Knowledge (XXG)

Regular number

Source đź“ť

989: 2052:) at intervals that have been estimated as regular numbers of years, with different intervals for different species, including examples with intervals of 10, 15, 16, 30, 32, 48, 60, and 120 years. It has been hypothesized that the biological mechanism for timing and synchronizing this process lends itself to smooth numbers, and in particular in this case to 5-smooth numbers. Although the estimated masting intervals for some other species of bamboo are not regular numbers of years, this may be explainable as measurement error. 3485: 40: 5746: 1170:
Thus, 1/54, in sexagesimal, is 1/60 + 6/60 + 40/60, also denoted 1:6:40 as Babylonian notational conventions did not specify the power of the starting digit. Conversely 1/4000 = 54/60, so division by 1:6:40 = 4000 can be accomplished by instead multiplying by 54 and shifting three sexagesimal places.
1177:
times, by someone named Inaqibıt-Anu, contains the reciprocals of 136 of the 231 six-place regular numbers whose first place is 1 or 2, listed in order. It also includes reciprocals of some numbers of more than six places, such as 3 (2 1 4 8 3 0 7 in sexagesimal), whose reciprocal has 17 sexagesimal
1169:
For instance, consider division by the regular number 54 = 23. 54 is a divisor of 60, and 60/54 = 4000, so dividing by 54 in sexagesimal can be accomplished by multiplying by 4000 and shifting three places. In sexagesimal 4000 = 1×3600 + 6×60 + 40×1, or (as listed by Joyce) 1:6:40.
1182:
in 1972 hailed Inaqibıt-Anu as "the first man in history to solve a computational problem that takes longer than one second of time on a modern electronic computer!" (Two tables are also known giving approximations of reciprocals of non-regular numbers, one of which gives reciprocals for all the
1186:
Although the primary reason for preferring regular numbers to other numbers involves the finiteness of their reciprocals, some Babylonian calculations other than reciprocals also involved regular numbers. For instance, tables of regular squares have been found and the broken tablet
909: 1356:
of this scale have frequencies proportional to the numbers in the sequence 24, 27, 30, 32, 36, 40, 45, 48 of nearly consecutive regular numbers. Thus, for an instrument with this tuning, all pitches are regular-number
1772:, because (implicitly) concurrent efficient implementations, using a constant number of arithmetic operations per generated value, are easily constructed as described above. Similarly efficient strict functional or 769: 1380:
list 31 different 5-limit scales, drawn from a larger database of musical scales. Each of these 31 scales shares with diatonic just intonation the property that all intervals are ratios of regular numbers.
367: 1282: 666: 607: 471: 1389:
provides a convenient graphical representation of the pitches in any 5-limit tuning, by factoring out the octave relationships (powers of two) so that the remaining values form a planar
244: 2713: 3042: 1376:
5-limit musical scales other than the familiar diatonic scale of Western music have also been used, both in traditional musics of other cultures and in modern experimental music:
1173:
The Babylonians used tables of reciprocals of regular numbers, some of which still survive. These tables existed relatively unchanged throughout Babylonian times. One tablet from
3848: 1480: 798: 1404:
In connection with the application of regular numbers to music theory, it is of interest to find pairs of regular numbers that differ by one. There are exactly ten such pairs
950: 1393:. Some music theorists have stated more generally that regular numbers are fundamental to tonal music itself, and that pitch ratios based on primes larger than 5 cannot be 2744: 2244:, for instance, states that "within any piece of tonal music" all intervals must be ratios of regular numbers, echoing similar statements by much earlier writers such as 1876: 1116: 1440: 529: 1882:
for an early description of computer code that generates these numbers out of order and then sorts them; Knuth describes an ad hoc algorithm, which he attributes to
1843: 1053: 1164: 1081: 1759: 1736: 1713: 1643: 1620: 1597: 2003: 1979: 1959: 1928: 1904: 1812: 1686: 1663: 1322: 1302: 1136: 1026: 970: 793: 686: 491: 304: 284: 264: 3428: 3219: 695: 408: 401: 3841: 2524: 1818:
above). In algorithmic terms, this is equivalent to generating (in order) the subsequence of the infinite sequence of regular numbers, ranging from
1324:
both regular and less than 60. Fowler and Robson discuss the calculation of square roots, such as how the Babylonians found an approximation to the
988: 1373:
between any two pitches can be described as a product 235 of powers of the prime numbers up to 5, or equivalently as a ratio of regular numbers.
85:
These numbers arise in several areas of mathematics and its applications, and have different names coming from their different areas of study.
2570: 1787:, lazy functional code for generating regular numbers is used as one of the built-in tests for correctness of the language's implementation. 3292:
Veller, Carl; Nowak, Martin A.; Davis, Charles C. (May 2015), "Extended flowering intervals of bamboos evolved by discrete multiplication",
414:
Although the regular numbers appear dense within the range from 1 to 60, they are quite sparse among the larger integers. A regular number
4648: 3834: 3052:
Kopiez, Reinhard (2003), "Intonation of harmonic intervals: adaptability of expert musicians to equal temperament and just intonation",
3041:, stating that the tablet does not contain all 231 of the numbers of interest. The article (corrected) with a brief addendum appears in 2491: 4643: 2671: 1561:) attributes to Hamming the problem of building the infinite ascending sequence of all 5-smooth numbers; this problem is now known as 4658: 4638: 1401:
of modern pianos is not a 5-limit tuning, and some modern composers have experimented with tunings based on primes larger than five.
538: 82:. As an example, 60 = 3600 = 48 × 75, so as divisors of a power of 60 both 48 and 75 are regular. 3474: 2643: 1533:
of buildings. In connection with the analysis of these shared musical and architectural ratios, for instance in the architecture of
5351: 4931: 3671: 3484: 1777: 5780: 5770: 2881: 2017: 1773: 1769: 2998: 1886:, for generating the six-digit numbers more quickly but that does not generalize in a straightforward way to larger values of 4653: 3072: 5437: 135:(base 60) number system that the Babylonians used for writing their numbers, and that was central to Babylonian mathematics. 5785: 3421: 3180: 2930: 2800: 2493:
Periodicity of sinusoidal frequencies as a basis for the analysis of Baroque and Classical harmony: a computer based study
1784: 4753: 5103: 4422: 4215: 3133: 2445: 309: 5138: 5108: 4783: 4773: 3625: 1201: 612: 5279: 4693: 4427: 4407: 4969: 5133: 5775: 5228: 4851: 4608: 4417: 4399: 4293: 4283: 4273: 3661: 2702: 2041:). Later scholars have invoked both Babylonian mathematics and music theory in an attempt to explain this passage. 417: 5113: 2580:
Bruins, E. M. (1970), "La construction de la grande table le valeurs réciproques AO 6456", in Finet, André (ed.),
5356: 4901: 4522: 4308: 4303: 4298: 4288: 4265: 3646: 3006: 1394: 196: 4341: 3414: 4598: 394:
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, ... (sequence
2037:
involves an allegory of marriage centered on the highly regular number 60 = 12,960,000 and its divisors (see
5467: 5432: 5218: 5128: 5002: 4977: 4886: 4876: 4488: 4470: 4390: 3800: 3666: 3590: 3090: 2293: 1515: 5727: 4997: 4871: 4502: 4278: 4058: 3985: 3651: 3610: 2343: 2013: 1511: 1443: 1005: 177: 120: 4982: 4836: 4763: 3918: 3580: 3449: 1362: 5691: 5331: 1448: 5624: 5518: 5482: 5223: 4946: 4926: 4743: 4412: 4200: 4172: 3754: 3656: 3301: 3131:
Sachs, A. J. (1947), "Babylonian mathematical texts. I. Reciprocals of regular sexagesimal numbers",
2599: 2558: 2033: 914: 5346: 5210: 5205: 5173: 4936: 4911: 4906: 4881: 4811: 4807: 4738: 4628: 4460: 4256: 4225: 3815: 3810: 3605: 3600: 3585: 3524: 3358: 2839: 2500: 2443:(1965), "Some Seleucid mathematical tables (extended reciprocals and squares of regular numbers)", 973: 5745: 5749: 5503: 5498: 5412: 5386: 5284: 5263: 5035: 4916: 4866: 4788: 4758: 4698: 4465: 4445: 4376: 4089: 3739: 3734: 3695: 3615: 3595: 3375: 3345: 3280: 3197: 3166: 3150: 3099: 3023: 2983: 2947: 2916: 2890: 2856: 2817: 2786: 2761: 2680: 2653: 2541: 2478: 2462: 1982: 1526: 1196: 1192: 1118:, shifted by some number of places. This allows for easy division by these numbers: to divide by 4633: 2663: 2657: 1910:
describes an algorithm for computing tables of this type in linear time for arbitrary values of
176:
for generating these numbers in ascending order. This problem has been used as a test case for
39: 5643: 5588: 5442: 5417: 5391: 5168: 4846: 4841: 4768: 4748: 4733: 4455: 4437: 4356: 4346: 4331: 4109: 4094: 3775: 3715: 3394: 3317: 3085: 2667: 2639: 2566: 2038: 1848: 1398: 1086: 143: 52: 2635: 2629: 1407: 496: 5679: 5472: 5058: 5030: 5020: 5012: 4896: 4861: 4856: 4823: 4517: 4480: 4371: 4366: 4361: 4351: 4323: 4210: 4162: 4157: 4114: 4053: 3805: 3780: 3700: 3686: 3620: 3504: 3464: 3367: 3337: 3309: 3272: 3189: 3142: 3061: 3015: 2975: 2939: 2900: 2848: 2809: 2753: 2728: 2607: 2533: 2504: 2454: 1821: 1499: 1495: 1370: 1325: 1031: 161: 3162: 3123: 2912: 2829: 2474: 5655: 5544: 5477: 5403: 5326: 5300: 5118: 4831: 4688: 4623: 4593: 4583: 4578: 4244: 4152: 4099: 3943: 3883: 3790: 3785: 3710: 3704: 3641: 3539: 3529: 3459: 3158: 3119: 2928:
Honingh, Aline; Bod, Rens (2005), "Convexity and the well-formedness of musical objects",
2908: 2825: 2470: 1766: 1689: 1550: 1507: 1503: 1341: 904:{\displaystyle {\frac {\left(\ln(N{\sqrt {30}})\right)^{3}}{6\ln 2\ln 3\ln 5}}+O(\log N),} 169: 146: 3228: 2012:, regular numbers are important as problem sizes in computer programs for performing the 1141: 1058: 3305: 2684: 2603: 2562: 1741: 1718: 1695: 1625: 1602: 1579: 5660: 5528: 5513: 5377: 5341: 5316: 5192: 5163: 5025: 4921: 4891: 4618: 4573: 4450: 4048: 4043: 4038: 4010: 3995: 3908: 3893: 3871: 3858: 3795: 3749: 3575: 3559: 3519: 3111: 2959: 2868: 2698: 2625: 2621: 1988: 1964: 1944: 1913: 1889: 1797: 1671: 1648: 1519: 1491: 1345: 1307: 1287: 1121: 1011: 955: 778: 772: 671: 476: 289: 269: 249: 3406: 2203:
has other interpretations, for which see its article, but all involve regular numbers.
