Knowledge (XXG)

Reinforced concrete structures durability

Source đź“ť

1306:
For each degradation process, design equations are set to evaluate the probability of failure of predefined performances of the structure, where acceptable probability is selected on the basis of the limit state considered. The degradation processes are still described with the models previously defined for carbonation-induced and chloride-induced corrosion, but to reflect the statistical nature of the problem, the variables are considered as probability distribution curves over time. To assess some of the durability design parameters, the use of accelerated laboratory test is suggested, such as the so called Rapid Chloride Migration Test to evaluate chloride penetration resistance of concrete '. Through the application of corrective parameters, the long-term behaviour of the structure in real exposure conditions may be evaluated.
45: 872:. Chloride binding is another phenomenon affecting the kinetic of chloride penetration. Part of the total chloride ions can be absorbed or can chemically react with some constituents of the cement paste, leading to a reduction of chlorides in the pore solution (free chlorides that are steel able to penetrate in concrete). The ability of a concrete to chloride binding is related to the cement type, being higher for blended cements containing silica fume, fly ash or furnace slag. 1310:
particularly aggressive. Anyway, the applicability of this kind of models is still limited. The main critical issues still concern, for instance, the individuation of accelerated laboratory tests able to characterize concrete performances, reliable corrective factors to be used for the evaluation of long-term durability performances and the validation of these models based on real long-term durability performances.
2240: 1290: 1281:
considered not completely exhaustive in some cases. The simple prescriptions do not allow to optimize the design for different parts of the structures with different local exposure conditions. Furthermore, they do not allow to consider the effects on service life of special measures such as the use of additional protections.
860:. Current regulations forbid the use of chloride contaminated raw materials, therefore one factor influencing the initiation time is chloride penetration rate from the environment. This is a complex task, because chloride solutions penetrate in concrete through the combination of several transport phenomena, such as 191:
reaches the steel surface, altering the local pH value of the environment, the protective thin film of oxides on the steel surface becomes instable, and corrosion initiates involving an extended portion of the steel surface. One of the most simplified and accredited models describing the propagation
1280:
This approach represents an improvement step for the durability design of reinforced concrete structures, it is suitable for the design of ordinary structures designed with traditional materials (Portland cement, carbon steel rebar) and with an expected service life of 50 years. Nevertheless, it is
1305:
Model Code for Service Life Design, is based on a probabilistic approach, similar to the one adopted for structural design. Environmental factors are considered as loads S(t), while material properties such as chloride penetration resistance are considered as resistances R(t) as shown in Figure 2.
1309:
The use of probabilistic service life models allows to implement a real durability design that could be implemented in the design stage of structures. This approach is of particular interest when an extended service life is required (>50 years) or when the environmental exposure conditions are
1276:
It is the standardized method to deal with durability, also known as deem-to-satisfy approach, and provided by current european regulation EN 206. It is required that the designer identifies the environmental exposure conditions and the expected degradation process, assessing the correct exposure
1267:
The durability assessment has been implemented in European design codes at the beginning of the 90s. It is required for designers to include the effects of long-term corrosion of steel rebar during the design stage, in order to avoid unacceptable damages during the service life of the structure.
1297:
Performance-based approaches provide for a real design of durability, based on models describing the evolution in time of degradation processes, and the definition of times at which defined limit states will be reached. To consider the wide variety of service life influencing factors and their
27:
has been recently introduced in national and international regulations. It is required that structures are designed to preserve their characteristics during the service life, avoiding premature failure and the need of extraordinary maintenance and restoration works. Considerable efforts have
1383:
Fidjestol, P., & Tutti, K. (1998). Chloride induced corrosion in high performance concrete–lifetime versus diffusivity and resistivity. In Concrete Under Severe Conditions 2: Environment and Loading: Proceedings of the Second International Conference on Concrete Under Severe Conditions,
170:
The identification of initiation time and propagation time is useful to further identify the main variables and processes influencing the service life of the structure which are specific of each service life phase and of the degradation process considered.
