Knowledge

Reciprocity (optoelectronic)

Source 📝

1148:, because radiative recombination cannot be avoided other than by avoiding light absorption (principle of detailed balance). However, since absorption is a key requirement for a solar cell and necessary to achieve a high concentration of electrons and holes as well, radiative recombination is a necessity (see van Roosbroeck-Shockley equation ). If non-radiative recombination is substantial and non negligible, the open-circuit voltage will be reduced depending on the ratio between the radiative and non-radiative recombination currents (where the recombination currents are the integral of the recombination rates over volume). This leads to a second reciprocity relation between the photovoltaic and the luminescent operation mode of a solar cell because the ratio of radiative to total (radiative and non-radiative) recombination currents is the external luminescence quantum efficiency 81:. A solar cell and a light emitting diode are typically made from different materials and optimized for different purposes; however, conceptually every solar cell could be operated as a light emitting diode and vice versa. Given that the operation principles have a high symmetry it is fair to assume that the key figures of merit that are used to characterize photovoltaic and luminescent operation of diodes are related to each other. These relations become particularly simple in a situation, where recombination rates scale linearly with minority carrier density and are explained below. 819:, the collection efficiency is one. Further away from the edge of the space charge region, the collection efficiency will be smaller than one depending on the distance and the amount of recombination happening in the neutral zone. The same holds for the electron concentration in the dark under applied bias. Here, the electron concentration will also decrease from the edge of the space charge region towards the back contact. This decrease as well as the collection efficiency will be approximately exponential (with the diffusion length controlling the decay). 90: 104:
quantum efficiency of photocurrent in the photovoltaic situation on the left. The relation between the two situations is based on the principle of detailed balance that relates absorption and radiative recombination via the van Roosbroeck-Shockley equation and charge collection and injection via the Donolato theorem.
546:
Equation (1) is valid for the practically relevant situation, where the neutral base region of a pn-junction makes up most of the volume of the diode. Typically, the thickness of a crystalline Si solar cell is ~ 200 μm while the thickness of the emitter and space charge region is only on the
826:
and connects the processes of charge carrier injection (relevant in the luminescent mode of operation) and charge carrier extraction (relevant in the photovoltaic mode of operation). In addition, the detailed balance between absorption of photons and radiative recombination can be mathematically
542:
is the temperature of the diode. This simple relation is useful for the analysis of solar cells using luminescence-based characterization methods. Luminescence used for characterization of solar cells is useful because of the ability to image the luminescence of solar cells and modules in short
103:
between the n and p-type regions of the diode. On the right, a forward voltage is applied to the same diode. Electron injection will lead to recombination and consequently light emission. The emission spectrum of the luminescence emitted in the situation on the right is directly related to the
1049:
solar cells. The reciprocity relation is also invalid if the emission of the solar cell is not from delocalized conduction and valence band states as would be the case for most mono and polycrystalline semiconductors but from localized states (defect states). This limitation is relevant for
1101:
of the solar cell and does not change much between different devices of the same type. The rate of recombination however might vary over orders of magnitude depending on the quality of the material and the interfaces. Thus, the open-circuit voltage depends quite drastically on the rates of
547:
order of hundreds of nanometers, i.e. three orders of magnitude thinner. In the base of a pn-junction, recombination is typically linear with minority carrier concentration over a large range of injection conditions and charge carrier transport is by
60:
that are operated in a different voltage and illumination regime and that serve different purposes. A solar cell is operated under illumination (usually by solar radiation) and is typically kept at the maximum power point where the product of
1088:
of a solar cell is the voltage created by a certain amount of illumination if the contacts of the solar cell are not connected, i.e. in open circuit. The voltage that can build up in such as situation is directly connected to the
1294: 457: 93:
Illustration of the basic underlying principles of the reciprocity relation between photovoltaic quantum efficiency and external luminescence quantum efficiency of a light emitting diode. On the left, the band diagram of a
98:
solar cell is depicted with a thin n-type region on the left and a thicker p-type region on the right. Light absorption in the p-type base leads to free electrons that have to be collected by diffusing to the edge of the
916: 734: 1400: 1029:
The reciprocity relation (eq. (1)) is only valid if absorption and emission is dominated by the neutral region of the pn-junction shown in the adjacent figure. This is a good approximation for
1579:
Kirchartz, T.; Nelson, J.; Rau, U. (2016). "Reciprocity between charge injection and extraction and its influence on the interpretation of electroluminescence spectra in organic solar cells".
