Knowledge

Relaxor ferroelectric

Source 📝

93:
conventional ferroelectrics domains that are generally on the micro-length scale, and take less energy to align. Consequently, Relaxor Ferroelectrics have very high specific capacitance and have thus generated interest in the fields of energy storage. Furthermore, due to their slim hysteresis curve with high saturated polarization and low remnant polarization, Relaxor ferroelectrics have high discharge energy density and high discharge rates. BT-BZNT Multilayer Energy Storage Ceramic Capacitors (MLESCC) were experimentally determined to have very high efficiency(>80%) and stable thermal properties over a wide temperature range.
696: 753: 92:
and conversion as they have high dielectric constants, orders-of-magnitude higher than those of conventional ferroelectric materials. Like conventional ferroelectrics, Relaxor Ferroelectrics show permanent dipole moment in domains. However, these domains are on the nano-length scale, unlike
631:
Ortega, N; Kumar, A; Scott, J F; Chrisey, Douglas B; Tomazawa, M; Kumari, Shalini; Diestra, D G B; Katiyar, R S (2012-10-10). "Relaxor-ferroelectric superlattices: high energy density capacitors".
588:
Zhao, Peiyao; Wang, Hongxian; Wu, Longwen; Chen, Lingling; Cai, Ziming; Li, Longtu; Wang, Xiaohui (2019). "High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications".
214:
Ganesh, P.; Cockayne, E.; Ahart, M.; Cohen, R. E.; Burton, B.; Hemley, Russell J.; Ren, Yang; Yang, Wenge; Ye, Z.-G. (2010-04-05). "Origin of diffuse scattering in relaxor ferroelectrics".
534:
Drnovšek, Silvo; Casar, Goran; Uršič, Hana; Bobnar, Vid (2013-10-01). "Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system".
45:. As of 2015, although they have been studied for over fifty years, the mechanism for this effect is still not completely understood, and is the subject of continuing research. 813: 794: 267:
Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang (2014).
787: 737: 481:"Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness" 818: 833: 828: 780: 445:
and, and (September 1988). "Lead magnesium niobate relaxor ferroelectric ceramics of low-firing for multilayer capacitors".
153:
Takenaka, H.; Grinberg, I.; Rappe, A. M. (2013). "Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric".
823: 58: 64: 703: 70: 730: 52: 344:
Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure".
110:
Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure".
640: 543: 419: 353: 290: 233: 172: 119: 447:
Proceedings., Second International Conference on Properties and Applications of Dielectric Materials
672: 613: 567: 458: 369: 280: 249: 223: 196: 162: 135: 388: 723: 664: 656: 605: 559: 516: 508: 500: 326: 308: 188: 760: 648: 597: 551: 492: 450: 427: 403: 361: 316: 298: 241: 180: 127: 42: 695: 652: 479:
Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun (2014-12-24).
644: 547: 423: 357: 294: 237: 176: 123: 764: 752: 707: 321: 268: 89: 807: 617: 571: 462: 373: 253: 139: 38: 676: 200: 184: 245: 454: 365: 131: 660: 609: 563: 504: 312: 303: 668: 601: 555: 520: 330: 192: 407: 28: 17: 512: 496: 480: 431: 88:
Relaxor Ferroelectric materials find application in high efficiency
