Knowledge (XXG)

Resonant inelastic X-ray scattering

Source 📝

696:
Rowland geometry. This means that the source (X-rays spot on the sample), the analyzers and the detector must sit on the Rowland circle. By scanning the positions of the analyzers and of the detector (the source is fixed for convenience) the Bragg condition is changed and thus the energy of the scattered X-rays can be analyzed. By increasing the radius of the Rowland circle, the energy resolution can be increased, loosing in terms of efficiency. Nevertheless, as opposed to soft X-rays spectrometers, the resolving power of the spectrometer is limited by the crystal analyzers. Thus, increasing too much the dimensions of the spectrometer does not pay off.
758:: chemical sensitivity arises by tuning to the absorption edges of the different types of elements in a material. RIXS can even differentiate between the same chemical element at sites with different valencies or at inequivalent crystallographic positions as long as the X-ray absorption edges in these cases are distinguishable. In addition, the type of information on the electronic excitations of a system being probed can be varied by tuning to different X-ray edges (e.g., K, L or M) of the same chemical element, where the photon excites core-electrons into different valence orbitals. 584:, and the bandpass of the RIXS spectrometer for the analysis of the scattered photons energy gives the total (combined) energy resolution. Since RIXS exploits high energy photons in the X-ray range, a very large combined resolving power (10-10 depending on the goal of the experiment) is needed to detail the different spectral features. Therefore, in the last two decades efforts have been made to improve RIXS spectrometers performances, gaining orders of magnitude in terms of resolving power. State of the art soft X-rays RIXS beamlines in use at the ESRF, at 608: 913: 688: 616: 643: 680: 513: 624: 307: 27: 789: 725:
solutions. RIXS is a resonant technique because the energy of the incident photon is chosen such that it coincides with, and hence resonates with, one of the atomic X-ray absorption edges of the system. The resonance greatly enhances the valence contribution to the inelastic scattering cross section, sometimes by many orders of magnitude.
666:
After the collecting optics X-rays are dispersed by the varied line spacing (VLS) grating that can be either plane or spherical. In the former case, a vertical focusing mirror is added to the optical path to focus the X-rays on the detector, in the latter the grating itself also focuses the dispersed
670:
Since the spectral analysis of the scattered X-rays is done through a dispersive grating, longer spectrometers offer higher resolving power. State of the art spectrometers are more than ten meters long, more than five times the dimensions of the pioneering ones. Two examples from ESRF and DLS are in
297:
The RIXS process can be classified as either direct or indirect. This distinction is useful because the cross-sections for each are quite different. When direct scattering is allowed, it will be the dominant scattering channel, with indirect processes contributing only in higher order. In contrast,
503:
For direct RIXS to occur, both photoelectric transitions—the initial one from core to valence state and succeeding one to fill the core hole—must be possible. These transitions can for instance be an initial dipolar transition of 1s → 2p followed by the decay of another electron in the 2p band from
928:
The power of pump-probe spectroscopies lies in the possibility to study how a system evolves after an external stimulus. The most straightforward example is the study of photoactivated biological process, such as the photosynthesis: the sample is illuminated by an optical laser tuned at the proper
658:
of optical elements for X-rays reduces the throughput. In addition to that, a non-negligible contribution to the combined resolving power is due to the imperfections on the surface of mirrors and gratings (slope error). Finally, the lower the number of optical elements to be aligned, the better in
228:
RIXS is a two steps process. First an electron is resonantly excited from a core level, defined by the absorption edge, to an empty state, leaving a core hole. The intermediate state with the core hole has a lifetime of few femtoseconds, then the system radiatively decays into the final state with
699:
Depending on the chosen absorption edge (and thus incidence energy), different crystal analyzers are used both on the monochromator side and on the spectrometer side. Thanks to the high penetration depth of hard X-rays, there is no need of UHV. Therefore, the exchange of optical elements, such as
662:
The monochromatized X-rays impinge on the sample with a defined geometry and are scattered and collected by the spectrometer. Collection mirrors are often placed after the sample, the distance (1 cm to 1 m) depends on the optical design. This is useful to increase the acceptance angle of the
391:
The net result is a final state with an electron-hole excitation, as an electron was created in an empty valence band state and a hole in a filled shell. If the hole is in the filled valence shell, the electron-hole excitation can propagate through the material, carrying away momentum and energy.