1614:
Müller, T. C. M.; Pieters, B. E.; Kirchartz, T.; Carius, R.; Rau, U. (2014). "Effect of localized states on the reciprocity between quantum efficiency and electroluminescence in Cu(In,Ga)Se
641: 305: 1334: 543:
periods of times, while spatially resolved measurements of photovoltaic properties (such as photocurrent or photovoltage) would be very time-consuming and technically difficult.
65:
and voltage are maximized. A light emitting diode is operated at an applied forward bias (without external illumination). While a solar cell converts the energy contained in the
966: 1086: 1097:. The rate of photogeneration is usually determined by the typically used illumination with white light with a power density of 100 mW/cm (called one sun) and by the 576: 341:
is the black body spectrum emitted by a surface (the diode) into the hemisphere above the diode in units of photons per area, time and electron interval. In this case the
1142: 339: 179: 1185: 145: 939: 817: 1024: 993: 784: 1762:
Rau, U.; Blank, B.; Müller, T. C. M.; Kirchartz, T. (2017). "Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis".
757: 540: 520: 500: 480: 199: 1299:
Thus, any reduction in the external luminescence quantum efficiency by one order of magnitude would lead to a reduction in open-circuit voltage (relative to
1684:
Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganas, O.; Manca, J. V. (2009). "On the origin of the open-circuit voltage of polymer-fullerene solar cells".
1193: 351: 1034: 833: 1402:. Equation (2) is frequently used in the literature on solar cells. For instance for an improved understanding of the open-circuit voltage in 649: 1094: 35: 1102:
recombination at a given concentration of charge carriers. The highest possible open-circuit voltage, the radiative open-circuit voltage
34:. The relations are useful for interpretation of luminescence based measurements of solar cells and modules and for the analysis of 786:
defines the position of the edge of the space charge region (where the neutral zone and the space charge region connect). Thus, if
1339: 201:. Under certain conditions specified below, these two properties measured on the same diode are connected via the equation 147:
is a spectral quantity that is generally measured as a function of photon energy (or wavelength). The same is true for the
581: 207: 85:
Reciprocity between the photovoltaic quantum efficiency and the electroluminescence spectrum of a pn-junction diode
1302: 78: 66: 1803: 1505:
van Roosbroeck, W.; Shockley, W. (1954). "Photon-radiative recombination of electrons and holes in germanium".
1430:"Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells" 1054:
Reciprocity between the open-circuit voltage of a solar cell and the external luminescence quantum efficiency
1145: 1144:, is obtained if all recombination is radiative and non-radiative recombination is negligible. This is the 1771: 1693: 1658: 1588: 1514: 1476: 1441: 1059: 342: 77:(voltage x current) a light-emitting diode does the inverse, namely converting electrical power into 50: 944: 1064: 1038: 1030: 1026:
is the intrinsic charge carrier concentration. A derivation of equation (1) can be found in ref.
148: 100: 554: 1744: 1561: 1403: 1042: 109: 1105: 314: 154: 1151: 551:. In this situation, the Donolato theorem. is valid that states that the collection efficiency 1709: 1429: 1046: 114: 924: 789: 1779: 1736: 1701: 1666: 1627: 1596: 1553: 1522: 1484: 1449: 996: 823: 62: 1002: 971: 762: 70: 1095:
photogeneration (determined by the amount of illumination) and the rates of recombination
1775: 1697: 1662: 1592: 1542:"On the Use of Rau's Reciprocity to Deduce External Radiative Efficiency in Solar Cells" 1518: 1480: 1445: 1090: 742: 525: 505: 485: 465: 184: 74: 1041:
is of comparable size to the total absorber volume. This is the case for instance for
57: 1797: 54: 1783: 1748: 1727:
Green, M. A. (2012). "Radiative efficiency of state-of-the-art photovoltaic cells".
