Knowledge (XXG)

Resonant high harmonic generation from laser ablated plasma plumes

Source šŸ“

143: 198: 135: 51: 114:. In gas high harmonics, a gas jet usually acts as the nonlinear media and the femtosecond laser pulse interacts with the gas to emit high harmonics. Hence, only one laser pulse is required in gas harmonics. However to generate high harmonics from plasma plumes, we require another laser pulse focused onto the surface of a solid target to create a plume of laser ablated plasma. This plasma plume acts as a nonlinear medium for the nonlinear interaction. Typically, a long 180:
etc. Presence of such resonances makes plasma harmonics very different from gas harmonics. The enhanced harmonic efficiency of a given harmonic order can be useful for the development of narrowband tabletop XUV light sources. These type of sources can be very helpful in various types of spectroscopy
193:
states present in the continuum. The first two steps remain the same i.e. the tunnel ionization and the acceleration of this tunnel ionized electron in the continuum. However, in the third step, this tunnel ionization electron gets trapped into the autoionizing state present in the continuum. This
154:
plasma was much higher as compared to its neighboring harmonics. This was quite surprising because this kind of effect was never seen in gas harmonics. Upon careful investigations, it was pointed out by the researchers that this harmonic enhancement happens when the energy of a particular harmonic
167:
of 1.52. The energy of this transition corresponds to 17th harmonic with 800 nm excitation wavelength. Similarly, in Indium, there exists a strong transition 4d5s ā†’ 4d 5s 5p at 19.92 eV with a high gf value of 1.11. The energy of this transition corresponds to 13th harmonic with 800 nm
126:
In some plasma plumes, it was observed that the intensity of a certain harmonic order was exceptionally high as compared to its neighboring harmonics. For example, by using 800 nm femtosecond laser pulses, it was observed that with
168:
excitation wavelength. This enhancement in a particular harmonic order is most commonly known as Resonant High Harmonic Generation (RH). Apart from tin and Indium, RH has been observed in many other plasmas such as
142: 31:
undergoes an interaction with a nonlinear media. A typical high order harmonic spectra contains frequency combs separated by twice the laser frequency. HHG is an excellent table top source of highly
194:
autoionizing state usually has a longer lifetime. Then in the fourth step, this trapped electron recombines radiatively with the parent ion (ground state) emitting resonantly enhanced high harmonic.
88:
When the electric field the ultrashort laser pulse undergoes the reversal of direction, this accelerated electron returns and recombines radiatively with the parent ion emitting high harmonics.
189:
To explain this enhancement in a given harmonic order, the former three-step model was modified and a new four-step model was introduced. This model takes into account the role of
94:
Since the tunnel ionization and recombination process is happening twice in every cycle of the excitation laser pulse, the HHG process has the capability to generate the
197: 155:
order matches with a strong transition present in the plasma. For example, it was observed that in tin, there exists a very strong transition 4d 5s 5p P
134: 436: 131:
plasma, the intensity of 17th harmonic was an order of magnitude higher as compared to the intensity of its neighboring harmonics.
258: 657:
Strelkov, V. (2010). "Role of Autoionizing State in Resonant High-Order Harmonic Generation and Attosecond Pulse Production".
452:
Suzuki, Masayuki (2006). "Anomalous enhancement of a single high-order harmonic by using a laser-ablation tin plume at 47nm".