387:
state decays and annihilates the core-hole. The hole in the final state may either be in a core level at lower binding energy than in the intermediate state or in the filled valence shell. Some authors refer to this technique as resonant X-ray emission spectroscopy (RXES). The distinction between
3334:
Dean, M. P. M.; Cao, Y.; Liu, X.; Wall, S.; Zhu, D.; Mankowsky, R.; Thampy, V.; Chen, X. M.; Vale, J. G.; Casa, D.; Kim, Jungho; Said, A. H.; Juhas, P.; Alonso-Mori, R.; Glownia, J. M.; Robert, A.; Robinson, J.; Sikorski, M.; Song, S.; Kozina, M.; Lemke, H.; Patthey, L.; Owada, S.; Katayama, T.;
740:
that an X-ray photon has more energy than a neutron or electron. The scattering phase space (the range of energies and momenta that can be transferred in a scattering event) of X-rays is therefore without equal. In particular, high-energy X-rays carry a momentum that is comparable to the inverse
667:
X-rays on the CCD detector. Depending on the absorption edge chosen for the experiment, the respective positions between the grating and the detector, and the incidence angle of the grating can be tuned to optimize the spectrometer in a large energy window, without changing any optical element.
3373:
Diling; Alonso-Mori, Roberto; Song, Sanghoon; Yavas, Hasan; Katayama, Tetsuo; Yabashi, Makina; Kubota, Yuya; Owada, Shigeki; Liu, Jian; Yang, Junji; Konik, Robert M.; Robinson, Ian K.; Hill, John P.; McMorrow, Desmond F.; Först, Michael; Wall, Simon; Liu, Xuerong; Dean, Mark P. M. (June 2021).
3372:
Mazzone, Daniel G.; Meyers, Derek; Cao, Yue; Vale, James G.; Dashwood, Cameron D.; Shi, Youguo; James, Andrew J. A.; Robinson, Neil J.; Lin, Jiaqi; Thampy, Vivek; Tanaka, Yoshikazu; Johnson, Allan S.; Miao, Hu; Wang, Ruitang; Assefa, Tadesse A.; Kim, Jungho; Casa, Diego; Mankowsky, Roman; Zhu,
695:
The optical layout for hard X-rays RIXS spectrometers is different. The spectrometers are based on spherical crystal analyzers (typically more than one to increase the solid angle of the spectrometer) exploiting Bragg reflections and on a position sensitive detector, typically in the so called
551:
state decays again, filling the core-hole. Scattering of the X-rays occurs via the core-hole potential that is present in the intermediate state. It shakes up the electronic system, creating excitations to which the X-ray photon loses energy and momentum. The number of electrons in the valence
724:
that present shortcomings, RIXS has a number of unique features: it covers a large scattering phase-space thanks to the high energy photons, it is polarization dependent, element specific, bulk sensitive and requires only small sample volumes enabling studies on thin films as well as diluted
780:: the photon-matter interaction is relatively strong, compared to for instance to the neutron-matter interaction strength. This makes RIXS feasible on very small volume samples, thin films, surfaces and nano-objects, in addition to bulk single crystal, powder samples or diluted solutions. 310:
Direct RIXS process. The incoming X-rays excite an electron from a deep-lying core level into the empty valence. The empty core state is subsequently filled by an electron from the occupied states under the emission of an X-ray. This RIXS process creates a valence excitation with momentum
889:) can be accessed with RIXS, exploiting the spin-orbit coupling of the core level involved in the RIXS process. This makes RIXS as the paramount technique to study magnon dispersions, thanks to the higher cross-section with respect to INS. Besides magnons, RIXS can probe bi-magnons and 229:
the filling of the core hole and the emission of another photon. Since the probability of a radiative core hole relaxation is low, the RIXS cross section is very small and a high brilliance X-ray source is needed. Being a second order process, the RIXS cross section is described by the
703:
One of the major technical challenges in these RIXS experiments is selecting the monochromator and energy analyzer which produce, at the desired energy, the desired resolution. Some of the feasible crystal monochromator reflections and energy analyzer reflections have been tabulated.