1600: 1565: 1289:{\displaystyle qV_{{\text{oc}},{\text{rad}}}-qV_{oc}=-kT\ln {Q_{e,{\text{lum}}}}(2)} 452:{\displaystyle \phi _{bb}={\frac {2\pi }{h^{3}c^{2}}}{\frac {E^{2}}{\exp {E/kT}-1}}} 95: 1631: 1557: 89: 1646: 1453: 1406:
and for comparing voltage losses between different photovoltaic technologies.
1037:. However the equations has limitations when applied to solar cells where the 46: 1526: 1187:
of a (light emitting) diode. Mathematically, this relation is expressed as,
548: 1713: 1541: 911:{\displaystyle k_{\text{rad}}n_{i}^{2}=\int \alpha 4n_{r}^{2}\phi _{bb}dE} 1098: 729:{\displaystyle f_{\text{c}}(x)={\frac {\delta n(x)}{\delta n(x=x_{j})}}} 31: 1670: 1740: 1705: 27: 1488: 1467:
Donolato, C. (1985). "A reciprocity theorem for charge collection".
88: 23: 1093:
in the device. These densities in turn depend on the rates of
578:
is related to the normalized minority carrier concentration
1395:{\displaystyle kT/q\times \ln(10)\approx \mathrm {60~mV} } 827:
expressed using the van Roosbroeck–Shockley equation as
181:
of a light emitting diode under applied forward voltage
1342: 1305: 1196: 1154: 1108: 1067: 1005: 974: 947: 927: 836: 792: 765: 745: 652: 584: 557: 528: 508: 488: 468: 354: 317: 210: 187: 157: 117: 1050:
microcrystalline and amorphous silicon solar cells.
1394: 1328: 1288: 1179: 1136: 1080: 1018: 987: 960: 933: 910: 822:The Donolato theorem is based on the principle of 811: 778: 751: 728: 635: 570: 534: 514: 494: 474: 451: 333: 299: 193: 173: 139: 1423: 1421: 1419: 1033:solar cells and the method can also be used for 1647:"Some thermodynamics of photochemical systems" 636:{\displaystyle \delta n(x)/\delta n(x=x_{j})} 300:{\displaystyle \phi _{EL}=Q_{e,PV}\phi _{bb}} 8: 1329:{\displaystyle V_{{\text{oc}},{\text{rad}}}} 968:is the radiative recombination coefficient, 1035:copper indium gallium selenide solar cells 1378: 1349: 1341: 1319: 1311: 1310: 1304: 1269: 1262: 1257: 1230: 1213: 1205: 1204: 1195: 1159: 1153: 1113: 1107: 1072: 1066: 1010: 1004: 979: 973: 952: 946: 926: 893: 883: 878: 856: 851: 841: 835: 803: 791: 770: 764: 744: 714: 675: 657: 651: 624: 600: 583: 562: 556: 527: 507: 487: 467: 428: 424: 411: 405: 396: 386: 371: 359: 353: 322: 316: 268: 250: 231: 215: 209: 186: 162: 156: 122: 116: 30:emission of the same diode under applied 1415: 1620:Solar Energy Materials and Solar Cells 1500: 1498: 522:is the speed of light in vacuum, and 16:Relation between properties of diodes 7: 20:Optoelectronic reciprocity relations 1540:Wang, X.; Lundstrom, M. S. (2013). 1388: 1385: 14: 1784:10.1103/physrevapplied.7.044016 1618:and Si thin-film solar cells". 