64:
values around 13. In these conditions, passivation of steel rebar occurs, due to a spontaneous generation of a thin film of oxides able to protect the steel from corrosion. Over time, the thin film can be damaged, and corrosion of steel rebar starts. The
771:. For intermediate concrete humidity content, corrosion rate increases with increasing the concrete humidity content. Since the humidity content in a concrete can significantly vary along the year, it is general not possible to define a constant 730:
is generally available at the steel surface, except for submerged structures. If pores are constantly fully saturated, a very low amount of oxygen reaches the steel surface and corrosion rate can be considered negligible. For very dry concretes
162:: which is defined as the time from the onset of active corrosion until an ultimate limit state is reached, i.e. corrosion propagation reaches a limit value corresponding to unacceptable structural damage, such as cracking and detachment of the 1229:. There are various influencing factors, such as are the potential of steel rebar and the pH of the solution included in concrete pores. Moreover, pitting corrosion initiation is a phenomenon with a stochastic nature, therefore also 855:
to the steel surface, above a certain critical amount, can locally break the protective thin film of oxides on the steel surface, even if concrete is still alkaline, causing a very localized and aggressive form of corrosion known as
394:
is the key design parameter to assess initiation time in the case of carbonation-induced corrosion. It is expressed in mm/year and depends on the characteristics of concrete and the exposure conditions. The penetration of gaseous
1072:
and D known, the equation can be used to evaluate the temporal evolution of the chloride concentration profile in the concrete cover and evaluate the initiation time as the moment in which critical chloride threshold
458:, several models have been proposed. In a simplified but commonly accepted method, the propagation time is evaluated as function of the corrosion propagation rate. If the corrosion rate is considered constant, t 447:
at hardened state, and is therefore subjected to a higher carbonation rate. The influencing factors concerning the exposure conditions are the environmental temperature, humidity and concentration of CO
1397:
Concrete Under Severe Conditions 2: Environment and Loading : Proceedings of the Second International Conference on Concrete Under Severe Conditions, CONSEC '98, Tromsø, Norway, June 21-24, 1998
1199:
and D can not be considered constant in time, and that the transport penetration of chlorides can be considered as pure diffusion only for submerged structures. A further issue is the assessment of
344: 531: 1133:
and D can be identified calculating the best-fit curve for measured chloride concertation profiles. From concrete samples retrieved on field is therefore possible to define the values of C
451:. Carbonation rate is higher for environments with higher humidity and temperature, and increases in polluted environments such as urban centres and inside close spaces as tunnels. 130:
and chlorides) to penetrate the concrete cover thickness, reach the embedded steel rebar, alter the initial passivation condition on steel surface and cause corrosion initiation.
89:
degradation process, a simple and accredited model for the assessment of the service life is the one proposed by Tuutti, in 1982. According to this model, the service life of a
980: 875:
Being the modelling of chloride penetration in concrete particularly complex, a simplified correlation is generally adopted, which was firstly proposed by Collepardi in 1972
225: 44: 2178: 1302: 841: 805: 765: 716: 606: 680: 643: 566: 1257: 1227: 1101: 1197: 1162: 1131: 1070: 1043: 1009: 158: 122: 289:
is the carbonation coefficient. The corrosion onset takes place when the carbonation depth reaches the concrete cover thickness, and therefore can be evaluated as
1106:
However, there are many critical issues related to the practical use of this model. For existing reinforced concrete structures in chloride-bearing environment
392: 366: 287: 267: 247: 126:: from the moment the structure is built, to the moment corrosion initiates on steel rebar. More in particular, it is the time required for aggressive agents ( 2279: 1626: 1172:
process) and type of cement used. Furthermore, for the evaluation of long-term behaviour of structure, a critical issue is related to the fact that
1277:
class. Once this is defined, design code gives standard prescriptions for w/c ratio, the cement content, and the thickness of the concrete cover.
1011:
is the chloride concentration at the exposed surface, x is the chloride penetration depth, D is the chloride diffusion coefficient, and t is time.
1575:
Duracrete (2000). "The European Union - Brite EuRam III, DuraCrete - Probabilistic Performance based Durability Design of Concrete Structures".
2067: 1405: 1741: 36:
structures, to be used during the design stage in order to assess the material characteristics and the structural layout of the structure.
2158: 1436: 1368: 1559: 1293:
Figure 2 - Failure probability and target service life in performance-based service life models for reinforced concrete structures
1926: 2289: 1656: 294: 192:
of carbonation in time is to consider penetration depth proportional to the square root of time, following the correlation
1699: 1619: 1532:
Collepardi, Mario; Marcialis, Aldo; Turriziani, Renato. "Penetration of Chloride Ions into Cement Pastes and Concretes".
