesn't matter for the end result which strategies we remove first.
411:
We can demonstrate the same methods on a more complex game and solve for the rational strategies. In this scenario, the blue coloring represents the dominating numbers in the particular strategy.
147:, i.e. strategies that "never make sense" (are never a best reply to any belief about the opponents' actions). The motivation for this step is no rational player would ever choose such actions. 242:
Another version involves eliminating both strictly and weakly dominated strategies. If, at the end of the process, there is a single strategy for each player, this strategy set is also a
117:. A strategy is rationalizable if there exists some possible set of beliefs both players could have about each other's actions, that would still result in the strategy being played. 173:
The iterated elimination (or deletion, or removal) of dominated strategies (also denominated as IESDS, or IDSDS, or IRSDS) is one common technique for solving games that involves
229:
Of the remaining strategies (see IESDS Figure 2), Z is strictly dominated by Y and X for Player 2. Therefore, Player 2 will never play strategy Z. Player 1 knows this.
320:
In this scenario, for player 1, there is no pure strategy that dominates another pure strategy. Let's define the probability of player 1 playing up as p, and let p =
165:
In a game with finitely many actions, this process always terminates and leaves a non-empty set of actions for each player. These are the rationalizable actions.
235:
Of the remaining strategies (see IESDS Figure 4), Y is strictly dominated by X for Player 2. Therefore, Player 2 will never play Y. Player 1 knows this.
232:
Of the remaining strategies (see IESDS Figure 3), B is strictly dominated by A for Player 1. Therefore, Player 1 will never play B. Player 2 knows this.
250:
Nash equilibrium. (In some games, if we remove weakly dominated strategies in a different order, we may end up with a different Nash equilibrium.)
1318: 539:
as tester values. The argument for mixed strategy dominance can be made if there is at least one mixed strategy that allows for dominance.
2217: 2034: 1569: 1367: 290:
In any case, if by iterated elimination of dominated strategies there is only one strategy left for each player, the game is called a
238:
Only one rationalizable strategy is left {A,X} which results in a payoff of (10,4). This is the single Nash Equilibrium for this game.
1853: 1672: 1200: 283:
O is strictly dominated by N for Player 1. Therefore, Player 1 will never play strategy O. Player 2 knows this. (see IESDS Figure 6)
268:
O is strictly dominated by N for Player 1. Therefore, Player 1 will never play strategy O. Player 2 knows this. (see IESDS Figure 5)
226:
C is strictly dominated by A for Player 1. Therefore, Player 1 will never play strategy C. Player 2 knows this. (see IESDS Figure 1)
1474: 1943: 1484: 1813: 1994: 1412: 1387: 651:
Set up the inequality to determine whether the mixed strategy will dominate the pure strategy based on expected payoffs.
57: 2344: 1770: 1524: 1514: 1449: 307: 1564: 1544: 1171: 733:
Z will dominate pure strategy X for Player 2, and thus X can be eliminated from the rationalizable strategies for P2.
2029: 2278: 1999: 1657: 1499: 1494: 2314: 2237: 1973: 1529: 1454: 1311: 2329: 2062: 1948: 1745: 1539: 1357: 179: 2132: 1146:(beginning the cycle again). This provides an infinite set of consistent beliefs that results in row playing 2334: 1933: 1903: 1559: 1347: 2268: 2359: 2339: 2319: 1938: 1843: 1702: 1652: 1647: 1579: 1549: 1469: 1397: 1011: 1377: 1818: 1803: 934: 857: 109:. It is the most permissive possible solution concept that still requires both players to be at least 2380: 2152: 2137: 2024: 2019: 1923: 1908: 1873: 1838: 1437: 1382: 1304: 114: 2309: 1928: 1878: 1715: 1642: 1622: 1479: 1362: 1214: 1176: 286:
T is weakly dominated by U for Player 2. If Player 2 chooses U, then the final equilibrium is (N,U)
271:
U is weakly dominated by T for Player 2. If Player 2 chooses T, then the final equilibrium is (N,T)
144: 2288: 2147: 1978: 1958: 1808: 1687: 1592: 1519: 1464: 2273: 2242: 2197: 2092: 1963: 1918: 1893: 1823: 1697: 1627: 1617: 1509: 1459: 1407: 1291: 1196: 809: 759: 746: 2354: 2349: 2283: 2247: 2227: 2187: 2157: 2112: 2067: 2052: 2009: 1863: 1504: 1441: 1427: 1392: 1229: 1088: 243: 133: 121: 102: 90: 67: 38: 414: 2252: 2212: 2167: 2082: 2077: 1798: 1750: 1637: 1402: 1372: 1342: 906:
This provides an infinite chain of consistent beliefs that result in the players playing (
2117: 2192: 2182: 2172: 2107: 2097: 2087: 2072: 1868: 1848: 1833: 1828: 1788: 1755: 1740: 1735: 1725: 1534: 1195:
Joel., Watson,. Strategy : an introduction to game theory (Second ed.). New York.