3335:
Yabashi, M.; Tanaka, Yoshikazu; Togashi, T.; Liu, J.; Rayan Serrao, C.; Kim, B. J.; Huber, L.; Chang, C.-L.; McMorrow, D. F.; Först, M.; Hill, J. P. (June 2016). "Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4".
3514:
Mitrano, Matteo; Lee, Sangjun; Husain, Ali A.; Delacretaz, Luca; Zhu, Minhui; de la Peña Munoz, Gilberto; Sun, Stella X.-L.; Joe, Young Il; Reid, Alexander H.; Wandel, Scott F.; Coslovich, Giacomo; Schlotter, William; van Driel, Tim; Schneeloch, John; Gu, G. D. (2019-08-02).
750:
of the photon: the nature of the excitations created in the material can be disentangled by a polarization analysis of the incident and scattered photons, which allow one, through the use of various selection rules, to characterize the symmetry and nature of the excitations.
5147:
Rossi, Matteo; Henriquet, Christian; Jacobs, Jeroen; Donnerer, Christian; Boseggia, Stefano; Al-Zein, Ali; Fumagalli, Roberto; Yao, Yi; Vale, James G.; Hunter, Emily C.; Perry, Robin S.; Kantor, Innokenty; Garbarino, Gaston; Crichton, Wilson; Monaco, Giulio (2019-08-15).
796:
In principle RIXS can probe a very broad class of intrinsic excitations of the system under study, as long as the excitations are overall charge neutral. This constraint arises from the fact that in RIXS the scattered photons do not add or remove charge from the sample.
576:
is often limited by the relatively short life-time of the final state core-hole. As in RIXS a high energy core-hole is absent in the final state, this leads to intrinsically sharp spectra with energy and momentum resolution determined by the instrumentation.
4990:
Horikawa, Yuka; Tokushima, Takashi; Harada, Yoshihisa; Takahashi, Osamu; Chainani, Ashish; et al. (2009). "Identification of valence electronic states of aqueous acetic acid in acid–base equilibrium using site-selective X-ray emission spectroscopy".
204:
sources of X-rays are crucial. In addition to that, the possibility to tune the energy of the incoming X-rays is compelling to match a chosen resonance. These two strict conditions make RIXS to be necessarily performed at synchrotrons or nowadays at
2595:
Rossi, Matteo; Arpaia, Riccardo; Fumagalli, Roberto; Moretti Sala, Marco; Betto, Davide; Kummer, Kurt; De Luca, Gabriella M.; van den Brink, Jeroen; Salluzzo, Marco; Brookes, Nicholas B.; Braicovich, Lucio; Ghiringhelli, Giacomo (2019-07-08).
2290:
Barbiellini, Bernardo; Hancock, Jason N.; Monney, Claude; Joly, Yves; Ghiringhelli, Giacomo; Braicovich, Lucio; Schmitt, Thorsten (2014-06-30). "Inelastic x-ray scattering from valence electrons near absorption edges of FeTe and
1783:
Brookes, N. B.; Yakhou-Harris, F.; Kummer, K.; Fondacaro, A.; Cezar, J. C.; Betto, D.; Velez-Fort, E.; Amorese, A.; Ghiringhelli, G.; Braicovich, L.; Barrett, R.; Berruyer, G.; Cianciosi, F.; Eybert, L.; Marion, P. (2018-09-21).