2284: 1298:
variability, performance-based approaches address the problem from a probabilistic or semiprobabilistic point of view.
467: 2173: 2148: 2062: 2029: 1164:
and D. These parameters depend on the exposure conditions, the properties of concrete such as porosity (and therefore
1941: 1015: 2127: 1651: 1137:
and D for residual service life evaluation. On the other hand, for new structures it is more complicated to define
2163: 2024: 1964: 1779: 1694: 1612: 1936: 416: 1721: 1427:
Bertolini, Luca; Elsener, Bernhard; Pedeferri, Pietro; Redaelli, Elena; Polder, Rob B. (26 February 2013).
1165: 645:
must be defined in function of the limit state considered. Generally for carbonation-induced corrosion the
436: 2034: 1911: 1835: 1726: 1045:
is constant in time on the whole surface, and D is constant in time and through the concrete cover. With
2117: 1860: 880: 2153: 2054: 2049: 2009: 1921: 1784: 1483: 1324: 188: 180: 78: 29: 197: 2132: 2100: 2019: 1789: 1731: 1329: 852: 415:
diffusion in concrete. If concrete pores are completely and permanently saturated (for instance in
90: 82: 74: 49: 33: 22: 2274: 2105: 2014: 1931: 1499: 423:
diffusion is prevented. On the other hand, for completely dry concrete, the chemical reaction of
2269: 2243: 2199: 1999: 1994: 1969: 1951: 1865: 1845: 1681: 1666: 1555: 1474:
Bertolini, Luca (2008). "Steel corrosion and service life of reinforced concrete structures".
1432: 1401: 1395: 1364: 857: 810: 774: 734: 685: 575: 652: 615: 538: 2095: 2004: 1870: 1830: 1709: 1671: 1491: 1301:
The performance-based service life model proposed by the European project DuraCrete, and by
1232: 1202: 1076: 865: 1175: 1140: 1109: 1048: 1021: 987: 136: 100: 16:
Set of processes and factors determining the service life of reinforced concrete structures
2264: 2039: 1890: 1794: 1704: 1487: 2112: 2044: 1885: 1804: 1774: 1769: 1661: 869: 646: 377: 369: 351: 272: 252: 232: 184: 163: 127: 56:
Initially, the chemical reactions that normally occur in the cement paste, generate an
2258: 2085: 1984: 1974: 1880: 1503: 400: 2122: 1989: 1875: 1850: 28:
therefore made in the last decades in order to define useful models describing the
767:
is negligible due to the absence of water which prevents the chemical reaction of
2090: 1809: 1746: 1384:
CONSEC'98, Tromsø, Norway, June 21-24, 1998 (Vol. 1, p. 133). CRC Press. Chicago
424: 411:. The humidity content of concrete is one of the main influencing factors of CO 2194: 1979: 1959: 1751: 1495: 2225: 1517:
Arup, Hans (1983). "The mechanisms of the protection of steel by concrete".
861: 768: 719: 609: 569: 455: 408: 86: 77:
structures worldwide, mainly as a consequence of two degradation processes,
66: 2209: 2204: 1840: 1799: 1761: 1643: 1635: 1319: 1169: 444: 440: 432: 404: 1289: 2168: 1736: 1895: 1855: 1689: 1361:
Materiali da costruzione. 2, Degrado, prevenzione, diagnosi, restauro
727: 723: 57: 1429:
Corrosion of Steel in Concrete : Prevention, Diagnosis, Repair
1268:
Different approaches are then available for the durability design.
1814: 1716: 1288: 70: 43: 48:
Initiation and propagation periods of steel rebar corrosion in a
454:
To evaluate propagation time in the case of carbonation-induced
60:
environment, bringing the solution in the cement paste pores to
1608: 1452:
Tuutti, Kyösti (1982-10-21). "Corrosion of steel in concrete".