2374: 2232: 2222: 2177: 2162: 2142: 1968: 1913: 1888: 1760: 1730: 1720: 1707: 1612: 1554: 1489: 1422: 1233: 1108: 1018: 829: 813: 840:
if it is reasonable for the column player to believe that the row player could play
2207: 2202: 2057: 1632: 1283:
Pearce, D. (1984) Rationalizable Strategic Behavior and the Problem of Perfection.
1022:
elimination of strategies that are never a best response (in pure or mixed sense).
336:. We can set a mixed strategy where player 1 plays up and down with probabilities ( 150:
Remove all actions which are never a best reply to any belief about the opponents'
507:
Z must be greater than the expected payoff for playing pure strategy X, assigning
113:
and know the other players are also somewhat rational, i.e. that they do not play
17: 2324: 2127: 2122: 2102: 1898: 1883: 1692: 1662: 1597: 1587: 1417: 1352: 1328: 1273: 219: 214: 106: 42: 1953: 1607: 945:
is not a best response to any strategy by the column player. For this reason,
1091:
pictured to the right. In this game the only Nash equilibrium is row playing
1858: 1778: 1602: 276: 261: 209: 204: 174: 922:) a rationalizable pair of actions. A similar process can be repeated for ( 2293: 1793: 1037: 951: 756: 110: 1296: 854: 2014: 2004: 1682: 933:
As an example where not all strategies are rationalizable, consider a
413: 195: 196: 1783: 136:, the rationalizable set of actions can be computed as follows: 161:
Continue the process until no further actions can be eliminated.
1300: 820:
if he can reasonably believe that the column player could play
1290:
Ratcliff, J. (1992–1997) lecture notes on game theory, §2.2:
1134:
if it is reasonable for her to believe that column will play
1118:
if it is reasonable for her to believe that column will play
169:
Iterated elimination of strictly dominated strategies (IESDS)
836:. He can reasonably believe that the column player can play 1142:
if it is reasonable for him to believe that row will play
848:
if it is reasonable for her to believe that he could play
154:
actions—this second step is justified because each player
647:
Expected average payoff of pure strategy X: (1+1+3) = 5
1126:
if its reasonable for him to believe that row will play
1265:
Bernheim, D. (1984) Rationalizable Strategic Behavior.
749:
strategy for Players 1 and 2 is then (M,Z) or (3,5).
739:
For player 2, Y is dominated by the pure strategy Z.
736:
For Player 1, U is dominated by the pure strategy D.