389:"Atomic Structure of Ultrasound Material Not What Anyone Expected" 285: 228: 167: 768: 711: 76:
Barium Titanium-Bismuth Zinc Niobium Tantalum (BT-BZNT)
27:"Relaxor" redirects here. For the hair treatment, see 79:Barium Titanium-Barium Strontium Titanium (BT-BST) 408:"Gradient chemical order in the relaxor Pb(MgNb)O" 273:Proceedings of the National Academy of Sciences 788: 731: 8: 269:"Role of random electric fields in relaxors" 48:Examples of relaxor ferroelectrics include: 795: 781: 738: 724: 320: 302: 284: 227: 166: 406:; LeBeau, James M. (19 February 2018). 102: 814:Electric and magnetic fields in matter 485:ACS Applied Materials & Interfaces 583: 581: 7: 749: 747: 692: 690: 633:Journal of Physics: Condensed Matter 474: 472: 59:lead magnesium niobate-lead titanate 402:Cabral, Matthew J.; Zhang, Shujun; 387:Shipman, Matt (20 February 2018). 25: 65:lead lanthanum zirconate titanate 751: 694: 653:10.1088/0953-8984/24/44/445901 185:10.1103/PhysRevLett.110.147602 1: 767:. You can help Knowledge by 710:. You can help Knowledge by 346:Journal of Materials Science 112:Journal of Materials Science 41:materials that exhibit high 850: 746: 689: 449:. pp. 125–128 vol.1. 246:10.1103/PhysRevB.81.144102 26: 590:Advanced Energy Materials 455:10.1109/ICPADM.1988.38349 366:10.1007/s10853-005-5915-7 132:10.1007/s10853-005-5915-7 704:condensed matter physics 819:Ferroelectric materials 536:Physica Status Solidi B 412:Applied Physics Letters 304:10.1073/pnas.1314780111 155:Physical Review Letters 834:Electromagnetism stubs 829:Condensed matter stubs 763:-related article is a 706:-related article is a 602:10.1002/aenm.201803048 556:10.1002/pssb.201349259 53:lead magnesium niobate 35:Relaxor ferroelectrics 71:lead scandium niobate 824:Electrical phenomena 404:Dickey, Elizabeth C. 645:2012JPCM...24R5901O 548:2013PSSBR.250.2232B 491:(24): 22417–22422. 424:2018ApPhL.112h2901C 358:2006JMatS..41...31B 295:2014PNAS..111.1754P 238:2010PhRvB..81n4102G 177:2013PhRvL.110n7602T 124:2006JMatS..41...31B 776: 775: 719: 718: 542:(10): 2232–2236. 497:10.1021/am506247w 432:10.1063/1.5016561 216:Physical Review B 16:(Redirected from 841: 797: 790: 783: 761:electromagnetism 755: 748: 740: 733: 726: 698: 691: 681: 680: 628: 622: 621: 585: 576: 575: 531: 525: 524: 476: 467: 466: 442: 436: 435: 399: 393: 392: 391:. NC State News. 384: 378: 377: 341: 335: 334: 324: 306: 288: 279:(5): 1754–1759. 264: 258: 257: 231: 211: 205: 204: 170: 150: 144: 143: 107: 43:electrostriction 21: 849: 848: 844: 843: 842: 840: 839: 838: 804: 803: 802: 801: 745: 744: 687: 685: 684: 630: 629: 625: 596:(17): 1803048. 587: 586: 579: 533: 532: 528: 478: 477: 470: 444: 443: 439: 401: 400: 396: 386: 385: 381: 343: 342: 338: 266: 265: 261: 213: 212: 208: 152: 151: 147: 109: 108: 104: 99: 86: 32: 23: 22: 15: 12: 11: 5: 847: 845: 837: 836: 831: 826: 821: 816: 806: 805: 800: 799: 792: 785: 777: 774: 773: 756: 743: 742: 735: 728: 720: 717: 716: 699: 683: 682: 639:(44): 445901. 623: 577: 526: 468: 437: 394: 379: 336: 259: 222:(14): 144102. 206: 161:(14): 147602. 