1018:
in the hypothesis that chloride initial content is zero, that
807:. One possible approach is to consider a mean annual value of 1604: 61: 649:
cracking is considered as limit state, and in this case a
1454:
Swedish Cement and Concrete Research Institute, Stockholm
718:
depends on the environmental factors in proximity of the
1235: 1205: 1178: 1143: 1112: 1079: 1051: 1024: 990: 883: 813: 777: 737: 688: 655: 618: 578: 541: 470: 380: 354: 339:{\displaystyle t_{i}=\left({\frac {c}{K}}\right)^{2}} 297: 275: 255: 235: 200: 139: 103: 179:
The initiation time is related to the rate at which
2218: 2187: 2141: 2078: 1950: 1904: 1823: 1760: 1680: 1642: 1519:
Corrosion of Reinforcement in Concrete Construction
1469: 1467: 1465: 1463: 93:structure can be divided into two distinct phases. 1593:FIB (2006). "Model code for service life design". 1251: 1221: 1191: 1156: 1125: 1095: 1064: 1037: 1003: 974: 835: 799: 759: 710: 674: 637: 600: 560: 525: 386: 360: 338: 281: 261: 241: 219: 152: 116: 73:is one of the main causes of premature failure of 526:{\displaystyle t_{p}={\frac {p_{lim}}{v_{corr}}}} 2179:International Federation for Structural Concrete 1353: 1351: 1349: 1347: 1345: 1521:. Chichester: Hellis Horwood. pp. 151–157. 427:cannot occur. Another influencing factor for CO 40:Service life of a reinforced concrete structure 1620: 8: 1394:Gjørv, O.E.; Sakai, K.; Banthia, N. (1998). 1577:Final Technical Report of Duracrete Project 1103:) is reached at the depth of steel rebar. 1627: 1613: 1605: 1259:can be defined only on statistical basis. 1545: 1543: 1240: 1234: 1210: 1204: 1183: 1177: 1148: 1142: 1117: 1111: 1084: 1078: 1056: 1050: 1029: 1023: 995: 989: 950: 941: 926: 909: 882: 818: 812: 782: 776: 742: 736: 693: 687: 660: 654: 623: 617: 583: 577: 546: 540: 506: 490: 484: 475: 469: 379: 353: 330: 316: 302: 296: 274: 254: 234: 210: 199: 144: 138: 108: 102: 1476:Structure and Infrastructure Engineering 1534:Journal of the American Ceramic Society 1341: 1588: 1586: 1552:Design of durable concrete structures 722:process, such as the availability of 7: 1742:Ground granulated blast-furnace slag 2159:Institution of Structural Engineers 726:and water at concrete cover depth. 1595:Committee Eurointernation du Beton 933: 930: 927: 14: 2280:Concrete buildings and structures 975:{\displaystyle C(x,t)=C_{s}\left} 2239: 2238: 1400:. E & FN Spon. p. 133. 435:. Concrete obtained with higher 1014:This equation is a solution of 682:equal to 100 ÎĽm is considered. 1657:Roman architectural revolution 899: 887: 439:or obtained with an incorrect 220:{\displaystyle x=K{\sqrt {t}}} 1: 175:Carbonation-induced corrosion 2174:Portland Cement Association 2149:American Concrete Institute 1363:(2. ed.). CittaStudi. 431:diffusion rate is concrete 2306: 1652:Ancient Roman architecture 1285:Performance-based approach 1016:Fick's II law of diffusion 847:Chloride-induced corrosion 249:is the carbonation depth, 52:structure (Tutti diagram). 2234: 2164:Indian Concrete Institute 1550:Matthews, Stuart (2014). 1496:10.1080/15732470601155490 572:penetration in steel and 1359:Bertolini, Luca (2012). 