2302: 2261: 2043: 1987: 1769: 1671: 1578: 1436: 1335: 440:For Player 2, X is dominated by the mixed strategy 86: 78: 73: 63: 53: 48: 32: 1215:"On the order of eliminating dominated strategies" 1150:. A similar argument can be given for row playing 937:pictured to the left. Row player would never play 1114:Consider the following reasoning: row can play 191:Strict Dominance Deletion Step-by-Step Example: 140:Start with the full action set for each player. 120:Rationalizability is a broader concept than a 1312: 255:Weak Dominance Deletion Step-by-Step Example: 8: 1319: 1305: 1297: 1292:"Iterated Dominance and Rationalizability" 1099:with equal probability and column playing 816:is to the right). The row player can play 306: 275: 260: 218: 213: 208: 203: 1213:Gilboa, I.; Kalai, E.; Zemel, E. (1990). 742:This leaves M dominating D for Player 1. 475:The expected payoff for playing strategy 1188: 298:Iterated elimination by mixed strategy 29: 1107:with equal probability. However, all 1030:Rationalizability and Nash equilibria 7: 844:. She can believe that he will play 158:that the other players are rational. 1368:First-player and second-player win 25: 1111:in this game are rationalizable. 1087:As an example, consider the game 1038: 855: 757: 1475:Coalition-proof Nash equilibrium 1154:, and for column playing either 27:Solution concept in game theory 1485:Evolutionarily stable strategy 1: 1413:Simultaneous action selection 58:Dominant strategy equilibrium 2345:List of games in game theory 1525:Quantal response equilibrium 1515:Perfect Bayesian equilibrium 1450:Bayes correlated equilibrium 1234:10.1016/0167-6377(90)90046-8 1814:Optional prisoner's dilemma 1545:Self-confirming equilibrium 1222:Operations Research Letters 1172:Self-confirming equilibrium 612:Expected average payoff of 577:Expected average payoff of 2397: 2279:Principal variation search 1995:Aumann's agreement theorem 1658:Strategy-stealing argument 1570:Trembling hand equilibrium 1500:Markov perfect equilibrium 1495:Mertens-stable equilibrium 2315:Combinatorial game theory 1974:Princess and monster game 1530:Quasi-perfect equilibrium 1455:Bayesian Nash equilibrium 82:D. Bernheim and D. Pearce 37: 2330:Evolutionary game theory 2063:Antoine Augustin Cournot 1949:Guess 2/3 of the average 1746:Strictly determined game 1540:Satisfaction equilibrium 1358:Escalation of commitment 1247:Gibbons, Robert (1992). 2335:Glossary of game theory 1934:Stackelberg competition 1560:Strong Nash equilibrium 1249:A Primer in Game Theory 1017:Moreover, "b" is not a 949:is not rationalizable. 2360:Tragedy of the commons 2340:List of game theorists 2320:Confrontation analysis 2030:Sprague–Grundy theorem 1550:Sequential equilibrium 1470:Correlated equilibrium 753:Constraints on beliefs 437:Step-by-step solving: 418: 200: 2133:Jean-François Mertens 1280:Cambridge: MIT Press. 