1601:10.1103/physrevapplied.5.054003 941:is the absorption coefficient, 1372: 1366: 1283: 1277: 1091:density of electrons and holes 961:{\displaystyle k_{\text{rad}}} 720: 701: 690: 684: 669: 663: 630: 611: 597: 591: 294: 259: 1: 1546:IEEE Journal of Photovoltaics 1081:{\displaystyle V_{\text{oc}}} 1632:10.1016/j.solmat.2014.04.018 1558:10.1109/jphotov.2013.2278658 759:is a spatial coordinate and 571:{\displaystyle f_{\text{c}}} 482:is the Boltzmann constant, 1820: 1454:10.1103/physrevb.76.085303 1137:{\displaystyle V_{oc,rad}} 334:{\displaystyle \phi _{bb}} 174:{\displaystyle \phi _{EL}} 26:under illumination to the 1180:{\displaystyle Q_{e,lum}} 79:electromagnetic radiation 502:is the Planck constant, 140:{\displaystyle Q_{e,PV}} 1764:Physical Review Applied 1581:Physical Review Applied 1527:10.1103/physrev.94.1558 1469:Applied Physics Letters 934:{\displaystyle \alpha } 812:{\displaystyle x=x_{j}} 38:losses in solar cells. 22:relate properties of a 1396: 1330: 1290: 1181: 1138: 1082: 1020: 989: 962: 935: 912: 813: 780: 753: 730: 637: 572: 536: 516: 496: 476: 453: 335: 301: 195: 175: 141: 105: 1397: 1331: 1291: 1182: 1139: 1083: 1021: 1019:{\displaystyle n_{i}} 990: 988:{\displaystyle n_{r}} 963: 936: 913: 814: 781: 779:{\displaystyle x_{j}} 754: 731: 638: 573: 537: 517: 497: 477: 454: 336: 302: 196: 176: 142: 92: 67:electromagnetic waves 51:light-emitting diodes 1645:Ross, R. T. (1967). 1340: 1303: 1194: 1152: 1106: 1065: 1060:open-circuit voltage 1003: 972: 945: 925: 834: 790: 763: 743: 650: 582: 555: 526: 506: 486: 466: 352: 315: 208: 185: 155: 115: 1776:2017PhRvP...7d4016R 1698:2009NatMa...8..904V 1663:1967JChPh..46.4590R 1593:2016PhRvP...5e4003K 1519:1954PhRv...94.1558V 1481:1985ApPhL..46..270D 1446:2007PhRvB..76h5303R 1404:organic solar cells 1043:organic solar cells 1039:space charge region 1031:crystalline silicon 888: 861: 343:black body spectrum 149:electroluminescence 101:space charge region 1392: 1326: 1286: 1177: 1134: 1078: 1016: 985: 958: 931: 908: 874: 847: 809: 776: 749: 726: 633: 568: 532: 512: 492: 472: 449: 331: 297: 191: 171: 137: 110:quantum efficiency 106: 1671:10.1063/1.1840606 1657:(12): 4590–4593. 1434:Physical Review B 1384: 1322: 1314: 1272: 1216: 1208: 1075: 955: 844: 752:{\displaystyle x} 724: 660: 565: 535:{\displaystyle T} 515:{\displaystyle c} 495:{\displaystyle h} 475:{\displaystyle k} 447: 403: 286: 194:{\displaystyle V} 108:The photovoltaic 1811: 1788: 1787: 1759: 1753: 1752: 1741:10.1002/pip.1147 1724: 1718: 1717: 1706:10.1038/nmat2548 1686:Nature Materials 1681: 1675: 1674: 1642: 1636: 1635: 1611: 1605: 1604: 1576: 1570: 1569: 1552:(4): 1348–1353. 1537: 1531: 1530: 1513:(6): 1558–1560. 1502: 1493: 1492: 1464: 1458: 1457: 1428:Rau, U. (2007). 