836:{\displaystyle v_{corr}} 800:{\displaystyle v_{corr}} 760:{\displaystyle v_{corr}} 711:{\displaystyle v_{corr}} 601:{\displaystyle v_{corr}} 443:process presents higher 370:concrete cover thickness 185:concrete cover thickness 164:concrete cover thickness 83:penetration of chlorides 1431:(2nd ed.). Wiley. 675:{\displaystyle p_{lim}} 638:{\displaystyle p_{lim}} 561:{\displaystyle p_{lim}} 2290:Structural engineering 1942:Alkali–silica reaction 1700:Energetically modified 1294: 1253: 1252:{\displaystyle C_{cl}} 1223: 1222:{\displaystyle C_{cl}} 1193: 1158: 1127: 1097: 1096:{\displaystyle C_{cl}} 1066: 1039: 1005: 976: 837: 801: 761: 712: 676: 639: 602: 562: 527: 388: 362: 340: 283: 263: 243: 221: 154: 118: 53: 1292: 1254: 1224: 1194: 1192:{\displaystyle C_{s}} 1159: 1157:{\displaystyle C_{s}} 1128: 1126:{\displaystyle C_{s}} 1098: 1067: 1065:{\displaystyle C_{s}} 1040: 1038:{\displaystyle C_{s}} 1006: 1004:{\displaystyle C_{s}} 977: 838: 802: 762: 713: 677: 640: 603: 563: 528: 462:can be estimated as: 389: 363: 341: 284: 264: 244: 222: 155: 153:{\displaystyle t_{p}} 119: 117:{\displaystyle t_{i}} 85:. With regard to the 47: 30:degradation processes 21:durability design of 1927:Environmental impact 1785:Reversing drum mixer 1325:Concrete degradation 1263:Corrosion prevention 1233: 1203: 1176: 1141: 1110: 1077: 1049: 1022: 988: 881: 870:hydrostatic pressure 811: 775: 735: 686: 653: 616: 576: 539: 468: 417:submerged structures 378: 352: 295: 273: 253: 233: 198: 137: 101: 2285:Reinforced concrete 1488:2008SIEng...4..123B 1330:Reinforced concrete 612:propagation rate. 160:, propagation time 91:reinforced concrete 75:reinforced concrete 50:reinforced concrete 34:reinforced concrete 23:reinforced concrete 2030:Self-consolidating 1722:Water–cement ratio 1295: 1249: 1219: 1189: 1154: 1123: 1093: 1062: 1035: 1001: 972: 833: 797: 757: 708: 672: 635: 598: 558: 523: 384: 358: 336: 279: 259: 239: 217: 183:propagates in the 150: 124:, initiation time 114: 54: 2252: 2251: 2244:Category:Concrete 2025:Roller-compacting 1846:Climbing formwork 1695:Calcium aluminate 1667:Roman engineering 1407:978-0-419-23860-7 1272:Standard approach 961: 958: 521: 387:{\displaystyle K} 361:{\displaystyle c} 324: 282:{\displaystyle K} 262:{\displaystyle t} 242:{\displaystyle x} 215: 2297: 2242: 2241: 2154:Concrete Society 1965:Fiber-reinforced 1780:Volumetric mixer 1672:Roman technology 1629: 1622: 1615: 1606: 1599: 1598: 1590: 1581: 1580: 1572: 1566: 1565: 1547: 1538: 1537: 1529: 1523: 1522: 1514: 1508: 1507: 1471: 1458: 1457: 1449: 1443: 1442: 1424: 1418: 1417: 1415: 1414: 1391: 1385: 1381: 1375: 1374: 1355: 1258: 1256: 1255: 1250: 1248: 1247: 1228: 1226: 1225: 1220: 1218: 1217: 1198: 1196: 1195: 1190: 1188: 1187: 1163: 1161: 1160: 1155: 1153: 1152: 1132: 1130: 1129: 1124: 1122: 1121: 1102: 1100: 1099: 1094: 1092: 1091: 1071: 1069: 1068: 1063: 1061: 1060: 1044: 1042: 1041: 1036: 1034: 1033: 1010: 1008: 1007: 1002: 1000: 999: 981: 979: 978: 973: 971: 967: 966: 962: 960: 959: 951: 942: 936: 914: 913: 866:capillary effect 851:The presence of 842: 840: 839: 834: 832: 831: 806: 804: 803: 798: 796: 795: 766: 764: 763: 758: 756: 755: 717: 715: 714: 709: 707: 706: 681: 679: 678: 673: 671: 670: 644: 642: 641: 636: 634: 633: 607: 605: 604: 599: 597: 596: 567: 565: 564: 559: 557: 