145: 101: 100: 98: 95: 90:energy storage 85: 82: 81: 80: 77: 74: 68: 62: 56: 24: 14: 13: 10: 9: 6: 4: 3: 2: 846: 835: 832: 830: 827: 825: 822: 820: 817: 815: 812: 811: 809: 798: 793: 791: 786: 784: 779: 778: 772: 770: 766: 762: 757: 754: 750: 741: 736: 734: 729: 727: 722: 721: 715: 713: 709: 705: 700: 697: 693: 688: 678: 674: 670: 666: 662: 658: 654: 650: 646: 642: 638: 634: 627: 624: 619: 615: 611: 607: 603: 599: 595: 591: 584: 582: 578: 573: 569: 565: 561: 557: 553: 549: 545: 541: 537: 530: 527: 522: 518: 514: 510: 506: 502: 498: 494: 490: 486: 482: 475: 473: 469: 464: 460: 456: 452: 448: 441: 438: 433: 429: 425: 421: 418:(8): 082901. 417: 413: 409: 405: 398: 395: 390: 383: 380: 375: 371: 367: 363: 359: 355: 351: 347: 340: 337: 332: 328: 323: 318: 314: 310: 305: 300: 296: 292: 287: 282: 278: 274: 270: 263: 260: 255: 251: 247: 243: 239: 235: 230: 225: 221: 217: 210: 207: 202: 198: 194: 190: 186: 182: 178: 174: 169: 164: 160: 156: 149: 146: 141: 137: 133: 129: 125: 121: 117: 113: 106: 103: 96: 94: 91: 83: 78: 75: 72: 69: 66: 63: 60: 57: 54: 51: 50: 49: 46: 44: 40: 39:ferroelectric 36: 30: 19: 769:expanding it 758: 712:expanding it 701: 686: 636: 632: 626: 593: 589: 539: 535: 529: 488: 484: 446: 440: 415: 411: 397: 382: 352:(1): 31–52. 349: 345: 339: 276: 272: 262: 219: 215: 209: 158: 154: 148: 115: 111: 105: 87: 84:Applications 47: 34: 33: 808:Categories 97:References 661:0953-8984 618:107988812 610:1614-6840 572:119554924 564:1521-3951 505:1944-8244 463:137495812 374:189842194 313:0027-8424 286:1405.2306 254:119279021 229:0908.2373 168:1212.0867 140:189842194 118:(1): 31. 61:(PMN-PT) 677:25298142 669:23053172 521:25405727 331:24449912 193:25167037 641:Bibcode 544:Bibcode 513:1392947 420:Bibcode 354:Bibcode 322:3918832 291:Bibcode 234:Bibcode 201:9758988 173:Bibcode 120:Bibcode 29:Relaxer 18:Relaxor 675:  667:  659:  616:  608:  570:  562:  519:  511:  503:  461:  372:  329:  319:  311:  252:  199:  191:  138:  73:(PSN) 67:(PLZT) 55:(PMN) 759:This 702:This 673:S2CID 614:S2CID 568:S2CID 459:S2CID 370:S2CID 281:arXiv 250:S2CID 224:arXiv 197:S2CID 163:arXiv 136:S2CID 765:stub 708:stub 665:PMID 657:ISSN 606:ISSN 560:ISSN 517:PMID 509:OSTI 501:ISSN 327:PMID 309:ISSN 189:PMID 37:are 649:doi 598:doi 552:doi 540:250 493:doi 451:doi 428:doi 416:112 362:doi 317:PMC 299:doi 277:111 242:doi 181:doi 159:110 128:doi 810:: 671:. 663:. 655:. 647:. 637:24 635:. 612:. 604:. 592:. 580:^ 566:. 558:. 550:. 538:. 515:. 507:. 499:. 487:. 483:. 471:^ 457:. 426:. 414:. 410:. 368:. 360:. 350:41 348:. 325:. 315:. 307:. 297:. 289:. 275:. 271:. 248:. 240:. 232:. 220:81 218:. 195:. 187:. 179:. 171:. 157:. 134:. 126:. 116:41 114:. 796:e 789:t 782:v 771:. 739:e 732:t 725:v 714:. 679:. 651:: 643:: 620:. 600:: 594:9 574:. 554:: 546:: 523:. 495:: 489:6 465:. 453:: 434:. 430:: 422:: 376:. 364:: 356:: 333:. 301:: 293:: 283:: 256:. 244:: 236:: 226:: 203:. 183:: 175:: 165:: 142:. 130:: 122:: 31:. 20:)

Index

Relaxor
Relaxer
ferroelectric
electrostriction
lead magnesium niobate
lead magnesium niobate-lead titanate
lead lanthanum zirconate titanate
lead scandium niobate
energy storage
Bibcode
2006JMatS..41...31B
doi
10.1007/s10853-005-5915-7
S2CID
189842194
arXiv
1212.0867
Bibcode
2013PhRvL.110n7602T
doi
10.1103/PhysRevLett.110.147602
PMID
25167037
S2CID
9758988
arXiv
0908.2373
Bibcode
2010PhRvB..81n4102G
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.