574:gets the following: 417: 199: 2262:Search optimizations 2138:Jennifer Tour Chayes 2025:Revelation principle 2020:Purification theorem 1959:Nash bargaining game 1924:Bertrand competition 1909:El Farol Bar problem 1874:Electronic mail game 1839:Lewis signaling game 1383:Hierarchy of beliefs 1272:Fudenberg, Drew and 145:dominated strategies 115:dominated strategies 2310:Bounded rationality 1929:Cournot competition 1879:Rock paper scissors 1854:Battle of the sexes 1844:Volunteer's dilemma 1716:Perfect information 1643:Dominant strategies 1480:Epsilon-equilibrium 1363:Extensive-form game 1177:Strategic dominance 1042: 861: 763: 2289:Paranoid algorithm 2269:Alpha–beta pruning 2148:John Maynard Smith 1979:Rendezvous problem 1819:Traveler's dilemma 1809:Gift-exchange game 1804:Prisoner's dilemma 1721:Large Poisson game 1688:Bargaining problem 1593:Backward induction 1565:Subgame perfection 1520:Proper equilibrium 1138:. Column can play 1122:. Column can play 935:prisoner's dilemma 858:Prisoner's Dilemma 808:Consider a simple 419: 292:dominance-solvable 201: 2368: 2367: 2274:Aspiration window 2243:Suzanne Scotchmer 2198:Oskar Morgenstern 2093:Donald B. Gillies 2035:Zermelo's theorem 1964:Induction puzzles 1919:Fair cake-cutting 1894:Public goods game 1824:Coordination game 1698:Intransitive game 1628:Forward induction 1510:Pareto efficiency 1490:Gibbs equilibrium 1460:Berge equilibrium 1408:Simultaneous game 1251:. pp. 32–33. 1085: 1084: 1007: 1006: 904: 903: 810:coordination game 806: 805: 760:Coordination game 111:somewhat rational 99:Rationalizability 96: 95: 33:Rationalizability 18:Rationalizability 16:(Redirected from 2388: 2355:Topological game 2350:No-win situation 2248:Thomas Schelling 2228:Robert B. Wilson 2188:Merrill M. Flood 2158:John von Neumann 2068:Ariel Rubinstein 2053:Albert W. Tucker 1904:War of attrition 1864:Matching pennies 1505:Nash equilibrium 1428:Mechanism design 1393:Normal-form game 1348:Cooperative game 1321: 1314: 1307: 1298: 1253: 1252: 1244: 1238: 1237: 1219: 1210: 1204: 1193: 1089:matching pennies 1043: 1040:Matching pennies 1012:mixed strategies 952: 862: 764: 732: 730: 729: 726: 723: 716: 714: 713: 710: 707: 689: 687: 686: 683: 680: 670: 668: 667: 664: 661: 643: 641: 640: 637: 634: 627: 625: 624: 621: 618: 608: 606: 605: 602: 599: 592: 590: 589: 586: 583: 573: 571: 570: 567: 564: 557: 555: 554: 551: 548: 538: 536: 535: 532: 529: 522: 520: 519: 516: 513: 506: 504: 503: 500: 497: 490: 488: 487: 484: 481: 471: 469: 468: 465: 462: 455: 453: 452: 449: 446: 399: 397: 396: 393: 390: 383: 381: 380: 377: 374: 367: 365: 364: 361: 358: 351: 349: 348: 345: 342: 335: 333: 332: 329: 326: 310: 279: 264: 244:Nash equilibrium 222: 217: 212: 207: 180:common knowledge 134:normal-form game 132:Starting with a 122:Nash equilibrium 103:solution concept 91:Matching pennies 68:Nash equilibrium 39:Solution concept 30: 21: 2396: 2395: 2391: 2390: 2389: 2387: 2386: 2385: 2371: 2370: 2369: 2364: 2298: 2284:max^n algorithm 2257: 2253:William Vickrey 2213:Reinhard Selten 2168:Kenneth Binmore 2083:David K. Levine 2078:Daniel Kahneman 2045: 2039: 2015:Negamax theorem 2005:Minimax theorem 1983: 1944:Diner's dilemma 1799:All-pay auction 1765: 1751:Stochastic game 1703:Mean-field game 1674: 1667: 1638:Markov strategy 1574: 1440: 1432: 1403:Sequential game 1388:Information set 1373:Game complexity 1343:Congestion game 1331: 1325: 1262: 1257: 1256: 1246: 1245: 1241: 1217: 1212: 1211: 1207: 1194: 1190: 1185: 1168: 1130:. Row can play 1109:pure strategies 1032: 914:). This makes ( 755: 727: 724: 721: 720: 718: 711: 708: 705: 704: 702: 701:Mixed strategy 695: 691: 684: 681: 678: 677: 675: 672: 665: 662: 659: 658: 656: 650: 638: 635: 632: 631: 629: 622: 619: 616: 615: 613: 603: 600: 597: 596: 594: 587: 584: 581: 580: 578: 568: 565: 562: 561: 559: 552: 549: 546: 545: 543: 533: 530: 527: 526: 524: 517: 