556: 532: 530: 529: 524: 522: 520: 519: 501: 500: 485: 480: 479: 393: 391: 390: 385: 367: 365: 364: 359: 345: 343: 342: 337: 335: 334: 329: 325: 317: 307: 306: 288: 286: 285: 280: 268: 266: 265: 260: 248: 246: 245: 240: 226: 224: 223: 218: 216: 211: 159: 157: 156: 151: 149: 148: 123: 121: 120: 115: 113: 112: 2305: 2304: 2300: 2299: 2298: 2296: 2295: 2294: 2255: 2254: 2253: 2248: 2230: 2214: 2183: 2137: 2074: 1946: 1900: 1819: 1795:Flow table test 1756: 1676: 1638: 1633: 1603: 1602: 1592: 1591: 1584: 1574: 1573: 1569: 1562: 1549: 1548: 1541: 1531: 1530: 1526: 1516: 1515: 1511: 1473: 1472: 1461: 1451: 1450: 1446: 1439: 1426: 1425: 1421: 1412: 1410: 1408: 1393: 1392: 1388: 1382: 1378: 1371: 1358: 1356: 1343: 1338: 1316: 1287: 1274: 1265: 1236: 1231: 1230: 1206: 1201: 1200: 1179: 1174: 1173: 1144: 1139: 1138: 1136: 1113: 1108: 1107: 1080: 1075: 1074: 1052: 1047: 1046: 1025: 1020: 1019: 991: 986: 985: 946: 937: 919: 915: 905: 879: 878: 849: 814: 809: 808: 778: 773: 772: 738: 733: 732: 689: 684: 683: 656: 651: 650: 619: 614: 613: 579: 574: 573: 542: 537: 536: 502: 486: 471: 466: 465: 461: 450: 430: 422: 414: 398: 376: 375: 350: 349: 312: 311: 298: 293: 292: 271: 270: 251: 250: 231: 230: 196: 195: 177: 140: 135: 134: 104: 99: 98: 42: 17: 12: 11: 5: 2303: 2301: 2293: 2292: 2287: 2282: 2277: 2272: 2267: 2257: 2256: 2250: 2249: 2247: 2246: 2235: 2232: 2231: 2229: 2228: 2222: 2220: 2216: 2215: 2213: 2212: 2207: 2202: 2197: 2191: 2189: 2185: 2184: 2182: 2181: 2176: 2171: 2166: 2161: 2156: 2151: 2145: 2143: 2139: 2138: 2136: 2135: 2130: 2125: 2120: 2115: 2113:Concrete block 2110: 2109: 2108: 2103: 2101:voided biaxial 2098: 2093: 2082: 2080: 2076: 2075: 2073: 2072: 2071: 2070: 2065: 2057: 2052: 2047: 2042: 2037: 2032: 2027: 2022: 2017: 2012: 2007: 2002: 1997: 1992: 1987: 1982: 1977: 1972: 1967: 1962: 1956: 1954: 1948: 1947: 1945: 1944: 1939: 1934: 1929: 1924: 1919: 1914: 1908: 1906: 1902: 1901: 1899: 1898: 1893: 1888: 1883: 1878: 1873: 1868: 1863: 1858: 1853: 1848: 1843: 1838: 1833: 1827: 1825: 1821: 1820: 1818: 1817: 1812: 1807: 1805:Concrete cover 1802: 1797: 1792: 1787: 1782: 1777: 1775:Concrete mixer 1772: 1766: 1764: 1758: 1757: 1755: 1754: 1749: 1744: 1739: 1734: 1729: 1724: 1719: 1714: 1713: 1712: 1707: 1702: 1697: 1686: 1684: 1678: 1677: 1675: 1674: 1669: 1664: 1662:Roman concrete 1659: 1654: 1648: 1646: 1640: 1639: 1634: 1632: 1631: 1624: 1617: 1609: 1601: 1600: 1582: 1567: 1560: 1539: 1524: 1509: 1482:(2): 123–137. 1459: 1444: 1438:978-3527651719 1437: 1419: 1406: 1386: 1376: 1370:978-8825173680 1369: 1340: 1339: 1337: 1334: 1333: 1332: 1327: 1322: 1315: 1312: 1286: 1283: 1273: 1270: 1264: 1261: 1246: 1243: 1239: 1216: 1213: 1209: 1186: 1182: 1151: 1147: 1134: 1120: 1116: 1090: 1087: 1083: 1059: 1055: 1032: 1028: 998: 994: 970: 965: 957: 954: 949: 945: 940: 935: 932: 929: 925: 922: 918: 912: 908: 904: 901: 898: 895: 892: 889: 886: 848: 845: 830: 827: 824: 821: 817: 794: 791: 788: 785: 781: 754: 751: 748: 745: 741: 705: 702: 699: 696: 692: 669: 666: 663: 659: 647:concrete cover 632: 629: 626: 622: 595: 592: 589: 586: 582: 555: 552: 549: 545: 518: 515: 512: 509: 505: 499: 496: 493: 489: 483: 478: 474: 459: 448: 428: 420: 412: 396: 383: 357: 333: 328: 