2398:
Arpaia, R.; Caprara, S.; Fumagalli, R.; De Vecchi, G.; Peng, Y. Y.; Andersson, E.; Betto, D.; De Luca, G. M.; Brookes, N. B.; Lombardi, F.; Salluzzo, M.; Braicovich, L.; Di Castro, C.; Grilli, M.; Ghiringhelli, G. (2019-08-30).
2348:
Ghiringhelli, G.; Le Tacon, M.; Minola, M.; Blanco-Canosa, S.; Mazzoli, C.; Brookes, N. B.; De Luca, G. M.; Frano, A.; Hawthorn, D. G.; He, F.; Loew, T.; Sala, M. Moretti; Peets, D. C.; Salluzzo, M.; Schierle, E. (2012-08-17).
446: 932:
The development of high-resolution RIXS spectrometers at XFELs is opening a new field, exploiting the power of RIXS to study the photo-induced transient states in quantum materials and photoactivated processes in molecules.
4788:
Tokushima, T.; Harada, Y.; Takahashi, O.; Senba, Y.; Ohashi, H.; Pettersson, L.G.M.; Nilsson, A.; Shin, S. (2008). "High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs".
5042:
Gråsjö, Johan; Andersson, Egil; Forsberg, Johan; Duda, Laurent; Henke, Ev; et al. (2009-12-10). "Local Electronic Structure of Functional Groups in Glycine As Anion, Zwitterion, and Cation in Aqueous Solution".
765:: the penetration depth of resonant X-ray photons depends on the material and on the scattering geometry, but typically is of the order of a few micrometers in the hard X-rays regime (for example at transition metal 2726:
Nag, Abhishek; Zhu, M.; Bejas, Matías; Li, J.; Robarts, H. C.; Yamase, Hiroyuki; Petsch, A. N.; Song, D.; Eisaki, H.; Walters, A. C.; García-Fernández, M.; Greco, Andrés; Hayden, S. M.; Zhou, Ke-Jin (2020-12-14).
2875:
Moretti Sala, M; Bisogni, V; Aruta, C; Balestrino, G; Berger, H; Brookes, N B; Luca, G M de; Di Castro, D; Grioni, M; Guarise, M; Medaglia, P G; Miletto Granozio, F; Minola, M; Perna, P; Radovic, M (2011-04-19).
920:
With the advent of XFELs, sources that can provide extremely brilliant (more than five orders of magnitude larger than synchrotron sources) and extremely short X-ray pulses, X-ray spectroscopies performed in a
4736:
Fuchs, O.; Zharnikov, M.; Weinhardt, L.; Blum, M.; Weigand, M.; et al. (2008-01-16). "Isotope and Temperature Effects in Liquid Water Probed by X-Ray Absorption and Resonant X-Ray Emission Spectroscopy".
2776:
Hepting, M.; Bejas, M.; Nag, A.; Yamase, H.; Coppola, N.; Betto, D.; Falter, C.; Garcia-Fernandez, M.; Agrestini, S.; Zhou, Ke-Jin; Minola, M.; Sacco, C.; Maritato, L.; Orgiani, P.; Wei, H. I. (2022-07-19).
3106:
Marra, Pasquale; Sykora, Steffen; Wohlfeld, Krzysztof; van den Brink, Jeroen (2013). "Resonant Inelastic X-Ray Scattering as a Probe of the Phase and Excitations of the Order Parameter of Superconductors".
498: 3294:
Decking, W.; Abeghyan, S.; Abramian, P.; Abramsky, A.; Aguirre, A.; Albrecht, C.; Alou, P.; Altarelli, M.; Altmann, P.; Amyan, K.; Anashin, V.; Apostolov, E.; Appel, K.; Auguste, D.; Ayvazyan, V. (2020).
4832:
Forsberg, Johan; Gråsjö, Johan; Brena, Barbara; Nordgren, Joseph; Duda, Laurent-C.; Rubensson, Jan-Erik (2009-04-13). "Angular anisotropy of resonant inelastic soft x-ray scattering from liquid water".