1549:
Algorithms for calculating the regular numbers in ascending order were popularized by
5764: 5583: 5567: 5508: 5462: 5158: 5143: 5053: 4778: 4336: 4205: 4167: 4124: 4005: 3990: 3980: 3938: 3928: 3903: 3744: 3544: 3534: 3514: 3349: 3170: 3116:
Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (ZĂĽrich, 1994)
2482: 2049: 2009: 1487: 1366: 1349: 370: 106: 90: 44: 33: 3379: 3284: 2951: 2920: 2860: 2798:
Halsey, G. D.; Hewitt, Edwin (1972), "More on the superparticular ratios in music",
5619: 5608: 5523: 5361: 5336: 5253: 5153: 5123: 5098: 5082: 4987: 4954: 4703: 4677: 4588: 4527: 4104: 4000: 3933: 3913: 3888: 3759: 3676: 3554: 3499: 3469: 3032: 3027: 2994: 2742:
Gingerich, Owen (1965), "Eleven-digit regular sexagesimals and their reciprocals",
2200: 1530: 1390: 1337: 1188: 1179: 374: 150: 139: 98: 48: 2557:, History of mathematics, vol. 9, American Mathematical Society, p. 23, 1178:
digits. Noting the difficulty of both calculating these numbers and sorting them,
911:
and it has been conjectured that the error term of this approximation is actually
5578: 5453: 5258: 4722: 4613: 4568: 4563: 4313: 4220: 4119: 3948: 3923: 3898: 3341: 3328:
Wolf, Daniel James (March 2003), "Alternative tunings, alternative tonalities",
3209: 2872: 2522:
Barton, George A. (1908), "On the Babylonian origin of Plato's nuptial number",
1001: 977: 532: 132: 67: 63: 2904: 2714:"Square Root Approximations in Old Babylonian Mathematics: YBC 7289 in Context" 2069: 17: 5715: 5696: 4992: 4603: 2943: 2248:. In the modern music theory literature this assertion is often attributed to 3826: 3065: 5321: 5248: 5240: 5045: 4959: 4077: 3509: 3356:
Yuen, C. K. (1992), "Hamming numbers, lazy evaluation, and eager disposal",
173: 3321: 3256:
Temperton, Clive (1992), "A generalized prime factor FFT algorithm for any
2733: 1776:
sequential implementations are also possible whereas explicitly concurrent
3371: 3019: 1328:, perhaps using regular number approximations of fractions such as 17/12. 5422: 3400: 1961:
is a regular number and is divisible by 8, the generating function of an
1534: 1358: 1174: 51:
relationships among the regular numbers up to 400. The vertical scale is
2895: 2852: 2110: 5427: 5086: 3454: 3201: 3154: 2821: 2765: 2466: 2253: 1482:
that is meaningful as a musical interval. These intervals are 2/1 (the
1386: 190: 97:, because they can be characterized as having only 2, 3, or 5 as their 3313: 3103: 3046:, CSLI Lecture Notes 59, Cambridge Univ. Press, 1996, pp. 185–203 2987: 2790: 2545: 3114:(1995), "The role of smooth numbers in number-theoretic algorithms", 2612: 2045: 1483: 1353: 689: 70:). Equivalently, they are the numbers whose only prime divisors are 3276: 3193: 3146: 2813: 2774: 2757: 2458: 2082: 2080: 2078: 609:
as can be seen by taking logarithms of both sides of the inequality
3048:, but without the Appendix that was included in the original paper. 2979: 2962:; Longair, Malcolm (May 1982), "Harmonic proportion and Palladio's 2692:, Report EWD792. Originally a privately circulated handwritten note 2537: 2016:, a technique for analyzing the dominant frequencies of signals in 3725: 2440: 2028: 1382: 987: 38: 3397:
from the web site of Professor David E. Joyce, Clark University.
1529:, musical ratios were used in other applications, including the 993: 764:{\displaystyle {\frac {\log _{2}N\,\log _{3}N\,\log _{5}N}{6}}.} 5713: 5677: 5641: 5605: 5565: 5190: 5079: 4805: 4720: 4675: 4552: 4242: 4189: 4141: 4075: 4027: 3965: 3869: 3830: 3410: 2837:
Hemmendinger, David (1988), "The "Hamming problem" in Prolog",
2418: 2416: 1569:. Dijkstra's ideas to compute these numbers are the following: 3178:
Silver, A. L. Leigh (1971), "Musimatics or the nun's fiddle",
2048:
release large numbers of seeds in synchrony (a process called
3244:
Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl.
952:. A similar formula for the number of 3-smooth numbers up to 668:. Therefore, the number of regular numbers that are at most 381:-smooth number is a number whose greatest prime factor is at 2584:, ComitĂ© belge de recherches en MĂ©sopotamie, pp. 99–115 3403:
Generation of Hamming_numbers in ~ 50 programming languages
3213: 1765:
This algorithm is often used to demonstrate the power of a
396: 2252:, who used a graphical arrangement closely related to the 2179: 2177: 149:. In connection with music theory and related theories of 131:, and are of great importance in this area because of the 3141:(3), The American Schools of Oriental Research: 219–240, 2553:
Berndt, Bruce C.; Rankin, Robert Alexander, eds. (1995),
2225: 2223: 2221: 1573:
The sequence of Hamming numbers begins with the number 1.
79: 75: 71: 2582:
Actes de la XVII Rencontre Assyriologique Internationale
2024:
requires that the transform length be a regular number.
992:
AO 6456, a table of reciprocals of regular numbers from
2656:(1976), "17. An exercise attributed to R. W. Hamming", 2453:(3), The American Schools of Oriental Research: 79–86, 2808:(10), Mathematical Association of America: 1096–1100, 2086: 1453: 3088:(1974), "Musical "Marriages" in Plato's "Republic"", 1991: 1967: 1947: 1916: 1892: 1851: 1824: 1800: 1744: 1721: 1698: 1688:
may be generated by outputting the value 1, and then
1674: 1651: 1628: 1605: 1582: 1576:
The remaining values in the sequence are of the form
1451: 1410: 1310: 1290: 1204: 1144: 1124: 1089: 1061: 1034: 1014: 958: 917: 801: 781: 698: 674: 615: 541: 499: 479: 420: 312: 292: 272: 252: 199: 3265:
SIAM Journal on Scientific and Statistical Computing
2068:
Inspired by similar diagrams by Erkki Kurenniemi in
1008:
of a regular number has a finite representation. If
5537: 5491: 5451: 5402: 5376: 5309: 5293: 5272: 5239: 5204: 5044: 5011: 4968: 4945: 4822: 4510: 4501: 4479: 4436: 4398: 4389: 4322: 4264: 4255: 3768: 3724: 3685: 3634: 3568: 3492: 3442: 3231:(1897), "Quelques thĂ©orèmes sur l'Ă©quation de Pell 3188:(4), Mathematical Association of America: 351–357, 2379: 2164: 2162: 2160: 2135: 2133: 2131: 1938: 1814:-digit sexagesimal numbers in ascending order (see 1565:, and the numbers so generated are also called the 3395:Table of reciprocals of regular numbers up to 3600 2968:Journal of the Society of Architectural Historians 2745:Transactions of the American Philosophical Society 1997: 1973: 1953: 1922: 1898: 1870: 1837: 1806: 1753: 1730: 1707: 1680: 1657: 1637: 1614: 1591: 1474: 1434: 1316: 1296: 1276: 1158: 1130: 1110: 1075: 1047: 1020: 964: 944: 903: 787: 763: 680: 660: 601: 523: 485: 465: 362:{\displaystyle 60^{\max(\lceil i\,/2\rceil ,j,k)}} 361: 298: 278: 258: 238: 142:, regular numbers occur in the ratios of tones in 2785:, Royal Musical Association: 16th Session, p. 1, 2590:Clarke, A. R. (January 1877), "Just intonation", 1277:{\displaystyle (p^{2}-q^{2},\,2pq,\,p^{2}+q^{2})} 661:{\displaystyle 2^{i}\cdot 3^{j}\cdot 5^{k}\leq N} 2422: 2199:for a popular treatment of this interpretation. 