514: 511: 510: 508: 501: 498: 495: 494: 492: 485: 482: 479: 478: 476: 466: 463: 460: 459: 457: 450: 447: 444: 443: 441: 436: 433: 430: 427: 424: 421: 403: 394: 391: 388: 387: 385: 378: 375: 372: 371: 369: 362: 359: 356: 355: 353: 346: 343: 340: 339: 337: 330: 327: 324: 323: 321: 300: 171: 130: 28: 23: 22: 15: 12: 11: 5: 2394: 2392: 2384: 2383: 2373: 2372: 2366: 2365: 2363: 2362: 2357: 2352: 2347: 2342: 2337: 2332: 2327: 2322: 2317: 2312: 2306: 2304: 2300: 2299: 2297: 2296: 2291: 2286: 2281: 2276: 2271: 2265: 2263: 2259: 2258: 2256: 2255: 2250: 2245: 2240: 2235: 2230: 2225: 2220: 2218:Robert Axelrod 2215: 2210: 2205: 2200: 2195: 2193:Olga Bondareva 2190: 2185: 2183:Melvin Dresher 2180: 2175: 2173:Leonid Hurwicz 2170: 2165: 2160: 2155: 2150: 2145: 2140: 2135: 2130: 2125: 2120: 2115: 2110: 2108:Harold W. Kuhn 2105: 2100: 2098:Drew Fudenberg 2095: 2090: 2088:David M. Kreps 2085: 2080: 2075: 2073:Claude Shannon 2070: 2065: 2060: 2055: 2049: 2047: 2041: 2040: 2038: 2037: 2032: 2027: 2022: 2017: 2012: 2010:Nash's theorem 2007: 2002: 1997: 1991: 1989: 1985: 1984: 1982: 1981: 1976: 1971: 1966: 1961: 1956: 1951: 1946: 1941: 1936: 1931: 1926: 1921: 1916: 1911: 1906: 1901: 1896: 1891: 1886: 1881: 1876: 1871: 1869:Ultimatum game 1866: 1861: 1856: 1851: 1849:Dollar auction 1846: 1841: 1836: 1834:Centipede game 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1789:Infinite chess 1786: 1781: 1775: 1773: 1767: 1766: 1764: 1763: 1758: 1756:Symmetric game 1753: 1748: 1743: 1741:Signaling game 1738: 1736:Screening game 1733: 1728: 1726:Potential game 1723: 1718: 1713: 1705: 1700: 1695: 1690: 1685: 1679: 1677: 1669: 1668: 1666: 1665: 1660: 1655: 1653:Mixed strategy 1650: 1645: 1640: 1635: 1630: 1625: 1620: 1615: 1610: 1605: 1600: 1595: 1590: 1584: 1582: 1576: 1575: 1573: 1572: 1567: 1562: 1557: 1552: 1547: 1542: 1537: 1535:Risk dominance 1532: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1452: 1446: 1444: 1434: 1433: 1431: 1430: 1425: 1420: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1378:Graphical game 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1339: 1337: 1333: 1332: 1326: 1324: 1323: 1316: 1309: 1301: 1295: 1294: 1288: 1287:52: 1029–1050. 1281: 1270: 1269:52: 1007–1028. 1261: 1258: 1255: 1254: 1239: 1205: 1187: 1186: 1184: 1181: 1180: 1179: 1174: 1167: 1164: 1083: 1082: 1079: 1076: 1070: 1069: 1066: 1063: 1057: 1056: 1051: 1046: 1031: 1028: 1005: 1004: 1001: 998: 992: 991: 988: 985: 979: 978: 975: 972: 966: 965: 960: 955: 902: 901: 898: 895: 889: 888: 885: 882: 876: 875: 870: 865: 804: 803: 800: 797: 791: 790: 787: 784: 778: 777: 772: 767: 754: 751: 747:rationalizable 698:4 + 5 > 5 693: 674: 655: 299: 296: 288: 287: 284: 273: 272: 269: 240: 239: 236: 233: 230: 227: 170: 167: 163: 162: 159: 148: 141: 129: 126: 94: 93: 88: 84: 83: 80: 76: 75: 71: 70: 65: 61: 60: 55: 51: 50: 46: 45: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2393: 2382: 2379: 2378: 2376: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2343: 2341: 2338: 2336: 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2307: 2305: 2303:Miscellaneous 2301: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2266: 2264: 2260: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2238:Samuel Bowles 2236: 2234: 2233:Roger Myerson 2231: 2229: 2226: 2224: 2223:Robert Aumann 2221: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2178:Lloyd