1425: 1401: 1399: 1398: 1393: 1391: 1382: 1353: 1335: 1333: 1332: 1327: 1325: 1324: 1323: 1320: 1315: 1312: 1295: 1293: 1292: 1287: 1276: 1275: 1274: 1273: 1270: 1238: 1237: 1219: 1218: 1217: 1214: 1209: 1206: 1186: 1184: 1183: 1178: 1176: 1175: 1143: 1141: 1140: 1135: 1133: 1132: 1087: 1085: 1084: 1079: 1077: 1076: 1073: 1025: 1023: 1022: 1017: 1015: 1014: 997:refractive index 994: 992: 991: 986: 984: 983: 967: 965: 964: 959: 957: 956: 953: 940: 938: 937: 932: 917: 915: 914: 909: 901: 900: 887: 882: 860: 855: 846: 845: 842: 824:detailed balance 818: 816: 815: 810: 808: 807: 785: 783: 782: 777: 775: 774: 758: 756: 755: 750: 735: 733: 732: 727: 725: 723: 719: 718: 693: 676: 662: 661: 658: 642: 640: 639: 634: 629: 628: 604: 577: 575: 574: 569: 567: 566: 563: 541: 539: 538: 533: 521: 519: 518: 513: 501: 499: 498: 493: 481: 479: 478: 473: 458: 456: 455: 450: 448: 446: 439: 432: 416: 415: 406: 404: 402: 401: 400: 391: 390: 380: 372: 367: 366: 340: 338: 337: 332: 330: 329: 306: 304: 303: 298: 287: 285: 277: 269: 258: 257: 245: 244: 223: 222: 200: 198: 197: 192: 180: 178: 177: 172: 170: 169: 146: 144: 143: 138: 136: 135: 69:of the incoming 1819: 1818: 1814: 1813: 1812: 1810: 1809: 1808: 1804:Optoelectronics 1794: 1793: 1792: 1791: 1761: 1760: 1756: 1729:Prog. Photovolt 1726: 1725: 1721: 1683: 1682: 1678: 1644: 1643: 1639: 1617: 1613: 1612: 1608: 1578: 1577: 1573: 1539: 1538: 1534: 1507:Physical Review 1504: 1503: 1496: 1489:10.1063/1.95654 1466: 1465: 1461: 1427: 1426: 1417: 1412: 1338: 1337: 1306: 1301: 1300: 1258: 1226: 1200: 1192: 1191: 1155: 1150: 1149: 1146:ideal situation 1109: 1104: 1103: 1068: 1063: 1062: 1056: 1006: 1001: 1000: 975: 970: 969: 948: 943: 942: 923: 922: 889: 837: 832: 831: 799: 788: 787: 766: 761: 760: 741: 740: 710: 694: 677: 653: 648: 647: 620: 580: 579: 558: 553: 552: 524: 523: 504: 503: 484: 483: 464: 463: 417: 407: 392: 382: 381: 373: 355: 350: 349: 318: 313: 312: 278: 270: 246: 227: 211: 206: 205: 183: 182: 158: 153: 152: 118: 113: 112: 87: 71:solar radiation 44: 17: 12: 11: 5: 1817: 1815: 1807: 1806: 1796: 1795: 1790: 1789: 1754: 1735:(4): 472–476. 1719: 1676: 1637: 1615: 1606: 1571: 1532: 1494: 1475:(3): 270–272. 1459: 1414: 1413: 1411: 1408: 1390: 1387: 1381: 1377: 1374: 1371: 1368: 1365: 1362: 1359: 1356: 1352: 1348: 1345: 1318: 1309: 1297: 1296: 1285: 1282: 1279: 1268: 1265: 1261: 1256: 1253: 1250: 1247: 1244: 1241: 1236: 1233: 1229: 1225: 1222: 1212: 1203: 1199: 1174: 1171: 1168: 1165: 1162: 1158: 1131: 1128: 1125: 1122: 1119: 1116: 1112: 1071: 1055: 1052: 1013: 1009: 982: 978: 951: 930: 919: 918: 907: 904: 899: 896: 892: 886: 881: 877: 873: 870: 867: 864: 859: 854: 850: 840: 806: 802: 798: 795: 773: 769: 748: 737: 736: 722: 717: 713: 709: 706: 703: 700: 697: 