2111:OEIS search for sequences involving 5-smoothness 1537:, the regular numbers have also been called the 318: 109:, the numbers that have no prime factor greater 3214:"Sequence A051037 (5-smooth numbers)" 2300:), and provide a proof for this case; see also 2249: 602:{\displaystyle i\ln 2+j\ln 3+k\ln 5\leq \ln N,} 535:bounded by the coordinate planes and the plane 172:, who proposed the problem of finding computer 101:. This is a specific case of the more general 3842: 3422: 2313: 466:{\displaystyle n=2^{i}\cdot 3^{j}\cdot 5^{k}} 411:have definitions involving 5-smooth numbers. 8: 2326: 2289: 2183: 2122: 339: 324: 2752:(8), American Philosophical Society: 3–38, 1815: 239:{\displaystyle 2^{i}\cdot 3^{j}\cdot 5^{k}} 5710: 5674: 5638: 5602: 5562: 5236: 5201: 5187: 5076: 4819: 4802: 4717: 4672: 4549: 4507: 4395: 4261: 4252: 4239: 4186: 4143:Possessing a specific set of other numbers 4138: 4072: 4024: 3962: 3866: 3849: 3835: 3827: 3429: 3415: 3407: 2229: 1377: 123:, the divisors of powers of 60 are called 3220:On-Line Encyclopedia of Integer Sequences 2894: 2732: 2611: 2391: 2355: 2196: 2098: 2021: 1990: 1966: 1946: 1915: 1891: 1879: 1856: 1850: 1829: 1823: 1799: 1743: 1720: 1697: 1673: 1650: 1627: 1604: 1581: 1452: 1450: 1409: 1309: 1289: 1265: 1252: 1247: 1234: 1225: 1212: 1203: 1148: 1143: 1123: 1100: 1094: 1088: 1065: 1060: 1055:, then the sexagesimal representation of 1039: 1033: 1013: 957: 916: 837: 822: 802: 800: 780: 740: 735: 723: 718: 706: 699: 697: 673: 646: 633: 620: 614: 540: 498: 478: 457: 444: 431: 419: 409:On-Line Encyclopedia of Integer Sequences 331: 330: 317: 311: 291: 271: 251: 230: 217: 204: 198: 62:are numbers that evenly divide powers of 2525:Journal of the American Oriental Society 2367: 2241: 1907: 1558: 1554: 473:is less than or equal to some threshold 369:. The regular numbers are also called 5- 3118:, Basel: Birkhäuser, pp. 411–422, 2712:Fowler, David; Robson, Eleanor (1998), 2407: 2297: 2061: 996:, copied from an unknown earlier source 29:Numbers that evenly divide powers of 60 3075:(1962), "Letter to a musical friend", 2779:Proceedings of the Musical Association 2532:, American Oriental Society: 210–219, 2403: 2301: 2265: 2245: 2212: 2070:"Chords, scales, and divisor lattices" 1883: 775:, the number of regular numbers up to 3098:(2), Duke University Press: 242–272, 2168: 2151: 2139: 1791: 153:, these numbers have been called the 7: 2704:The range-restricted Hamming problem 2330: 2277: 3437:Divisibility-based sets of integers 3044:Selected Papers on Computer Science 2879:th roots of generating functions", 2380:Heninger, Rains & Sloane (2006) 1939:Heninger, Rains & Sloane (2006) 164:, regular numbers are often called 391:The first few regular numbers are 25: 3475:Fundamental theorem of arithmetic 2555:Ramanujan: letters and commentary 1475:{\displaystyle {\tfrac {x+1}{x}}} 373:, indicating that their greatest 189:Formally, a regular number is an 5744: 5352:Perfect digit-to-digit invariant 3483: 2423:Veller, Nowak & Davis (2015) 1790:A related problem, discussed by 1780:solutions might be non-trivial. 377:is at most 5. More generally, a 306:. Such a number is a divisor of 2999:"Ancient Babylonian algorithms" 2882:Journal of Combinatorial Theory 2875:(2006), "On the integrality of 1770:functional programming language 407:Several other sequences at the 2020:. For instance, the method of 1429: 1411: 1348:involves regular numbers: the 1271: 1205: 945:{\displaystyle O(\log \log N)} 939: 921: 895: 883: 829: 816: 692:of this tetrahedron, which is 518: 500: 354: 321: 1: 4191:Expressible via specific sums 3181:American Mathematical Monthly 2931:Journal of New Music Research 2801:American Mathematical Monthly 1525:In the Renaissance theory of 1442:and each such pair defines a 66:(or, equivalently, powers of 3134:Journal of Cuneiform Studies 2446:Journal of Cuneiform Studies 2292:note that this follows from 2256:to organize 5-limit pitches. 5280:Multiplicative digital root 3342:10.1080/0749446032000134715 2773:Habens, Rev. W. J. (1889), 2659:A Discipline of Programming 2314:Howard & Longair (1982) 1981:-dimensional extremal even 1785:Python programming language 1365:. This scale is called a 5- 771:Even more precisely, using 246:, for nonnegative integers 129:regular sexagesimal numbers 93:, these numbers are called 5802: 3210:Sloane, N. J. A. 3031:. A correction appears in 2905:10.1016/j.jcta.2006.03.018 2686:Hamming's exercise in SASL 2662:, Prentice-Hall, pp.  2290:Halsey & Hewitt (1972) 2184:Fowler & Robson (1998) 2123:Berndt & Rankin (1995) 2005:th power of a polynomial. 31: 5740: 5723: 5709: 5687: 5673: 5651: 5637: 5615: 5601: 5574: 5561: 5357:Perfect digital invariant 5200: 5186: 5094: 5075: 4932:Superior highly composite 4818: 4801: 4729: 4716: 4684: 4671: 4559: 4548: 4251: 4238: 4196: 4185: 4148: 4137: 4085: 4071: 4034: 4023: 3976: 3961: 3879: 3865: 3672:Superior highly composite 3481: 3330:Contemporary Music Review 3007:Communications of the ACM 2944:10.1080/09298210500280612 2490:Asmussen, Robert (2001), 2008:As with other classes of 1369:tuning, meaning that the 1191:has been interpreted by 493:if and only if the point 4970:Euler's totient function 4754:Euler–Jacobi pseudoprime 4029:Other polynomial numbers 3569:Constrained divisor sums 3242:et leurs applications", 3066:10.1525/mp.2003.20.4.383 2230:Honingh & Bod (2005) 1871:{\displaystyle 60^{k+1}} 1668:Therefore, the sequence 1378:Honingh & Bod (2005) 1183:numbers from 56 to 80.) 1111:{\displaystyle 60^{k}/n} 688:can be estimated as the 32:Not to be confused with 4784:Somer–Lucas pseudoprime 4774:Lucas–Carmichael number 4609:Lazy caterer's sequence 3091:Journal of Music Theory 2634:, Copernicus, pp.  2197:Conway & Guy (1996) 1816:#Babylonian mathematics 1516:just chromatic semitone 1435:{\displaystyle (x,x+1)} 976:in his first letter to 524:{\displaystyle (i,j,k)} 5781:Functional programming 5771:Babylonian mathematics 4659:Wedderburn–Etherington 4059:Lucky numbers of Euler 3073:Longuet-Higgins, H. C. 2775:"On the musical scale" 2734:10.1006/hmat.1998.2209 2250:Longuet-Higgins (1962) 2014:fast Fourier transform 1999: 1975: 1955: 1924: 1900: 1872: 1839: 1838:{\displaystyle 60^{k}} 1808: 1755: 1732: 1709: 1682: 1665:is any Hamming number. 