Shapley 2176: 2174: 2171: 2169: 2166: 2164: 2163:Kenneth Arrow 2161: 2159: 2156: 2154: 2151: 2149: 2146: 2144: 2143:John Harsanyi 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2121: 2119: 2116: 2114: 2113:Herbert Simon 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2050: 2048: 2042: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1992: 1990: 1986: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1940: 1937: 1935: 1932: 1930: 1927: 1925: 1922: 1920: 1917: 1915: 1914:Fair division 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1890: 1889:Dictator game 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1776: 1774: 1772: 1768: 1762: 1761:Zero-sum game 1759: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1731:Repeated game 1729: 1727: 1724: 1722: 1719: 1717: 1714: 1712: 1710: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1680: 1678: 1676: 1670: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1648:Pure strategy 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1613:De-escalation 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1585: 1583: 1581: 1577: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1555:Shapley value 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1447: 1445: 1443: 1439: 1435: 1429: 1426: 1424: 1423:Succinct game 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1340: 1338: 1334: 1330: 1322: 1317: 1315: 1310: 1308: 1303: 1302: 1299: 1293: 1289: 1286: 1282: 1279: 1275: 1271: 1268: 1264: 1263: 1259: 1250: 1243: 1240: 1235: 1231: 1227: 1223: 1216: 1209: 1206: 1202: 1201:9780393929348 1198: 1192: 1189: 1182: 1178: 1175: 1173: 1170: 1169: 1165: 1163: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1112: 1110: 1106: 1102: 1098: 1094: 1090: 1080: 1077: 1075: 1072: 1071: 1067: 1064: 1062: 1059: 1058: 1055: 1052: 1050: 1047: 1045: 1044: 1041: 1036: 1029: 1027: 1023: 1020: 1019:best response 1015: 1013: 1002: 999: 997: 994: 993: 989: 986: 984: 981: 980: 976: 973: 971: 968: 967: 964: 961: 959: 956: 954: 953: 950: 948: 944: 940: 936: 931: 929: 925: 921: 917: 913: 909: 899: 896: 894: 891: 890: 886: 883: 881: 878: 877: 874: 871: 869: 866: 864: 863: 860: 859: 853: 851: 847: 843: 839: 835: 831: 830:best response 827: 823: 819: 815: 814:payoff matrix 811: 801: 798: 796: 793: 792: 788: 785: 783: 780: 779: 776: 773: 771: 768: 766: 765: 762: 761: 752: 750: 748: 743: 740: 737: 734: 699: 696: 652: 648: 645: 644:(0+5+5) = 5 610: 609:(4+0+4) = 4 575: 542:Testing with 540: 473: 438: 434: 431: 428: 425: 422: 416: 412: 409: 408: 407: 401: 318: 317: 316: 311: 309: 304: 297: 295: 293: 285: 282: 281: 280: 278: 270: 267: 266: 265: 263: 258: 257: 256: 251: 249: 245: 237: 234: 231: 228: 225: 224: 223: 221: 216: 211: 206: 198: 194: 193: 192: 187: 183: 181: 176: 168: 166: 160: 157: 153: 149: 146: 142: 139: 138: 137: 135: 127: 125: 123: 118: 116: 112: 108: 104: 100: 92: 89: 85: 81: 77: 72: 69: 66: 62: 59: 56: 52: 47: 44: 40: 36: 31: 19: 2208:Peyton Young 2203:Paul Milgrom 2118:HervĂ© Moulin 2058:Amos Tversky 2000:Folk theorem 1711:-player game 1708: 1633:Grim trigger 1285:Econometrica 1284: 1278:Game Theory. 1277: 1267:Econometrica 1266: 1248: 1242: 1228:(2): 85–89. 