323: 320: 315: 310: 305: 301: 278: 258: 238: 214: 209: 206: 203: 176: 173: 168: 167: 147: 143: 131: 128:carbon dioxide 111: 107: 41: 38: 15: 13: 10: 9: 6: 4: 3: 2: 2302: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2262: 2260: 2245: 2237: 2236: 2233: 2227: 2224: 2223: 2221: 2217: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2192: 2190: 2186: 2180: 2177: 2175: 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2150: 2147: 2146: 2144: 2142:Organizations 2140: 2134: 2131: 2129: 2126: 2124: 2121: 2119: 2116: 2114: 2111: 2107: 2106:slab on grade 2104: 2102: 2099: 2097: 2094: 2092: 2089: 2088: 2087: 2084: 2083: 2081: 2077: 2069: 2066: 2064: 2061: 2060: 2058: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2035:Self-leveling 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1957: 1955: 1953: 1949: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1909: 1907: 1903: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1836:Cast-in-place 1834: 1832: 1829: 1828: 1826: 1822: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1767: 1765: 1763: 1759: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1735: 1733: 1732:Reinforcement 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1711: 1708: 1706: 1703: 1701: 1698: 1696: 1693: 1692: 1691: 1688: 1687: 1685: 1683: 1679: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1649: 1647: 1645: 1641: 1637: 1630: 1625: 1623: 1618: 1616: 1611: 1610: 1607: 1596: 1589: 1587: 1583: 1578: 1571: 1568: 1563: 1561:9781848061750 1557: 1553: 1546: 1544: 1540: 1535: 1528: 1525: 1520: 1513: 1510: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1470: 1468: 1466: 1464: 1460: 1455: 1448: 1445: 1440: 1434: 1430: 1423: 1420: 1409: 1403: 1399: 1398: 1390: 1387: 1380: 1377: 1372: 1366: 1362: 1354: 1352: 1350: 1348: 1346: 1342: 1335: 1331: 1328: 1326: 1323: 1321: 1318: 1317: 1313: 1311: 1307: 1304: 1299: 1291: 1284: 1282: 1278: 1271: 1269: 1262: 1260: 1244: 1241: 1237: 1214: 1211: 1207: 1184: 1180: 1171: 1167: 1149: 1145: 1118: 1114: 1104: 1088: 1085: 1081: 1057: 1053: 1030: 1026: 1017: 1012: 996: 992: 982: 968: 963: 955: 952: 947: 943: 938: 923: 920: 916: 910: 906: 902: 896: 893: 890: 884: 876: 873: 871: 867: 863: 859: 854: 846: 844: 828: 825: 822: 819: 815: 792: 789: 786: 783: 779: 770: 752: 749: 746: 743: 739: 729: 725: 721: 703: 700: 697: 694: 690: 667: 664: 661: 657: 648: 630: 627: 624: 620: 611: 593: 590: 587: 584: 580: 571: 568:is the limit 553: 550: 547: 543: 533: 516: 513: 510: 507: 503: 497: 494: 491: 487: 481: 476: 472: 463: 457: 452: 446: 442: 438: 434: 426: 418: 410: 406: 402: 401:porous medium 381: 373: 371: 355: 346: 331: 326: 321: 318: 313: 308: 303: 299: 290: 276: 269:is time, and 256: 236: 227: 212: 207: 204: 201: 193: 190: 186: 182: 174: 172: 165: 161: 145: 141: 132: 129: 125: 109: 105: 96: 95: 94: 92: 88: 84: 80: 76: 72: 68: 63: 59: 51: 46: 39: 37: 35: 31: 26: 24: 2118:Step barrier 2079:Applications 1990:Nanoconcrete 1916: 1876:Power trowel 1861:Power screed 1851:Slip forming 1824:Construction 1594: 1576: 1570: 1551: 1533: 1527: 1518: 1512: 1479: 1475: 1453: 1447: 1428: 1422: 1411:. Retrieved 1396: 1389: 1379: 1360: 1308: 1300: 1296: 1279: 1275: 1266: 1105: 1013: 983: 877: 874: 850: 