552:
Ganeev, Rashid A. (2006). "Strong resonance enhancement of a single harmonic generated in the extreme ultraviolet range".
146:
Schematic of experimental setup for HHG measurement from the laser ablation plume pumped by femtosecond laser pulse.
91:
In Corkum's three-step model, the electron is treated as a free particle having no effect of the coulomb potential.
58:
HHG process can be very easily as well as intuitively explained by a simple three-step model originally proposed by
50: 595:
Duffy, Grainne (2001). "4dā†’5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III".
734: 16: 729: 28: 666: 604: 561: 508: 461: 377: 362: 317: 270: 231: 82:
This tunnel ionized electron undergoes acceleration under the effect of laser pulse electric field.
164: 35: 32: 682: 577: 534: 477: 432: 343: 286: 73: 674: 639: 612: 569: 524: 516: 469: 422: 393: 385: 333: 325: 278: 239: 111: 69: 24: 20: 630:
Duffy, Grainne (2001). "The photoabsorption spectrum of an indium laser produced plasma".
670: 608: 565: 512: 465: 381: 321: 274: 235: 59: 529: 496: 338: 305: 190: 616: 723: 643: 243: 678: 282: 201:
Schematic diagram of four-step model to explain the resonant harmonic generation
99: 329: 712: 704: 115: 95: 39: 173: 686: 581: 538: 481: 347: 290: 573: 473: 398: 177: 169: 520: 138:
HHG spectra from tin ablation irradiated by a femtosecond laser pulse.
497:"High-order harmonic generation from the dressed autoionizing states" 151: 389: 196: 141: 133: 49: 427: 414: 150:
Similarly, it was seen that the intensity of 13th harmonic in
128: 419:
Advances in Solid-State Lasers: Development and Applications
363:"Coherent x-ray generation at 2.7nm using 25fs laser pulses" 632:
Journal of Physics B: Atomic, Molecular and Optical Physics
597:
Journal of Physics B: Atomic, Molecular and Optical Physics
259:"Plasma perspective on strong field multiphoton ionization" 415:"High-Order Harmonic Generation from Low-Density Plasma" 118:
laser pulse is used for the purpose of plasma creation.
306:"53-attosecond X-ray pulses reach the carbon K-edge" 76:upon interaction with the ultrashort laser pulse. 222:Ganeev, R.A (2015). "Why plasma harmonics?". 8: 54:Three step model of high-harmonic generation 163:at 26.27 eV and this transition has a high 110:HHG can happen both in gases as well as in 27:process taking place when a highly intense 528: 426: 397: 337: 102:laser pulses as a source of excitation. 211: 7: 217: 215: 14: 713:Laser - The world's fastest flash 244:10.1070/QE2015v045n09ABEH015574 679:10.1103/PhysRevLett.104.123901 165:oscillator strength (gf value) 1: 98:bursts of radiation by using 617:10.1088/0953-4075/34/15/319 283:10.1103/PhysRevLett.71.1994 112:laser ablated plasma plumes 751: 644:10.1088/0953-4075/34/6/104 370:AIP Conference Proceedings 330:10.1038/s41467-017-00321-0 361:Rundquist, Andy (1998). 17:High Harmonic Generation 659:Physical Review Letters 263:Physical Review Letters 716:, retrieved 2023-10-16 708:, retrieved 2023-10-16 202: 147: 139: 55: 29:ultrashort laser pulse 501:Nature Communications 495:Fareed, M. A (2017). 310:Nature Communications 200: 145: 137: 106:HHG from laser plasma 53: 574:10.1364/OL.31.001699 474:10.1364/OL.31.003306 257:Corkum, P.B (1993). 671:2010PhRvL.104l3901S 609:2001JPhB...34.3171D 566:2006OptL...31.1699G 521:10.1038/ncomms16061 513:2017NatCo...816061F 466:2006OptL...31.3306S 382:1998AIPC..426..296R 322:2017NatCo...8..186L 275:1993PhRvL..71.1994C 236:2015QuEle..45..785G 224:Quantum Electronics 36:extreme ultraviolet 413:Ozaki, T. (2010). 203: 148: 140: 70:outermost electron 56: 603:(15): 3171ā€“3178. 438:978-953-7619-80-0 269:(13): 1994ā€“1997. 74:tunnel ionization 25:nonlinear optical 742: 735:Nonlinear optics 691: 690: 654: 648: 647: 638:(6): L173ā€“L178. 627: 621: 620: 592: 586: 585: 560:(11): 1699ā€“701. 