1659: 1639: 1616: 1593: 1539:harmonic whole numbers 1512:just diatonic semitone 1476: 1436: 1318: 1298: 1278: 1160: 1132: 1112: 1077: 1049: 1048:{\displaystyle 60^{k}} 1022: 997: 984:Babylonian mathematics 966: 946: 905: 789: 765: 682: 662: 603: 525: 487: 467: 363: 300: 280: 260: 240: 178:functional programming 155:harmonic whole numbers 121:Babylonian mathematics 56: 4947:Prime omega functions 4764:Frobenius pseudoprime 4554:Combinatorial numbers 4423:Centered dodecahedral 4216:Primary pseudoperfect 3450:Integer factorization 3372:10.1145/142137.142151 3020:10.1145/361454.361514 2000: 1976: 1956: 1925: 1901: 1873: 1840: 1809: 1756: 1733: 1710: 1683: 1660: 1640: 1617: 1594: 1477: 1444:superparticular ratio 1437: 1363:fundamental frequency 1319: 1299: 1279: 1161: 1133: 1113: 1078: 1050: 1023: 991: 967: 947: 906: 790: 766: 683: 663: 604: 526: 488: 468: 364: 301: 281: 261: 241: 42: 5786:Mathematics of music 5406:-composition related 5206:Arithmetic functions 4808:Arithmetic functions 4744:Elliptic pseudoprime 4428:Centered icosahedral 4408:Centered tetrahedral 2721:Historia Mathematica 1989: 1965: 1945: 1914: 1890: 1849: 1822: 1798: 1742: 1719: 1696: 1672: 1649: 1626: 1603: 1580: 1449: 1408: 1308: 1288: 1202: 1142: 1122: 1087: 1059: 1032: 1012: 956: 915: 799: 779: 696: 672: 613: 539: 497: 477: 418: 310: 290: 270: 250: 197: 5332:Kaprekar's constant 4852:Colossally abundant 4739:Catalan pseudoprime 4639:Schröder–Hipparchus 4418:Centered octahedral 4294:Centered heptagonal 4284:Centered pentagonal 4274:Centered triangular 3874:and related numbers 3662:Colossally abundant 3493:Factorization forms 3359:ACM SIGPLAN Notices 3306:2015EcolL..18..653V 2853:10.1145/44326.44335 2840:ACM SIGPLAN Notices 2681:Dijkstra, Edsger W. 2654:Dijkstra, Edsger W. 2631:The Book of Numbers 2604:1877Natur..15..253C 2563:1995rlc..book.....B 2501:University of Leeds 2327:Hemmendinger (1988) 2044:Certain species of 1197:Pythagorean triples 1159:{\displaystyle 1/n} 1076:{\displaystyle 1/n} 974:Srinivasa Ramanujan 5750:Mathematics portal 5692:Aronson's sequence 5438:Smarandache–Wellin 5195:-dependent numbers 4902:Primitive abundant 4789:Strong pseudoprime 4779:Perrin pseudoprime 4759:Fermat pseudoprime 4699:Wolstenholme prime 4523:Squared triangular 4309:Centered decagonal 4304:Centered nonagonal 4299:Centered octagonal 4289:Centered hexagonal 3647:Primitive abundant 3635:With many divisors 3086:McClain, Ernest G. 2344:test_generators.py 1995: 1983:unimodular lattice 1971: 1951: 1934:Other applications 1920: 1896: 1868: 1835: 1804: 1754:{\displaystyle 5H} 1751: 1731:{\displaystyle 3H} 1728: 1708:{\displaystyle 2H} 1705: 1678: 1655: 1638:{\displaystyle 5h} 1635: 1615:{\displaystyle 3h} 1612: 1592:{\displaystyle 2h} 1589: 1518:), and 81/80 (the 1472: 1470: 1432: 1314: 1294: 1274: 1156: 1128: 1108: 1073: 1045: 1018: 1000:In the Babylonian 998: 962: 942: 901: 785: 761: 678: 658: 599: 521: 483: 463: 359: 296: 276: 256: 236: 57: 5776:Integer sequences 5758: 5757: 5736: 5735: 5705: 5704: 5669: 5668: 5633: 5632: 5597: 5596: 5557: 5556: 5553: 5552: 5372: 5371: 5182: 5181: 5071: 5070: 5067: 5066: 5013:Aliquot sequences 4824:Divisor functions 4797: 4796: 4769:Lucas pseudoprime 4749:Euler pseudoprime 4734:Carmichael number 4712: 4711: 4667: 4666: 4544: 4543: 4540: 4539: 4536: 4535: 4497: 4496: 4385: 4384: 4342:Square triangular 4234: 4233: 4181: 4180: 4133: 4132: 4067: 4066: 4019: 4018: 3957: 3956: 3824: 3823: 3314:10.1111/ele.12442 3223:, OEIS Foundation 3079:(August): 244–248 2572:978-0-8218-0470-4 2342:Function m235 in 2294:Størmer's theorem 2018:time-varying data 1998:{\displaystyle n} 1974:{\displaystyle n} 1954:{\displaystyle n} 1923:{\displaystyle k} 1899:{\displaystyle k} 1807:{\displaystyle k} 1794:, is to list all 1681:{\displaystyle H} 1658:{\displaystyle h} 1563:Hamming's problem 1553:. Dijkstra ( 1527:universal harmony 1469: 1399:equal temperament 1317:{\displaystyle q} 1297:{\displaystyle p} 1131:{\displaystyle n} 1083:is just that for 1021:{\displaystyle n} 965:{\displaystyle N} 875: 827: 788:{\displaystyle N} 756: 681:{\displaystyle N} 486:{\displaystyle N} 299:{\displaystyle k} 279:{\displaystyle j} 259:{\displaystyle i} 16:(Redirected from 5793: 5748: 5711: 5680:Natural language 5675: 5639: 5607:Generated via a 5603: 5563: 5468:Digit-reassembly 5433:Self-descriptive 5237: 5202: 5188: 5139:Lucas–Carmichael 5129:Harmonic divisor 5077: 5003:Sparsely totient 4978:Highly cototient 4887:Multiply perfect 4877:Highly composite 4820: 4803: 4718: 4673: 4654:Telephone number 4550: 4508: 4489:Square pyramidal 4471:Stella octangula 4396: 4262: 4253: 4245:Figurate numbers 4240: 4187: 4139: 4073: 4025: 3963: 3867: 3851: 3844: 3837: 3828: 3801:Harmonic divisor 3687:Aliquot sequence 3667:Highly composite 3591:Multiply perfect 3487: 3465:Divisor function 3431: 3424: 3417: 3408: 3382: 3352: 3324: 3287: 3262: 3251: 3241: 3224: 3204: 3173: 3126: 3106: 3080: 3068: 3054:Music Perception 3030: 3003: 2990: 2954: 2923: 2898: 2889:(8): 1732–1745, 2878: 2873:Sloane, N. J. A. 2871:; Rains, E. M.; 2863: 2832: 2793: 2768: 2737: 2736: 2718: 2707: 2693: 2691: 2676: 2648: 2616: 2615: 2613:10.1038/015253b0 2585: 2575: 2548: 2517: 2516: 2515: 2509: 2503:, archived from 2499:, Ph.D. thesis, 2498: 2485: 2426: 2420: 2411: 2401: 2395: 2392:Temperton (1992) 2389: 2383: 2377: 2371: 2365: 2359: 2356:Gingerich (1965) 2353: 2347: 2340: 2334: 2323: 2317: 2311: 2305: 2287: 2281: 2275: 2269: 2263: 2257: 2239: 2233: 2227: 2216: 2210: 2204: 2193: 2187: 2181: 2172: 2166: 2155: 2149: 2143: 2137: 2126: 2120: 2114: 2108: 2102: 2099:Pomerance (1995) 2096: 2090: 2087:Sloane "A051037" 2084: 2073: 2066: 2022:Temperton (1992) 2004: 2002: 2001: 1996: 1980: 1978: 1977: 1972: 1960: 1958: 1957: 1952: 1941:show that, when 1929: 1927: 1926: 1921: 1905: 1903: 1902: 1897: 1880:Gingerich (1965) 1877: 1875: 1874: 1869: 1867: 1866: 1844: 1842: 1841: 1836: 1834: 1833: 1813: 1811: 1810: 1805: 1760: 1758: 1757: 1752: 1737: 1735: 1734: 1729: 1714: 1712: 1711: 1706: 1687: 1685: 1684: 1679: 1664: 1662: 1661: 1656: 1644: 1642: 1641: 1636: 1621: 1619: 1618: 1613: 1598: 1596: 1595: 1590: 1500:just minor third 1496:just major third 1481: 1479: 1478: 1473: 1471: 1465: 1454: 1441: 1439: 1438: 1433: 1326:square root of 2 1323: 1321: 1320: 1315: 1303: 1301: 1300: 1295: 1283: 1281: 1280: 1275: 1270: 1269: 1257: 1256: 1230: 1229: 1217: 1216: 1165: 1163: 1162: 1157: 1152: 1137: 1135: 1134: 1129: 1117: 1115: 1114: 1109: 1104: 1099: 1098: 1082: 1080: 1079: 1074: 1069: 1054: 1052: 1051: 1046: 1044: 1043: 1027: 1025: 1024: 1019: 971: 969: 968: 963: 951: 949: 948: 943: 910: 908: 907: 902: 876: 874: 842: 841: 836: 832: 828: 823: 803: 794: 792: 791: 786: 770: 768: 767: 762: 757: 752: 745: 744: 728: 727: 711: 710: 700: 687: 685: 684: 679: 667: 665: 664: 659: 651: 650: 638: 637: 625: 624: 608: 606: 605: 600: 530: 528: 527: 522: 492: 490: 489: 484: 472: 470: 469: 464: 462: 461: 449: 448: 436: 435: 399: 388: 386: 380: 368: 366: 365: 360: 358: 357: 335: 305: 303: 302: 297: 285: 283: 282: 277: 265: 263: 262: 257: 245: 243: 242: 237: 235: 234: 222: 221: 209: 208: 162:computer science 119:In the study of 116: 114: 104: 21: 5801: 5800: 5796: 5795: 5794: 5792: 5791: 5790: 5761: 5760: 5759: 5754: 5732: 5728:Strobogrammatic 5719: 5701: 5683: 5665: 5647: 5629: 5611: 5593: 5570: 5549: 5533: 5492:Divisor-related 5487: 5447: 5398: 