692: 689: 686: 683: 680: 674: 671: 668: 665: 656: 632: 627: 623: 619: 616: 613: 610: 607: 603: 599: 596: 593: 590: 587: 561: 531: 511: 491: 471: 460: 459: 445: 442: 438: 435: 431: 427: 423: 420: 414: 410: 399: 395: 389: 385: 379: 376: 370: 365: 362: 358: 328: 325: 321: 309: 308: 296: 293: 290: 284: 281: 276: 273: 267: 264: 261: 256: 253: 249: 243: 240: 237: 234: 230: 226: 221: 218: 214: 190: 168: 165: 161: 134: 131: 128: 125: 121: 86: 83: 75:electric power 55:semiconducting 43: 40: 15: 13: 10: 9: 6: 4: 3: 2: 1816: 1805: 1802: 1801: 1799: 1785: 1781: 1777: 1773: 1770:(4): 044016. 1769: 1765: 1758: 1755: 1750: 1746: 1742: 1738: 1734: 1730: 1723: 1720: 1715: 1711: 1707: 1703: 1699: 1695: 1692:(11): 904–9. 1691: 1687: 1680: 1677: 1672: 1668: 1664: 1660: 1656: 1652: 1651:J. Chem. Phys 1648: 1641: 1638: 1633: 1629: 1625: 1621: 1610: 1607: 1602: 1598: 1594: 1590: 1587:(5): 054003. 1586: 1582: 1575: 1572: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1536: 1533: 1528: 1524: 1520: 1516: 1512: 1508: 1501: 1499: 1495: 1490: 1486: 1482: 1478: 1474: 1470: 1463: 1460: 1455: 1451: 1447: 1443: 1440:(8): 085303. 1439: 1435: 1431: 1424: 1422: 1420: 1416: 1409: 1407: 1405: 1379: 1375: 1369: 1363: 1360: 1357: 1354: 1350: 1346: 1343: 1316: 1307: 1280: 1266: 1263: 1259: 1254: 1251: 1248: 1245: 1242: 1239: 1234: 1231: 1227: 1223: 1220: 1210: 1201: 1197: 1190: 1189: 1188: 1172: 1169: 1166: 1163: 1160: 1156: 1147: 1129: 1126: 1123: 1120: 1117: 1114: 1110: 1100: 1096: 1092: 1069: 1061: 1053: 1051: 1048: 1044: 1040: 1036: 1032: 1027: 1011: 1007: 998: 980: 976: 949: 928: 905: 902: 897: 894: 890: 884: 879: 875: 871: 868: 865: 862: 857: 852: 848: 838: 830: 829: 828: 825: 820: 804: 800: 796: 793: 771: 767: 746: 715: 711: 707: 704: 698: 695: 687: 681: 678: 672: 666: 654: 646: 645: 644: 625: 621: 617: 614: 608: 605: 601: 594: 588: 585: 559: 550: 544: 529: 509: 489: 469: 443: 440: 436: 433: 429: 425: 421: 418: 412: 408: 397: 393: 387: 383: 377: 374: 368: 363: 360: 356: 348: 347: 346: 344: 326: 323: 319: 291: 288: 282: 279: 274: 271: 265: 262: 254: 251: 247: 241: 238: 235: 232: 228: 224: 219: 216: 212: 204: 203: 202: 188: 166: 163: 159: 150: 132: 129: 126: 123: 119: 111: 102: 97: 91: 84: 82: 80: 76: 72: 68: 64: 59: 56: 52: 48: 41: 39: 37: 36:recombination 33: 29: 25: 21: 1767: 1763: 1757: 1732: 1728: 1722: 1689: 1685: 1679: 1654: 1650: 1640: 1623: 1619: 1609: 1584: 1580: 1574: 1549: 1545: 1535: 1510: 1506: 1472: 1468: 1462: 1437: 1433: 1298: 1057: 1047:amorphous Si 1028: 920: 821: 738: 545: 461: 345:is given by 310: 107: 96:p-n junction 45: 19: 18: 47:Solar cells 1626:: 95–103. 