549: 543: 542: 532: 492: 486: 485: 449: 443: 442: 430: 410: 404: 403: 401: 367: 358: 352: 351: 341: 304:Jie, Li (2017). 301: 295: 294: 254: 248: 247: 219: 159:ā†’ 4d 5s 5p (D) D 46:Three-step model 21:non-perturbative 750: 749: 745: 744: 743: 741: 740: 739: 720: 719: 705:The x-ray laser 700: 695: 694: 656: 655: 651: 629: 628: 624: 594: 593: 589: 551: 550: 546: 494: 493: 489: 451: 450: 446: 439: 412: 411: 407: 390:10.1063/1.55237 376:(98): 296ā€“303. 365: 360: 359: 355: 303: 302: 298: 256: 255: 251: 221: 220: 213: 208: 187: 185:Four-step model 162: 158: 124: 108: 48: 12: 11: 5: 748: 746: 738: 737: 732: 722: 721: 718: 717: 709: 699: 698:External links 696: 693: 692: 665:(12): 123901. 649: 622: 587: 554:Optics Letters 544: 487: 460:(22): 3306ā€“8. 454:Optics Letters 444: 437: 405: 353: 296: 249: 230:(9): 785ā€“796. 210: 209: 207: 204: 191:autoionization 186: 183: 160: 156: 123: 120: 107: 104: 47: 44: 42:laser pulses. 23:and extremely 13: 10: 9: 6: 4: 3: 2: 747: 736: 733: 731: 730:Laser science 728: 727: 725: 715: 714: 710: 707: 706: 702: 701: 697: 688: 684: 680: 676: 672: 668: 664: 660: 653: 650: 645: 641: 637: 633: 626: 623: 618: 614: 610: 606: 602: 598: 591: 588: 583: 579: 575: 571: 567: 563: 559: 555: 548: 545: 540: 536: 531: 526: 522: 518: 514: 510: 506: 502: 498: 491: 488: 483: 479: 475: 471: 467: 463: 459: 455: 448: 445: 440: 434: 429: 424: 420: 416: 409: 406: 400: 399:2027.42/87449 395: 391: 387: 383: 379: 375: 371: 364: 357: 354: 349: 345: 340: 335: 331: 327: 323: 319: 315: 311: 307: 300: 297: 292: 288: 284: 280: 276: 272: 268: 264: 260: 253: 250: 245: 241: 237: 233: 229: 225: 218: 216: 212: 205: 199: 195: 192: 184: 182: 179: 175: 171: 166: 153: 144: 136: 132: 130: 121: 119: 117: 113: 105: 103: 101: 97: 92: 89: 87: 83: 81: 77: 75: 71: 67: 63: 61: 52: 45: 43: 41: 37: 34: 30: 26: 22: 18: 711: 703: 662: 658: 652: 635: 631: 625: 600: 596: 590: 557: 553: 547: 504: 500: 490: 457: 453: 447: 428:10.5772/7963 418: 408: 373: 369: 356: 313: 309: 299: 266: 262: 252: 227: 223: 188: 181:techniques. 149: 125: 122:Resonant HHG 109: 93: 90: 85: 84: 79: 78: 65: 64: 57: 15: 100:femtosecond 60:Paul Corkum 19:(HHG) is a 724:Categories 316:(1): 186. 206:References 116:picosecond 96:attosecond 72:undergoes 40:soft X-ray 507:: 16061. 174:manganese 62:in 1993. 687:20366535 582:16688266 539:28714468 482:17072405 348:28775272 291:10054556 178:antimony 170:chromium 33:coherent 667:Bibcode 605:Bibcode 562:Bibcode 530:5520015 509:Bibcode 462:Bibcode 378:Bibcode 339:5543167 318:Bibcode 271:Bibcode 232:Bibcode 86:Step 3: 80:Step 2: 66:Step 1: 685:  580:  537:  527:  480:  435:  346:  336:  289:  152:indium 366:(PDF) 683:PMID 578:PMID 535:PMID 478:PMID 433:ISBN 344:PMID 287:PMID 68:The 38:and 675:doi 663:104 640:doi 613:doi 570:doi 525:PMC 517:doi 470:doi 423:doi 394:hdl 386:doi 374:426 334:PMC 326:doi 279:doi 240:doi 161:5/2 157:3/2 129:tin 726:: 681:. 673:. 661:. 636:34 634:. 611:. 601:34 599:. 576:. 568:. 558:31 556:. 533:. 523:. 515:. 503:. 499:. 476:. 468:. 458:31 456:. 431:. 421:. 417:. 392:. 384:. 372:. 368:. 342:. 332:. 324:. 312:. 308:. 285:. 277:. 267:71 265:. 261:. 238:. 228:45 226:. 214:^ 176:, 172:, 689:. 677:: 669:: 646:. 642:: 619:. 615:: 607:: 584:. 572:: 564:: 541:. 519:: 511:: 505:8 484:. 472:: 464:: 441:. 425:: 402:. 396:: 388:: 380:: 350:. 328:: 320:: 314:8 293:. 281:: 273:: 246:. 242:: 234::

Index

High Harmonic Generation
non-perturbative
nonlinear optical
ultrashort laser pulse
coherent
extreme ultraviolet
soft X-ray

Paul Corkum
outermost electron
tunnel ionization
attosecond
femtosecond
laser ablated plasma plumes
picosecond
tin


indium
oscillator strength (gf value)
chromium
manganese
antimony
autoionization



Bibcode
2015QuEle..45..785G
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