5368: 5305: 5289: 5268: 5235: 5208: 5196: 5178: 5090: 5089:related numbers 5063: 5040: 5007: 4998:Perfect totient 4964: 4941: 4872:Highly abundant 4814: 4793: 4725: 4708: 4680: 4663: 4649:Stirling second 4555: 4532: 4493: 4475: 4432: 4381: 4318: 4279:Centered square 4247: 4230: 4192: 4177: 4144: 4129: 4081: 4080:defined numbers 4063: 4030: 4015: 3986:Double Mersenne 3972: 3953: 3875: 3861: 3859:natural numbers 3855: 3825: 3820: 3764: 3720: 3681: 3652:Highly abundant 3630: 3611:Unitary perfect 3564: 3488: 3479: 3460:Unitary divisor 3438: 3435: 3391: 3386: 3355: 3327: 3294:Ecology Letters 3291: 3277:10.1137/0913039 3257: 3255: 3232: 3227: 3208: 3194:10.2307/2316896 3177: 3147:10.2307/1359434 3130: 3112:Pomerance, Carl 3110: 3084: 3071: 3051: 3001: 2993: 2960:Howard, Deborah 2958: 2927: 2896:math.NT/0509316 2876: 2869:Heninger, Nadia 2867: 2836: 2814:10.2307/2317424 2797: 2772: 2758:10.2307/1006080 2741: 2716: 2711: 2699:Eppstein, David 2697: 2689: 2679: 2674: 2652: 2646: 2626:Guy, Richard K. 2622:Conway, John H. 2620: 2589: 2579: 2573: 2552: 2521: 2513: 2511: 2507: 2496: 2489: 2459:10.2307/1359089 2439: 2435: 2430: 2429: 2421: 2414: 2402: 2398: 2390: 2386: 2378: 2374: 2368:Eppstein (2007) 2366: 2362: 2354: 2350: 2341: 2337: 2324: 2320: 2312: 2308: 2288: 2284: 2276: 2272: 2264: 2260: 2242:Asmussen (2001) 2240: 2236: 2228: 2219: 2211: 2207: 2194: 2190: 2182: 2175: 2167: 2158: 2150: 2146: 2138: 2129: 2121: 2117: 2109: 2105: 2097: 2093: 2085: 2076: 2067: 2063: 2058: 1987: 1986: 1963: 1962: 1943: 1942: 1936: 1912: 1911: 1908:Eppstein (2007) 1888: 1887: 1852: 1847: 1846: 1825: 1820: 1819: 1796: 1795: 1740: 1739: 1717: 1716: 1694: 1693: 1670: 1669: 1647: 1646: 1624: 1623: 1601: 1600: 1578: 1577: 1567:Hamming numbers 1551:Edsger Dijkstra 1547: 1508:just minor tone 1504:just major tone 1455: 1447: 1446: 1406: 1405: 1342:just intonation 1334: 1306: 1305: 1286: 1285: 1261: 1248: 1221: 1208: 1200: 1199: 1140: 1139: 1120: 1119: 1090: 1085: 1084: 1057: 1056: 1035: 1030: 1029: 1010: 1009: 986: 954: 953: 913: 912: 843: 809: 805: 804: 797: 796: 777: 776: 736: 719: 702: 701: 694: 693: 670: 669: 642: 629: 616: 611: 610: 537: 536: 531:belongs to the 495: 494: 475: 474: 453: 440: 427: 416: 415: 405: 395: 384: 382: 378: 313: 308: 307: 288: 287: 268: 267: 248: 247: 226: 213: 200: 195: 194: 187: 170:Richard Hamming 166:Hamming numbers 147:just intonation 125:regular numbers 112: 110: 102: 60:Regular numbers 37: 30: 23: 22: 18:Regular numbers 15: 12: 11: 5: 5799: 5797: 5789: 5788: 5783: 5778: 5773: 5763: 5762: 5756: 5755: 5753: 5752: 5741: 5738: 5737: 5734: 5733: 5731: 5730: 5724: 5721: 5720: 5714: 5707: 5706: 5703: 5702: 5700: 5699: 5694: 5688: 5685: 5684: 5678: 5671: 5670: 5667: 5666: 5664: 5663: 5661:Sorting number 5658: 5656:Pancake number 5652: 5649: 5648: 5642: 5635: 5634: 5631: 5630: 5628: 5627: 5622: 5616: 5613: 5612: 5606: 5599: 5598: 5595: 5594: 5592: 5591: 5586: 5581: 5575: 5572: 5571: 5568:Binary numbers 5566: 5559: 5558: 5555: 5554: 5551: 5550: 5548: 5547: 5541: 5539: 5535: 5534: 5532: 5531: 5526: 5521: 5516: 5511: 5506: 5501: 5495: 5493: 5489: 5488: 5486: 5485: 5480: 5475: 5470: 5465: 5459: 5457: 5449: 5448: 5446: 5445: 5440: 5435: 5430: 5425: 5420: 5415: 5409: 5407: 5400: 5399: 5397: 5396: 5395: 5394: 5383: 5381: 5378:P-adic numbers 5374: 5373: 5370: 5369: 5367: 5366: 5365: 5364: 5354: 5349: 5344: 5339: 5334: 5329: 5324: 5319: 5313: 5311: 5307: 5306: 5304: 5303: 5297: 5295: 5294:Coding-related 5291: 5290: 5288: 5287: 5282: 5276: 5274: 5270: 5269: 5267: 5266: 5261: 5256: 5251: 5245: 5243: 5234: 5233: 5232: 5231: 5229:Multiplicative 5226: 5215: 5213: 5198: 5197: 5193:Numeral system 5191: 5184: 5183: 5180: 5179: 5177: 5176: 5171: 5166: 5161: 5156: 5151: 5146: 5141: 5136: 5131: 5126: 5121: 5116: 5111: 5106: 5101: 5095: 5092: 5091: 5080: 5073: 5072: 5069: 5068: 5065: 5064: 5062: 5061: 5056: 5050: 5048: 5042: 5041: 5039: 5038: 5033: 5028: 5023: 5017: 5015: 5009: 5008: 5006: 5005: 5000: 4995: 4990: 4985: 4983:Highly totient 4980: 4974: 4972: 4966: 4965: 4963: 4962: 4957: 4951: 4949: 4943: 4942: 4940: 4939: 4934: 4929: 4924: 4919: 4914: 4909: 4904: 4899: 4894: 4889: 4884: 4879: 4874: 4869: 4864: 4859: 4854: 4849: 4844: 4839: 4837:Almost perfect 4834: 4828: 4826: 4816: 4815: 4806: 4799: 4798: 4795: 4794: 4792: 4791: 4786: 4781: 4776: 4771: 4766: 4761: 4756: 4751: 4746: 4741: 4736: 4730: 4727: 4726: 4721: 4714: 4713: 4710: 4709: 4707: 4706: 4701: 4696: 4691: 4685: 4682: 4681: 4676: 4669: 4668: 4665: 4664: 4662: 4661: 4656: 4651: 4646: 4644:Stirling first 4641: 4636: 4631: 4626: 4621: 4616: 4611: 4606: 4601: 4596: 4591: 4586: 4581: 4576: 4571: 4566: 4560: 4557: 4556: 4553: 4546: 4545: 4542: 4541: 4538: 4537: 4534: 4533: 4531: 4530: 4525: 4520: 4514: 4512: 4505: 4499: 4498: 4495: 4494: 4492: 4491: 4485: 4483: 4477: 4476: 4474: 4473: 4468: 4463: 4458: 4453: 4448: 4442: 4440: 4434: 4433: 4431: 4430: 4425: 4420: 4415: 4410: 4404: 4402: 4393: 4387: 4386: 4383: 4382: 4380: 4379: 4374: 4369: 4364: 4359: 4354: 4349: 4344: 4339: 4334: 4328: 4326: 4320: 4319: 4317: 4316: 4311: 4306: 4301: 4296: 4291: 4286: 4281: 4276: 4270: 4268: 4259: 4249: 4248: 4243: 4236: 4235: 4232: 4231: 4229: 4228: 4223: 4218: 4213: 4208: 4203: 4197: 4194: 4193: 4190: 4183: 4182: 4179: 4178: 4176: 4175: 4170: 4165: 4160: 4155: 4149: 4146: 4145: 4142: 4135: 4134: 4131: 4130: 4128: 4127: 4122: 4117: 4112: 4107: 4102: 4097: 4092: 4086: 4083: 4082: 4076: 4069: 4068: 4065: 4064: 4062: 4061: 4056: 4051: 4046: 4041: 4035: 4032: 4031: 4028: 4021: 4020: 4017: 4016: 4014: 4013: 4008: 4003: 3998: 3993: 3988: 3983: 3977: 3974: 3973: 3966: 3959: 3958: 3955: 3954: 3952: 3951: 3946: 3941: 3936: 3931: 3926: 3921: 3916: 3911: 3906: 3901: 3896: 3891: 3886: 3880: 3877: 3876: 3870: 3863: 3862: 3856: 3854: 3853: 3846: 3839: 3831: 3822: 3821: 3819: 3818: 3813: 3808: 3803: 3798: 3793: 3788: 3783: 3778: 3772: 3770: 3766: 3765: 3763: 3762: 3757: 3752: 3747: 3742: 3737: 3731: 3729: 3722: 3721: 3719: 3718: 3713: 3708: 3698: 3692: 3690: 3683: 3682: 3680: 3679: 3674: 3669: 3664: 3659: 3654: 3649: 3644: 3638: 3636: 3632: 3631: 3629: 3628: 3623: 3618: 3613: 3608: 3603: 3598: 3593: 3588: 3583: 3581:Almost perfect 3578: 3572: 3570: 3566: 3565: 3563: 3562: 3557: 3552: 3547: 3542: 3537: 3532: 3527: 3522: 3517: 3512: 3507: 3502: 3496: 3494: 3490: 3489: 3482: 3480: 3478: 3477: 3472: 3467: 3462: 3457: 3452: 3446: 3444: 3440: 3439: 3436: 3434: 3433: 3426: 3419: 3411: 3405: 3404: 3398: 3390: 3389:External links 3387: 3385: 3384: 3353: 3325: 3300:(7): 653–659, 3289: 3271:(3): 676–686, 3253: 3225: 3206: 3175: 3128: 3108: 3082: 3069: 3060:(4): 383–410, 3049: 3014:(7): 671–677, 2991: 2980:10.2307/989675 2974:(2): 116–143, 2956: 2938:(3): 293–303, 2925: 2865: 2834: 2795: 2770: 2739: 2727:(4): 366–378, 2709: 2695: 2677: 2673:978-0132158718 2672: 2650: 2644: 2618: 2587: 2577: 2571: 2550: 2538:10.2307/592627 2519: 2487: 2436: 2434: 2431: 2428: 2427: 2412: 2408:McClain (1974) 2396: 2384: 2372: 2360: 2348: 2335: 2318: 2306: 2282: 2270: 2258: 2234: 2217: 2205: 2188: 2173: 2156: 2144: 2127: 2115: 2103: 2091: 2074: 2060: 2059: 2057: 2054: 2039:Plato's number 2010:smooth numbers 1994: 1970: 1950: 1935: 1932: 1919: 1895: 1865: 1862: 1859: 1855: 1832: 1828: 1803: 1763: 1762: 1750: 1747: 1727: 1724: 1704: 1701: 1692:the sequences 1677: 1666: 1654: 1634: 1631: 1611: 1608: 1588: 1585: 1574: 1546: 1543: 1520:syntonic comma 1514:), 25/24 (the 1510:), 16/15 (the 1492:perfect fourth 1468: 1464: 1461: 1458: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1397:. However the 1346:diatonic scale 1333: 1330: 1313: 1293: 1273: 1268: 1264: 1260: 1255: 1251: 1246: 1243: 1240: 1237: 1233: 1228: 1224: 1220: 1215: 1211: 1207: 1166:, then shift. 