1410:References 1376:≈ 1364:⁡ 1358:× 1255:⁡ 1243:− 1221:− 929:α 891:ϕ 869:α 866:∫ 696:δ 679:δ 606:δ 586:δ 549:diffusion 441:− 422:⁡ 378:π 357:ϕ 320:ϕ 289:− 266:⁡ 248:ϕ 213:ϕ 160:ϕ 151:spectrum 53:are both 1798:Category 1749:94696623 1714:19820700 1566:24481366 1099:band gap 1772:Bibcode 1694:Bibcode 1659:Bibcode 1589:Bibcode 1515:Bibcode 1477:Bibcode 1442:Bibcode 995:is the 63:current 32:voltage 1747:  1712:  1564:  1383:  921:Here, 739:where 462:where 311:where 58:diodes 42:Basics 28:photon 1745:S2CID 1562:S2CID 1336:) by 73:into 24:diode 1710:PMID 1058:The 643:via 49:and 1780:doi 1737:doi 1702:doi 1667:doi 1628:doi 1624:129 1597:doi 1554:doi 1523:doi 1485:doi 1450:doi 1321:rad 1271:lum 1215:rad 1045:or 999:, 954:rad 843:rad 419:exp 307:(1) 263:exp 1800:: 1778:. 1766:. 1743:. 1733:20 1731:. 1708:. 1700:. 1688:. 1665:. 1655:46 1653:. 1649:. 1622:. 1595:. 1583:. 1560:. 1548:. 1544:. 1521:. 1511:94 1509:. 1497:^ 1483:. 1473:46 1471:. 1448:. 1438:76 1436:. 1432:. 1418:^ 1380:60 1370:10 1361:ln 1313:oc 1252:ln 1207:oc 1074:oc 1786:. 1782:: 1774:: 1768:7 1751:. 1739:: 1716:. 1704:: 1696:: 1690:8 1673:. 1669:: 1661:: 1634:. 1630:: 1616:2 1603:. 1599:: 1591:: 1585:5 1568:. 1556:: 1550:3 1529:. 1525:: 1517:: 1491:. 1487:: 1479:: 1456:. 1452:: 1444:: 1389:V 1386:m 1373:) 1367:( 1355:q 1351:/ 1347:T 1344:k 1317:, 1308:V 1284:) 1281:2 1278:( 1267:, 1264:e 1260:Q 1249:T 1246:k 1240:= 1235:c 1232:o 1228:V 1224:q 1211:, 1202:V 1198:q 1173:m 1170:u 1167:l 1164:, 1161:e 1157:Q 1130:d 1127:a 1124:r 1121:, 1118:c 1115:o 1111:V 1070:V 1012:i 1008:n 981:r 977:n 950:k 906:E 903:d 898:b 895:b 885:2 880:r 876:n 872:4 863:= 858:2 853:i 849:n 839:k 805:j 801:x 797:= 794:x 772:j 768:x 747:x 721:) 716:j 712:x 708:= 705:x 702:( 699:n 691:) 688:x 685:( 682:n 673:= 670:) 667:x 664:( 659:c 655:f 631:) 626:j 622:x 618:= 615:x 612:( 609:n 602:/ 598:) 595:x 592:( 589:n 564:c 560:f 530:T 510:c 490:h 470:k 444:1 437:T 434:k 430:/ 426:E 413:2 409:E 398:2 394:c 388:3 384:h 375:2 369:= 364:b 361:b 327:b 324:b 295:] 292:1 283:T 280:k 275:V 272:q 260:[ 255:b 252:b 242:V 239:P 236:, 233:e 229:Q 225:= 220:L 217:E 189:V 167:L 164:E 133:V 130:P 127:, 124:e 120:Q

Index

diode
photon
voltage
recombination
Solar cells
light-emitting diodes
semiconducting
diodes
current
electromagnetic waves
solar radiation
electric power
electromagnetic radiation

p-n junction
space charge region
quantum efficiency
electroluminescence
black body spectrum
diffusion
detailed balance
refractive index
crystalline silicon
copper indium gallium selenide solar cells
space charge region
organic solar cells
amorphous Si
open-circuit voltage
density of electrons and holes
photogeneration (determined by the amount of illumination) and the rates of recombination

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.