1225: 1221: 1208: 1191: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1113: 1104: 1100: 1096: 1092: 1086: 1073: 1060: 1053: 1048: 1039: 1033: 1024: 1016: 1008: 995: 982: 969: 962: 957: 946: 942: 938: 932: 927: 923: 919: 915: 911: 907: 905: 892: 879: 872: 867: 856: 849: 845: 841: 837: 833: 825: 821: 817: 807: 794: 781: 774: 769: 758: 744: 741: 738: 735: 700: 697: 653: 649: 646: 628:Strategy Z: 611: 593:Strategy Y: 576: 541: 474: 439: 435: 432: 429: 426: 423: 420: 410: 405: 404: 402: 319: 314: 313: 312: 305: 301: 291: 289: 274: 259: 254: 253: 252: 247: 241: 202: 190: 189: 188: 184: 172: 164: 155: 151: 131: 119: 98: 97: 74:Significance 49:Relationship 2381:Game theory 2325:Coopetition 2128:Jean Tirole 2123:John Conway 2103:Eric Maskin 1899:Blotto game 1884:Pirate game 1693:Global game 1663:Tit for tat 1598:Bid shading 1588:Appeasement 1438:Equilibrium 1418:Solved game 1353:Determinacy 1336:Definitions 1329:game theory 1274:Jean Tirole 175:iteratively 143:Remove all 107:game theory 79:Proposed by 64:Superset of 43:game theory 1969:Trust game 1954:Kuhn poker 1623:Escalation 1618:Deterrence 1608:Cheap talk 1580:Strategies 1398:Preference 1327:Topics of 1260:References 406:Example 2: 315:Example 1: 303:this way. 128:Definition 2153:John Nash 1859:Stag hunt 1603:Collusion 1183:Footnotes 745:The only 152:remaining 54:Subset of 2375:Category 2294:Lazy SMP 1988:Theorems 1939:Deadlock 1794:Checkers 1675:of games 1442:concepts 1166:See also 941:, since 824:, since 2046:figures 1829:Chicken 1683:Auction 1673:Classes 1276:(1993) 852:, etc. 731:⁠ 719:⁠ 715:⁠ 703:⁠ 688:⁠ 676:⁠ 669:⁠ 657:⁠ 642:⁠ 630:⁠ 626:⁠ 614:⁠ 607:⁠ 595:⁠ 591:⁠ 579:⁠ 572:⁠ 560:⁠ 556:⁠ 544:⁠ 537:⁠ 525:⁠ 521:⁠ 509:⁠ 505:⁠ 493:⁠ 489:⁠ 477:⁠ 470:⁠ 458:⁠ 454:⁠ 442:⁠ 398:⁠ 386:⁠ 382:⁠ 370:⁠ 366:⁠ 354:⁠ 350:⁠ 338:⁠ 334:⁠ 322:⁠ 87:Example 1199:  1081:1, -1 1078:-1, 1 1068:-1, 1 1065:1, -1 717:Y and 456:Y and 294:game. 1784:Chess 1771:Games 1218:(PDF) 1003:1, - 1000:1, - 990:3, - 987:0, - 977:0, - 974:3, - 900:1, 1 897:3, 0 887:0, 3 884:2, 2 828:is a 812:(the 802:1, 1 799:0, 0 789:0, 0 786:1, 1 156:knows 101:is a 1465:Core 1197:ISBN 1103:and 1095:and 558:and 523:and 491:Y + 472:Z. 248:only 2044:Key 1230:doi 1158:or 930:). 832:to 692:â©Ľ u 673:+ u 400:). 105:in 41:in 2377:: 1779:Go 1224:. 1220:. 1162:. 926:, 918:, 910:, 1709:n 1320:e 1313:t 1306:v 1236:. 1232:: 1226:9 1203:. 1160:T 1156:H 1152:t 1148:h 1144:h 1140:T 1136:T 1132:t 1128:t 1124:H 1120:H 1116:h 1105:T 1101:H 1097:t 1093:h 1074:t 1061:h 1054:T 1049:H 996:b 983:m 970:t 963:R 958:L 947:c 943:c 939:c 928:B 924:b 920:A 916:a 912:A 908:a 893:d 880:c 873:D 868:C 850:a 846:a 842:a 838:A 834:A 826:a 822:A 818:a 795:b 782:a 775:B 770:A 728:2 725:/ 722:1 712:2 709:/ 706:1 694:X 690:Z 685:2 682:/ 679:1 671:Y 666:2 663:/ 660:1 654:u 639:2 636:/ 633:1 623:2 620:/ 617:1 604:2 601:/ 598:1 588:2 585:/ 582:1 569:2 566:/ 563:1 553:2 550:/ 547:1 534:2 531:/ 528:1 518:2 515:/ 512:1 502:2 499:/ 496:1 486:2 483:/ 480:1 467:2 464:/ 461:1 451:2 448:/ 445:1 395:2 392:/ 389:1 384:, 379:2 376:/ 373:1 363:2 360:/ 357:1 352:, 347:2 344:/ 341:1 331:2 328:/ 325:1 20:)

Index

Rationalizability
Solution concept
game theory
Dominant strategy equilibrium
Nash equilibrium
Matching pennies
solution concept
game theory
somewhat rational
dominated strategies
Nash equilibrium
normal-form game
dominated strategies
iteratively
common knowledge





Nash equilibrium




rationalizable
Coordination game
coordination game
payoff matrix
best response

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