1155: 1151: 1147: 1138:, multiply by 1127: 1107: 1103: 1097: 1093: 1072: 1068: 1064: 1042: 1038: 1017: 1004:notation, the 985: 982: 961: 941: 938: 935: 932: 929: 926: 923: 920: 900: 897: 894: 891: 888: 885: 882: 879: 873: 870: 867: 864: 861: 858: 855: 852: 849: 846: 840: 835: 831: 826: 821: 818: 815: 812: 808: 784: 773:big O notation 760: 755: 751: 748: 743: 739: 734: 731: 726: 722: 717: 714: 709: 705: 677: 657: 654: 649: 645: 641: 636: 632: 628: 623: 619: 598: 595: 592: 589: 586: 583: 580: 577: 574: 571: 568: 565: 562: 559: 556: 553: 550: 547: 544: 520: 517: 514: 511: 508: 505: 502: 482: 460: 456: 452: 447: 443: 439: 434: 430: 426: 423: 393: 356: 353: 350: 347: 344: 341: 338: 334: 329: 326: 323: 320: 316: 295: 275: 255: 233: 229: 225: 220: 216: 212: 207: 203: 186: 183: 182: 181: 158: 136: 117: 107:smooth numbers 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5798: 5787: 5784: 5782: 5779: 5777: 5774: 5772: 5769: 5768: 5766: 5751: 5747: 5743: 5742: 5739: 5729: 5726: 5725: 5722: 5717: 5712: 5708: 5698: 5695: 5693: 5690: 5689: 5686: 5681: 5676: 5672: 5662: 5659: 5657: 5654: 5653: 5650: 5645: 5640: 5636: 5626: 5623: 5621: 5618: 5617: 5614: 5610: 5604: 5600: 5590: 5587: 5585: 5582: 5580: 5577: 5576: 5573: 5569: 5564: 5560: 5546: 5543: 5542: 5540: 5536: 5530: 5527: 5525: 5522: 5520: 5519:Polydivisible 5517: 5515: 5512: 5510: 5507: 5505: 5502: 5500: 5497: 5496: 5494: 5490: 5484: 5481: 5479: 5476: 5474: 5471: 5469: 5466: 5464: 5461: 5460: 5458: 5455: 5450: 5444: 5441: 5439: 5436: 5434: 5431: 5429: 5426: 5424: 5421: 5419: 5416: 5414: 5411: 5410: 5408: 5405: 5401: 5393: 5390: 5389: 5388: 5385: 5384: 5382: 5379: 5375: 5363: 5360: 5359: 5358: 5355: 5353: 5350: 5348: 5345: 5343: 5340: 5338: 5335: 5333: 5330: 5328: 5325: 5323: 5320: 5318: 5315: 5314: 5312: 5308: 5302: 5299: 5298: 5296: 5292: 5286: 5283: 5281: 5278: 5277: 5275: 5273:Digit product 5271: 5265: 5262: 5260: 5257: 5255: 5252: 5250: 5247: 5246: 5244: 5242: 5238: 5230: 5227: 5225: 5222: 5221: 5220: 5217: 5216: 5214: 5212: 5207: 5203: 5199: 5194: 5189: 5185: 5175: 5172: 5170: 5167: 5165: 5162: 5160: 5157: 5155: 5152: 5150: 5147: 5145: 5142: 5140: 5137: 5135: 5132: 5130: 5127: 5125: 5122: 5120: 5117: 5115: 5112: 5110: 5109:ErdĹ‘s–Nicolas 5107: 5105: 5102: 5100: 5097: 5096: 5093: 5088: 5084: 5078: 5074: 5060: 5057: 5055: 5052: 5051: 5049: 5047: 5043: 5037: 5034: 5032: 5029: 5027: 5024: 5022: 5019: 5018: 5016: 5014: 5010: 5004: 5001: 4999: 4996: 4994: 4991: 4989: 4986: 4984: 4981: 4979: 4976: 4975: 4973: 4971: 4967: 4961: 4958: 4956: 4953: 4952: 4950: 4948: 4944: 4938: 4935: 4933: 4930: 4928: 4927:Superabundant 4925: 4923: 4920: 4918: 4915: 4913: 4910: 4908: 4905: 4903: 4900: 4898: 4895: 4893: 4890: 4888: 4885: 4883: 4880: 4878: 4875: 4873: 4870: 4868: 4865: 4863: 4860: 4858: 4855: 4853: 4850: 4848: 4845: 4843: 4840: 4838: 4835: 4833: 4830: 4829: 4827: 4825: 4821: 4817: 4813: 4809: 4804: 4800: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4750: 4747: 4745: 4742: 4740: 4737: 4735: 4732: 4731: 4728: 4724: 4719: 4715: 4705: 4702: 4700: 4697: 4695: 4692: 4690: 4687: 4686: 4683: 4679: 4674: 4670: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4592: 4590: 4587: 4585: 4582: 4580: 4577: 4575: 4572: 4570: 4567: 4565: 4562: 4561: 4558: 4551: 4547: 4529: 4526: 4524: 4521: 4519: 4516: 4515: 4513: 4509: 4506: 4504: 4503:4-dimensional 4500: 4490: 4487: 4486: 4484: 4482: 4478: 4472: 4469: 4467: 4464: 4462: 4459: 4457: 4454: 4452: 4449: 4447: 4444: 4443: 4441: 4439: 4435: 4429: 4426: 4424: 4421: 4419: 4416: 4414: 4413:Centered cube 4411: 4409: 4406: 4405: 4403: 4401: 4397: 4394: 4392: 4391:3-dimensional 4388: 4378: 4375: 4373: 4370: 4368: 4365: 4363: 4360: 4358: 4355: 4353: 4350: 4348: 4345: 4343: 4340: 4338: 4335: 4333: 4330: 4329: 4327: 4325: 4321: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4277: 4275: 4272: 4271: 4269: 4267: 4263: 4260: 4258: 4257:2-dimensional 4254: 4250: 4246: 4241: 4237: 4227: 4224: 4222: 4219: 4217: 4214: 4212: 4209: 4207: 4204: 4202: 4201:Nonhypotenuse 4199: 4198: 4195: 4188: 4184: 4174: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4154: 4151: 4150: 4147: 4140: 4136: 4126: 4123: 4121: 4118: 4116: 4113: 4111: 4108: 4106: 4103: 4101: 4098: 4096: 4093: 4091: 4088: 4087: 4084: 4079: 4074: 4070: 4060: 4057: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4036: 4033: 4026: 4022: 4012: 4009: 4007: 4004: 4002: 3999: 3997: 3994: 3992: 3989: 3987: 3984: 3982: 3979: 3978: 3975: 3970: 3964: 3960: 3950: 3947: 3945: 3942: 3940: 3939:Perfect power 3937: 3935: 3932: 3930: 3929:Seventh power 3927: 3925: 3922: 3920: 3917: 3915: 3912: 3910: 3907: 3905: 3902: 3900: 3897: 3895: 3892: 3890: 3887: 3885: 3882: 3881: 3878: 3873: 3868: 3864: 3860: 3852: 3847: 3845: 3840: 3838: 3833: 3832: 3829: 3817: 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3787: 3784: 3782: 3779: 3777: 3774: 3773: 3771: 3767: 3761: 3758: 3756: 3755:Polydivisible 3753: 3751: 3748: 3746: 3743: 3741: 3738: 3736: 3733: 3732: 3730: 3727: 3723: 3717: 3714: 3712: 3709: 3706: 3702: 3699: 3697: 3694: 3693: 3691: 3688: 3684: 3678: 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3658: 3657:Superabundant 3655: 3653: 3650: 3648: 3645: 3643: 3640: 3639: 3637: 3633: 3627: 3626:ErdĹ‘s–Nicolas 3624: 3622: 3619: 3617: 3614: 3612: 3609: 3607: 3604: 3602: 3599: 3597: 3594: 3592: 3589: 3587: 3584: 3582: 3579: 3577: 3574: 3573: 3571: 3567: 3561: 3558: 3556: 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3536: 3535:Perfect power 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3498: 3497: 3495: 3491: 3486: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3447: 3445: 3441: 3432: 3427: 3425: 3420: 3418: 3413: 3412: 3409: 3402: 3399: 3396: 3393: 3392: 3388: 3381: 3377: 3373: 3369: 3365: 3361: 3360: 3354: 3351: 3347: 3343: 3339: 3336:(1–2): 3–14, 3335: 3331: 3326: 3323: 3319: 3315: 3311: 3307: 3303: 3299: 3295: 3290: 3286: 3282: 3278: 3274: 3270: 3266: 3260: 3254: 3249: 3245: 3239: 3235: 3230: 3229:Størmer, Carl 3226: 