Knowledge (XXG)

Reactive distillation

Source đź“ť

325: 55:, mass transfer rates, diffusion and chemical kinetics, which poses a great challenge for design and synthesis of these systems. Side reactors, where a separate column feeds a reactor and vice versa, are better for some reactions, if the optimal conditions of distillation and reaction differ too much. 178:
Removing organic acids from aqueous alcohol (ethanol, isopropanol) in dewatering columns is a simple example. An aqueous base (NaOH, KOH) is added to the top of the column, acid-base reactions occur in the column, and the resulting organic salts and excess base exit the bottom of the column with the
174:
in nature. Hence, in a typical reactive distillation column that consists of both reactive and non-reactive zones, the heterogeneous azeotrope or a composition close to the azeotrope can be obtained as the distillate product. Moreover, the aqueous phase that forms after the condensation of the vapor
175:
is almost pure water. Depending on the requirement either of the phases can be withdrawn as a product and the other phase can be recycled back as reflux. The pure ester i.e. butyl acetate, being the least volatile component in the system, is realized as a bottom product.
39:
reactions. Conversion can be increased beyond what is expected by the equilibrium due to the continuous removal of reaction products from the reactive zone. This approach can also reduce capital and investment costs.
220:
Scott D. Barnicki "Synthetic Organic Chemicals" in Handbook of Industrial Chemistry and Biotechnology edited by James A. Kent, New York : Springer, 2012. 12th ed.
51:, since the reactive column combines these. The introduction of an in situ separation process in the reaction zone or vice versa leads to complex interactions between 256: 225: 324: 205: 31:
step which saves energy (for heating) and materials. This technique can be useful for equilibrium-limited reactions such as
314: 52: 166:
Another interesting feature of this system is that it is associated with the formation of a minimum boiling ternary
385: 249: 112: 299: 441: 416: 431: 426: 406: 344: 411: 472: 242: 349: 127: 87: 451: 122: 48: 446: 339: 72: 63:
Reactive distillation can be used with a wide variety of chemistries, including the following:
380: 304: 221: 201: 421: 309: 44: 20: 294: 117: 284: 279: 92: 32: 466: 354: 171: 265: 160: 28: 140: 67: 27:. Separation of the product from the reaction mixture does not need a separate 156: 102: 77: 36: 375: 167: 148: 82: 144: 370: 152: 289: 107: 390: 97: 24: 200:(Third ed.). India: Prentice-Hall India. pp. 197–200. 238: 234: 43:
The conditions in the reactive column are suboptimal both as a
399: 363: 332: 272: 250: 8: 257: 243: 235: 198:Elements of Chemical Reaction Engineering 188: 170:of ester, alcohol and water, which is 7: 14: 323: 196:Fogler, H. Scott (2002). "4". 1: 489: 386:Spinning band distillation 321: 315:Vapor–liquid equilibrium 143:with alcohols including 53:vapor–liquid equilibrium 345:Continuous distillation 19:is a process where the 139:The esterification of 130:of light oil fractions 17:Reactive distillation 350:Fractionating column 333:Industrial processes 300:McCabe–Thiele method 128:Hydrodesulfurization 59:Applicable Processes 123:Transesterification 49:distillation column 364:Laboratory methods 340:Batch distillation 73:Aldol condensation 460: 459: 381:Rotary evaporator 305:Theoretical plate 226:978-1-4614-4259-2 179:separated water. 480: 327: 310:Partial pressure 259: 252: 245: 236: 229: 218: 212: 211: 193: 45:chemical reactor 21:chemical reactor 488: 487: 483: 482: 481: 479: 478: 477: 463: 462: 461: 456: 395: 359: 328: 319: 295:Fenske equation 268: 263: 233: 232: 219: 215: 208: 195: 194: 190: 185: 137: 118:Oligomerization 61: 12: 11: 5: 486: 484: 476: 475: 465: 464: 458: 457: 455: 454: 449: 444: 439: 434: 429: 424: 419: 414: 409: 403: 401: 397: 396: 394: 393: 388: 383: 378: 373: 367: 365: 361: 360: 358: 357: 352: 347: 342: 336: 334: 330: 329: 322: 320: 318: 317: 312: 307: 302: 297: 292: 287: 282: 276: 274: 270: 269: 264: 262: 261: 254: 247: 239: 231: 230: 213: 206: 187: 186: 184: 181: 136: 133: 132: 131: 125: 120: 115: 113:Neutralization 110: 105: 100: 98:Etherification 95: 93:Esterification 90: 85: 80: 75: 70: 60: 57: 33:esterification 13: 10: 9: 6: 4: 3: 2: 485: 474: 471: 470: 468: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 415: 413: 410: 408: 405: 404: 402: 398: 392: 389: 387: 384: 382: 379: 377: 374: 372: 369: 368: 366: 362: 356: 355:Spinning cone 353: 351: 348: 346: 343: 341: 338: 337: 335: 331: 326: 316: 313: 311: 308: 306: 303: 301: 298: 296: 293: 291: 288: 286: 283: 281: 278: 277: 275: 271: 267: 260: 255: 253: 248: 246: 241: 240: 237: 227: 223: 217: 214: 209: 207:81-203-2234-7 203: 199: 192: 189: 182: 180: 176: 173: 172:heterogeneous 169: 164: 162: 158: 154: 150: 146: 142: 134: 129: 126: 124: 121: 119: 116: 114: 111: 109: 108:Isomerization 106: 104: 101: 99: 96: 94: 91: 89: 86: 84: 81: 79: 76: 74: 71: 69: 66: 65: 64: 58: 56: 54: 50: 46: 41: 38: 34: 30: 26: 22: 18: 473:Distillation 452:Vacuum-based 436: 285:Dalton's law 280:Raoult's law 266:Distillation 216: 197: 191: 177: 165: 161:amyl alcohol 138: 62: 42: 29:distillation 23:is also the 16: 15: 447:Steam-based 442:Salt-effect 417:Destructive 141:acetic acid 88:Dehydration 68:Acetylation 432:Fractional 427:Extractive 407:Azeotropic 400:Techniques 273:Principles 183:References 157:isobutanol 103:Hydrolysis 78:Alkylation 37:hydrolysis 35:and ester 412:Catalytic 376:Kugelrohr 168:azeotrope 149:n-butanol 83:Amination 47:and as a 467:Category 437:Reactive 145:methanol 135:Examples 371:Alembic 153:ethanol 290:Reflux 224:  204:  159:, and 391:Still 25:still 222:ISBN 202:ISBN 422:Dry 469:: 163:. 155:, 151:, 147:, 258:e 251:t 244:v 228:. 210:.

Index

chemical reactor
still
distillation
esterification
hydrolysis
chemical reactor
distillation column
vapor–liquid equilibrium
Acetylation
Aldol condensation
Alkylation
Amination
Dehydration
Esterification
Etherification
Hydrolysis
Isomerization
Neutralization
Oligomerization
Transesterification
Hydrodesulfurization
acetic acid
methanol
n-butanol
ethanol
isobutanol
amyl alcohol
azeotrope
heterogeneous
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