534: 464: 453: 374: 347: 291: 228: 194: 187:. Once that 178: 169: 133: 97: 55: 20: 18: 2096:hollow-core 2055:Waste light 2050:Translucent 2010:Prestressed 1937:Segregation 1922:Degradation 1810:Cover meter 1747:Silica fume 1682:Composition 425:carbonation 407:occurs via 189:carbonation 181:carbonation 79:carbonation 2259:Categories 2195:Eurocode 2 2133:Structures 2020:Reinforced 1980:Lunarcrete 1960:AstroCrete 1917:Durability 1912:Properties 1790:Slump test 1762:Production 1752:Metakaolin 1413:2023-09-07 1336:References 32:affecting 25:structures 2275:Corrosion 2226:Hempcrete 2188:Standards 2015:Ready-mix 1932:Recycling 1727:Aggregate 1710:Rosendale 1504:109007701 1166:w/c ratio 924:− 862:diffusion 853:chlorides 769:corrosion 720:corrosion 610:corrosion 570:corrosion 456:corrosion 437:w/c ratio 409:diffusion 87:corrosion 69:of steel 67:corrosion 2270:Concrete 2219:See also 2210:EN 10080 2205:EN 206-1 2200:EN 197-1 2059:Aerated 2000:Polished 1995:Pervious 1970:Filigree 1866:Finisher 1841:Formwork 1705:Portland 1636:Concrete 1320:Concrete 1314:See also 445:porosity 433:porosity 405:concrete 403:such as 58:alkaline 2169:Nanocem 2128:Columns 2005:Polymer 1905:Science 1871:Grinder 1831:Precast 1737:Fly ash 1644:History 1554:. IHS. 1484:Bibcode 858:pitting 608:is the 368:is the 2265:Cement 2091:waffle 2040:Sulfur 1896:Tremie 1891:Sealer 1856:Screed 1800:Curing 1690:Cement 1558:  1502:  1435:  1404:  1367:  1170:curing 984:Where 728:Oxygen 724:oxygen 535:where 441:curing 348:where 229:where 2123:Roads 2045:Tabby 1952:Types 1886:Float 1815:Rebar 1770:Plant 1717:Water 1500:S2CID 399:in a 71:rebar 2086:Slab 2068:RAAC 1985:Mass 1975:Foam 1881:Pump 1556:ISBN 1433:ISBN 1402:ISBN 1365:ISBN 1168:and 868:and 419:) CO 81:and 19:The 2063:AAC 1492:doi 1303:FIB 372:. 2261:: 1585:^ 1542:^ 1498:. 1490:. 1478:. 1462:^ 1344:^ 864:, 843:. 395:CO 62:pH 1628:e 1621:t 1614:v 1597:. 1579:. 1564:. 1536:. 1506:. 1494:: 1486:: 1480:4 1456:. 1441:. 1416:. 1373:. 1357:. 1245:l 1242:c 1238:C 1215:l 1212:c 1208:C 1185:s 1181:C 1150:s 1146:C 1135:s 1119:s 1115:C 1089:l 1086:c 1082:C 1073:( 1058:s 1054:C 1031:s 1027:C 997:s 993:C 969:] 964:) 956:t 953:D 948:2 944:x 939:( 934:f 931:r 928:e 921:1 917:[ 911:s 907:C 903:= 900:) 897:t 894:, 891:x 888:( 885:C 829:r 826:r 823:o 820:c 816:v 793:r 790:r 787:o 784:c 780:v 753:r 750:r 747:o 744:c 740:v 704:r 701:r 698:o 695:c 691:v 668:m 665:i 662:l 658:p 631:m 628:i 625:l 621:p 594:r 591:r 588:o 585:c 581:v 554:m 551:i 548:l 544:p 517:r 514:r 511:o 508:c 504:v 498:m 495:i 492:l 488:p 482:= 477:p 473:t 460:p 449:2 429:2 421:2 413:2 397:2 382:K 356:c 332:2 327:) 322:K 319:c 314:( 309:= 304:i 300:t 277:K 257:t 237:x 213:t 208:K 205:= 202:x 166:. 146:p 142:t 110:i 106:t

Index

reinforced concrete
degradation processes
reinforced concrete

reinforced concrete
alkaline
pH
corrosion
rebar
reinforced concrete
carbonation
penetration of chlorides
corrosion
reinforced concrete
carbon dioxide
concrete cover thickness
carbonation
concrete cover thickness
carbonation
concrete cover thickness
porous medium
concrete
diffusion
submerged structures
carbonation
porosity
w/c ratio
curing
porosity
corrosion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