3222: 3221: 3215: 3211: 3207: 3203: 3199: 3195: 3191: 3187: 3183: 3182: 3176: 3172: 3168: 3164: 3160: 3156: 3152: 3148: 3144: 3140: 3136: 3135: 3129: 3125: 3121: 3117: 3113: 3109: 3105: 3101: 3097: 3093: 3092: 3087: 3083: 3078: 3074: 3070: 3067: 3063: 3059: 3055: 3050: 3047: 3045: 3040: 3038: 3035: 3029: 3025: 3021: 3017: 3013: 3009: 3008: 3000: 2996: 2992: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2964:Quattro Libri 2961: 2957: 2953: 2949: 2945: 2941: 2937: 2933: 2932: 2926: 2922: 2918: 2914: 2910: 2906: 2902: 2897: 2892: 2888: 2884: 2883: 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2846: 2842: 2841: 2835: 2831: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2802: 2796: 2792: 2788: 2784: 2780: 2776: 2771: 2767: 2763: 2759: 2755: 2751: 2747: 2746: 2740: 2735: 2730: 2726: 2722: 2715: 2710: 2706: 2705: 2700: 2696: 2688: 2687: 2682: 2678: 2675: 2669: 2665: 2661: 2660: 2655: 2651: 2647: 2645:0-387-97993-X 2641: 2637: 2633: 2632: 2627: 2623: 2619: 2614: 2609: 2605: 2601: 2597: 2593: 2588: 2583: 2578: 2574: 2568: 2564: 2560: 2556: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2526: 2520: 2510:on 2016-04-24 2506: 2502: 2495: 2494: 2488: 2484: 2480: 2476: 2472: 2468: 2464: 2460: 2456: 2452: 2448: 2447: 2442: 2438: 2437: 2432: 2424: 2419: 2417: 2413: 2409: 2405: 2404:Barton (1908) 2400: 2397: 2393: 2388: 2385: 2381: 2376: 2373: 2369: 2364: 2361: 2357: 2352: 2349: 2345: 2339: 2336: 2332: 2328: 2322: 2319: 2315: 2310: 2307: 2303: 2302:Silver (1971) 2299: 2295: 2291: 2286: 2283: 2279: 2274: 2271: 2267: 2266:Kopiez (2003) 2262: 2259: 2255: 2251: 2247: 2246:Habens (1889) 2243: 2238: 2235: 2231: 2226: 2224: 2222: 2218: 2214: 2213:Clarke (1877) 2209: 2206: 2202: 2198: 2192: 2189: 2185: 2180: 2178: 2174: 2170: 2165: 2163: 2161: 2157: 2153: 2148: 2145: 2141: 2136: 2134: 2132: 2128: 2124: 2119: 2116: 2112: 2107: 2104: 2100: 2095: 2092: 2088: 2083: 2081: 2079: 2075: 2071: 2065: 2062: 2055: 2053: 2051: 2047: 2042: 2040: 2036: 2035: 2030: 2027:Book VIII of 2025: 2023: 2019: 2015: 2011: 2006: 1992: 1984: 1968: 1948: 1940: 1933: 1931: 1917: 1909: 1893: 1885: 1884:Bruins (1970) 1881: 1863: 1860: 1857: 1853: 1830: 1826: 1817: 1801: 1793: 1788: 1786: 1781: 1779: 1775: 1771: 1768: 1748: 1745: 1725: 1722: 1702: 1699: 1691: 1675: 1667: 1652: 1632: 1629: 1609: 1606: 1586: 1583: 1575: 1572: 1571: 1570: 1568: 1564: 1560: 1556: 1552: 1544: 1542: 1540: 1536: 1532: 1528: 1523: 1521: 1517: 1513: 1509: 1506:), 10/9 (the 1505: 1501: 1497: 1493: 1489: 1488:perfect fifth 1485: 1466: 1462: 1459: 1456: 1445: 1426: 1423: 1420: 1417: 1414: 1402: 1400: 1396: 1392: 1388: 1384: 1379: 1374: 1372: 1368: 1364: 1360: 1355: 1351: 1347: 1343: 1339: 1331: 1329: 1327: 1311: 1291: 1284:generated by 1266: 1262: 1258: 1253: 1249: 1244: 1241: 1238: 1235: 1231: 1226: 1222: 1218: 1213: 1209: 1198: 1194: 1190: 1184: 1181: 1176: 1171: 1167: 1153: 1149: 1145: 1125: 1105: 1101: 1095: 1091: 1070: 1066: 1062: 1040: 1036: 1015: 1007: 1003: 995: 994:Seleucid Uruk 990: 983: 981: 979: 975: 959: 936: 933: 930: 927: 924: 918: 898: 892: 889: 886: 880: 877: 871: 868: 865: 862: 859: 856: 853: 850: 847: 844: 838: 833: 824: 819: 813: 810: 806: 782: 774: 758: 753: 749: 746: 741: 737: 732: 729: 724: 720: 715: 712: 707: 703: 691: 675: 655: 652: 647: 643: 639: 634: 630: 626: 621: 617: 596: 593: 590: 587: 584: 581: 578: 575: 572: 569: 566: 563: 560: 557: 554: 551: 548: 545: 542: 534: 515: 512: 509: 506: 503: 480: 458: 454: 450: 445: 441: 437: 432: 428: 424: 421: 412: 410: 403: 398: 392: 389: 376: 372: 351: 348: 345: 342: 336: 332: 327: 314: 293: 273: 253: 231: 227: 223: 218: 214: 210: 205: 201: 192: 185:Number theory 184: 179: 175: 171: 167: 163: 159: 156: 152: 148: 145: 141: 137: 134: 130: 126: 122: 118: 108: 100: 99:prime factors 96: 92: 91:number theory 88: 87: 86: 83: 81: 77: 73: 69: 65: 61: 54: 50: 46: 45:Hasse diagram 41: 35: 34:regular prime 27: 19: 5483:Transposable 5347:Narcissistic 5254:Digital root 5174:Super-Poulet 5148: 5134:Jordan–PĂłlya 5083:prime factor 4988:Noncototient 4955:Almost prime 4937:Superperfect 4912:Refactorable 4907:Quasiperfect 4882:Hyperperfect 4723:Pseudoprimes 4694:Wall–Sun–Sun 4629:Ordered Bell 4599:Fuss–Catalan 4511:non-centered 4461:Dodecahedral 4438:non-centered 4324:non-centered 4226:Wolstenholme 3971:× 2 ± 1 3968: 3967:Of the form 3934:Eighth power 3914:Fourth power 3816:Superperfect 3811:Refactorable 3606:Superperfect 3601:Hyperperfect 3586:Quasiperfect 3549: 3470:Prime factor 3366:(8): 71–75, 3363: 3357: 3333: 3329: 3297: 3293: 3268: 3264: 3258: 3247: 3243: 3237: 3233: 3217: 3185: 3179: 3138: 3132: 3115: 3095: 3089: 3077:Music Review 3076: 3057: 3053: 3043: 3036: 3033: 3011: 3005: 2995:Knuth, D. E. 2971: 2967: 2963: 2935: 2929: 2886: 2885:, Series A, 2880: 2847:(4): 81–86, 2844: 2838: 2805: 2799: 2782: 2778: 2749: 2743: 2724: 2720: 2703: 2685: 2658: 2630: 2598:(377): 253, 2595: 2591: 2581: 2554: 2529: 2523: 2512:, retrieved 2505:the original 2492: 2450: 2444: 2441:Aaboe, Asger 2399: 2387: 2375: 2363: 2351: 2338: 2321: 2309: 2298:Størmer 1897 2285: 2273: 2261: 2237: 2208: 2201:Plimpton 322 2191: 2169:Knuth (1972) 2152:Sachs (1947) 2147: 2140:Aaboe (1965) 2118: 2106: 2094: 2064: 2043: 2032: 2026: 2007: 1937: 1792:Knuth (1972) 1789: 1782: 1764: 1566: 1562: 1548: 1538: 1531:architecture 1524: 1502:), 9/8 (the 1498:), 6/5 (the 1494:), 5/4 (the 1490:), 4/3 (the 1486:), 3/2 (the 1403: 1375: 1361:of a single 1352:in a single 1338:music theory 1335: 1332:Music theory 1189:Plimpton 322 1185: 1180:Donald Knuth 1172: 1168: 999: 972:is given by 413: 406: 390: 375:prime factor 193:of the form 188: 165: 154: 151:architecture 140:music theory 128: 124: 94: 84: 59: 58: 49:divisibility 26: 5504:Extravagant 5499:Equidigital 5454:permutation 5413:Palindromic 5387:Automorphic 5285:Sum-product 5264:Sum-product 5219:Persistence 5114:ErdĹ‘s–Woods 5036:Untouchable 4917:Semiperfect 4867:Hemiperfect 4528:Tesseractic 4466:Icosahedral 4446:Tetrahedral 4377:Dodecagonal 4078:Recursively 3949:Prime power 3924:Sixth power 3919:Fifth power 3899:Power of 10 3857:Classes of 3740:Extravagant 3735:Equidigital 3696:Untouchable 3616:Semiperfect 3596:Hemiperfect 3525:Square-free 3401:RosettaCode 2738:, page 375. 2331:Yuen (1992) 2325:See, e.g., 2278:Wolf (2003) 1195:as listing 1002:sexagesimal 978:G. H. Hardy 533:tetrahedron 133:sexagesimal 53:logarithmic 5765:Categories 5716:Graphemics 5589:Pernicious 5443:Undulating 5418:Pandigital 5392:Trimorphic 4993:Nontotient 4842:Arithmetic 4456:Octahedral 4357:Heptagonal 4347:Pentagonal 4332:Triangular 4173:SierpiĹ„ski 4095:Jacobsthal 3894:Power of 3 3889:Power of 2 3776:Arithmetic 3769:Other sets 3728:-dependent 2514:2007-03-15 2433:References 1778:generative 1774:imperative 1545:Algorithms 1193:Neugebauer 1006:reciprocal 174:algorithms 144:five-limit 5473:Parasitic 5322:Factorion 5249:Digit sum 5241:Digit sum 5059:Fortunate 5046:Primorial 4960:Semiprime 4897:Practical 4862:Descartes 4857:Deficient 4847:Betrothed 4689:Wieferich 4518:Pentatope 4481:pyramidal 4372:Decagonal 4367:Nonagonal 4362:Octagonal 4352:Hexagonal 4211:Practical 4158:Congruent 4090:Fibonacci 4054:Loeschian 3806:Descartes 3781:Deficient 3716:Betrothed 3621:Practical 3510:Semiprime 3505:Composite 3350:191457676 3171:163783242 3039:(2), 1976 2483:164195082 1395:consonant 1359:harmonics 1219:− 934:⁡ 928:⁡ 890:⁡ 869:⁡ 860:⁡ 851:⁡ 814:⁡ 747:⁡ 730:⁡ 713:⁡ 653:≤ 640:⋅ 627:⋅ 591:⁡ 585:≤ 579:⁡ 564:⁡ 549:⁡ 451:⋅ 438:⋅ 340:⌉ 325:⌈ 224:⋅ 211:⋅ 5545:Friedman 5478:Primeval 5423:Repdigit 5380:-related 5327:Kaprekar 5301:Meertens 5224:Additive 5211:dynamics 5119:Friendly 5031:Sociable 5021:Amicable 4832:Abundant 4812:dynamics 4634:Schröder 4624:Narayana 4594:Eulerian 4584:Delannoy 4579:Dedekind 4400:centered 4266:centered 4153:Amenable 4110:Narayana 4100:Leonardo 3996:Mersenne 3944:Powerful 3884:Achilles 3791:Solitary 3786:Friendly 3711:Sociable 3701:Amicable 3689:-related 3642:Abundant 3540:Achilles 3530:Powerful 3443:Overview 3380:18283005 3322:25963600 3285:14764894 3236:− 2997:(1972), 2952:16321292 2921:15913795 2861:28906392 2701:(2007), 2683:(1981), 2628:(1996), 2034:Republic 1645:, where 1535:Palladio 1371:interval 1175:Seleucid 1028:divides 168:, after 95:5-smooth 5718:related 5682:related 5646:related 5644:Sorting 5529:Vampire 5514:Harshad 5456:related 5428:Repunit 5342:Lychrel 5317:Dudeney 5169:Størmer 5164:Sphenic 5149:Regular 5087:divisor 5026:Perfect 4922:Sublime 4892:Perfect 4619:Motzkin 4574:Catalan 4115:Padovan 4049:Leyland 4044:Idoneal 4039:Hilbert 4011:Woodall 3796:Sublime 3750:Harshad 3576:Perfect 3560:Unusual 3550:Regular 3520:Sphenic 3455:Divisor 3302:Bibcode 3212:(ed.), 3202:2316896 3163:0022180 3155:1359434 3124:1403941 3028:7829945 2913:2269551 2830:0313189 2822:2317424 2766:1006080 2664:129–134 2636:172–176 2600:Bibcode 2559:Bibcode 2475:0191779 2467:1359089 2254:tonnetz 2050:masting 1783:In the 1690:merging 1387:tonnetz 1350:pitches 1344:of the 400:in the 397:A051037 191:integer 5584:Odious 5509:Frugal 5463:Cyclic 5452:Digit- 5159:Smooth 5144:Pronic 5104:Cyclic 5081:Other 5054:Euclid 4704:Wilson 4678:Primes 4337:Square 4206:Polite 4168:Riesel 4163:Knödel 4125:Perrin 4006:Thabit 3991:Fermat 3981:Cullen 3904:Square 3872:Powers 3745:Frugal 3705:Triple 3545:Smooth 3515:Pronic 3378:  3348:  3320:  3283:  3200:  3169:  3161:  3153:  3122:  3104:843638 3102:  3026:  2988:989675 2986:  2950:  2919:  2911:  2859:  2828:  2820:  2791:765355 2789:  2764:  2670:  2642:  2592:Nature 2569:  2546:592627 2544:  2481:  2473:  2465:  2046:bamboo 1985:is an 1878:. See 1738:, and 1622:, and 1484:octave 1354:octave 1340:, the 690:volume 371:smooth 286:, and 78:, and 5625:Prime 5620:Lucky 5609:sieve 5538:Other 5524:Smith 5404:Digit 5362:Happy 5337:Keith 5310:Other 5154:Rough 5124:Giuga 4589:Euler 4451:Cubic 4105:Lucas 4001:Proth 3760:Smith 3677:Weird 3555:Rough 3500:Prime 3376:S2CID 3346:S2CID 3281:S2CID 3261:= 235 3198:JSTOR 3167:S2CID 3151:JSTOR 3100:JSTOR 3024:S2CID 3002:(PDF) 2984:JSTOR 2948:S2CID 2917:S2CID 2891:arXiv 2857:S2CID 2818:JSTOR 2787:JSTOR 2762:JSTOR 2717:(PDF) 2690:(PDF) 2542:JSTOR 2508:(PDF) 2497:(PDF) 2479:S2CID 2463:JSTOR 2056:Notes 2029:Plato 1383:Euler 1367:limit 383:most 111:than 5579:Evil 5259:Self 5209:and 5099:Blum 4810:and 4614:Lobb 4569:Cake 4564:Bell 4314:Star 4221:Ulam 4120:Pell 3909:Cube 3726:Base 3318:PMID 3240:= ±1 3218:The 3034:CACM 2668:ISBN 2640:ISBN 2567:ISBN 2195:See 1767:lazy 1559:1981 1555:1976 1391:grid 1304:and 402:OEIS 5697:Ban 5085:or 4604:Lah 3368:doi 3338:doi 3310:doi 3273:doi 3263:", 3250:(2) 3190:doi 3143:doi 3062:doi 3016:doi 2976:doi 2966:", 2940:doi 2901:doi 2887:113 2849:doi 2810:doi 2754:doi 2729:doi 2608:doi 2534:doi 2455:doi 2329:or 2031:'s 1906:. 1845:to 1522:). 1385:'s 1336:In 931:log 925:log 887:log 795:is 738:log 721:log 704:log 319:max 160:In 138:In 127:or 89:In 47:of 5767:: 3374:, 3364:27 3362:, 3344:, 3334:22 3332:, 3316:, 3308:, 3298:18 3296:, 3279:, 3269:13 3267:, 3246:, 3238:Dy 3216:, 3196:, 3186:78 3184:, 3165:, 3159:MR 3157:, 3149:, 3137:, 3120:MR 3096:18 3094:, 3058:20 3056:, 3037:19 3022:, 3012:15 3010:, 3004:, 2982:, 2972:41 2970:, 2946:, 2936:34 2934:, 2924:}. 2915:, 2909:MR 2907:, 2899:, 2855:, 2845:23 2843:, 2826:MR 2824:, 2816:, 2806:79 2804:, 2783:16 2781:, 2777:, 2760:, 2750:55 2748:, 2725:25 2723:, 2719:, 2666:, 2638:, 2624:; 2606:, 2596:15 2594:, 2565:, 2540:, 2530:29 2528:, 2477:, 2471:MR 2469:, 2461:, 2451:19 2449:, 2415:^ 2406:; 2220:^ 2176:^ 2159:^ 2130:^ 2077:^ 1930:. 1854:60 1827:60 1715:, 1599:, 1557:, 1541:. 1092:60 1037:60 980:. 866:ln 857:ln 848:ln 825:30 811:ln 588:ln 576:ln 561:ln 546:ln 315:60 266:, 74:, 68:30 64:60 43:A 3969:a 3850:e 3843:t 3836:v 3707:) 3703:( 3430:e 3423:t 3416:v 3383:. 3370:: 3340:: 3312:: 3304:: 3288:. 3275:: 3259:N 3252:. 3248:I 3234:x 3205:. 3192:: 3174:. 3145:: 3139:1 3127:. 3107:. 3081:. 3064:: 3018:: 2978:: 2955:. 2942:: 2903:: 2893:: 2877:n 2864:. 2851:: 2833:. 2812:: 2794:. 2769:. 2756:: 2731:: 2708:. 2694:. 2649:. 2617:. 2610:: 2602:: 2586:. 2576:. 2561:: 2549:. 2536:: 2518:. 2486:. 2457:: 2425:. 2410:. 2394:. 2382:. 2370:. 2358:. 2346:. 2333:. 2316:. 2304:. 2296:( 2280:. 2268:. 2232:. 2215:. 2186:. 2171:. 2154:. 2142:. 2125:. 2113:. 2101:. 2089:. 2072:. 1993:n 1969:n 1949:n 1918:k 1894:k 1864:1 1861:+ 1858:k 1831:k 1802:k 1761:. 1749:H 1746:5 1726:H 1723:3 1703:H 1700:2 1676:H 1653:h 1633:h 1630:5 1610:h 1607:3 1587:h 1584:2 1467:x 1463:1 1460:+ 1457:x 1430:) 1427:1 1424:+ 1421:x 1418:, 1415:x 1412:( 1312:q 1292:p 1272:) 1267:2 1263:q 1259:+ 1254:2 1250:p 1245:, 1242:q 1239:p 1236:2 1232:, 1227:2 1223:q 1214:2 1210:p 1206:( 1154:n 1150:/ 1146:1 1126:n 1106:n 1102:/ 1096:k 1071:n 1067:/ 1063:1 1041:k 1016:n 960:N 940:) 937:N 922:( 919:O 899:, 896:) 893:N 884:( 881:O 878:+ 872:5 863:3 854:2 845:6 839:3 834:) 830:) 820:N 817:( 807:( 783:N 759:. 754:6 750:N 742:5 733:N 725:3 716:N 708:2 676:N 656:N 648:k 644:5 635:j 631:3 622:i 618:2 597:, 594:N 582:5 573:k 570:+ 567:3 558:j 555:+ 552:2 543:i 519:) 516:k 513:, 510:j 507:, 504:i 501:( 481:N 459:k 455:5 446:j 442:3 433:i 429:2 425:= 422:n 404:) 387:. 385:k 379:k 355:) 352:k 349:, 346:j 343:, 337:2 333:/ 328:i 322:( 294:k 274:j 254:i 232:k 228:5 219:j 215:3 206:i 202:2 180:. 157:. 115:. 113:k 105:- 103:k 80:5 76:3 72:2 55:. 36:. 20:)

Index

Regular numbers
regular prime

Hasse diagram
divisibility
logarithmic
60
30
2
3
5
number theory
prime factors
smooth numbers
Babylonian mathematics
sexagesimal
music theory
five-limit
just intonation
architecture
computer science
Richard Hamming
algorithms
functional programming
integer
smooth
prime factor
A051037
OEIS
On-Line Encyclopedia of Integer Sequences

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