741:
lattice spacing of typical condensed matter systems so that, unlike Raman scattering experiments with visible or infrared light, RIXS can probe the full dispersion of low energy excitations in solids.
547:
Indirect RIXS is slightly more complicated. Here, the incoming photon promotes a core-electron to an itinerant state far above the electronic chemical potential. Subsequently, the electron in this
1844:
Zhou, K.-J.; Walters, A.; Garcia-Fernandez, M.; Rice, T.; Hand, M.; Nag, A.; Li, J.; Agrestini, S.; Garland, P.; Wang, H.; Alcock, S.; Nistea, I.; Nutter, B.; Rubies, N.; Knap, G. (2022-03-01).
4693:
Glatzel, Pieter; Singh, Jagdeep; Kvashnina, Kristina O.; van Bokhoven, Jeroen A. (2010-03-03). "In Situ Characterization of the 5d Density of States of Pt Nanoparticles upon Adsorption of CO".
599:
As for hard X-rays, the optical design is different and requires the use of Bragg reflection crystal analyzers. Thus, the resolving power is mostly determined by the crystal analyzers in use.
377: 3932:
Le Tacon, M.; Ghiringhelli, G.; Chaloupka, J.; Sala, M. Moretti; Hinkov, V.; et al. (2011-07-10). "Intense paramagnon excitations in a large family of high-temperature superconductors".
4362:
Guarise, M.; Dalla Piazza, B.; Moretti Sala, M.; Ghiringhelli, G.; Braicovich, L.; et al. (2010-10-08). "Measurement of Magnetic Excitations in the Two-Dimensional Antiferromagnetic Sr
3016:
Braicovich, L.; van den Brink, J.; Bisogni, V.; Sala, M. Moretti; Ament, L. J. P.; Brookes, N. B.; De Luca, G. M.; Salluzzo, M.; Schmitt, T.; Strocov, V. N.; Ghiringhelli, G. (2010-02-19).
1990:
Moretti Sala, M.; Martel, K.; Henriquet, C.; Al Zein, A.; Simonelli, L.; Sahle, C.; Gonzalez, H.; Lagier, M.-C.; Ponchut, C.; Huotari, S.; Verbeni, R.; Krisch, M.; Monaco, G. (2018-03-01).
3055:
Martinelli, Leonardo; Betto, Davide; Kummer, Kurt; Arpaia, Riccardo; Braicovich, Lucio; Di Castro, Daniele; Brookes, Nicholas B.; Moretti Sala, Marco; Ghiringhelli, Giacomo (2022-05-19).
830:
in band metals, doped systems and semiconductors are visible through RIXS, thanks to the enhancement of valence charge excitations guaranteed by the resonance character of the technique.
1610:
Vernay, F.; Moritz, B.; Elfimov, I. S.; Geck, J.; Hawthorn, D.; Devereaux, T. P.; Sawatzky, G. A. (2008-03-18). "CuK-edge resonant inelastic x-ray scattering in edge-sharing cuprates".
190:
photon-in photon-out energy loss and momentum resolved spectroscopy, capable of measuring the energy and momentum transferred to specific excitations proper of the sample under study.
3808:
Kotani, A.; Okada, K.; Vankó, György; Dhalenne, G.; Revcolevschi, A.; Giura, P.; Shukla, Abhay (2008-05-20). "Cu Kαresonant x-ray emission spectroscopy of high-Tc-related cuprates".
504:
2p → 1s. This happens at the K-edge of oxygen, carbon and silicon. Very efficient sequence often used in 3d transition metals are a 1s → 3d excitation followed by a 2p → 1s decay.
4151:
Hancock, J. N.; Viennois, R.; van der Marel, D.; Rønnow, H. M.; Guarise, M.; et al. (2010-07-23). "Evidence for core-hole-mediated inelastic x-ray scattering from metallic Fe
162: 92: 2546:
Devereaux, T. P.; Shvaika, A. M.; Wu, K.; Wohlfeld, K.; Jia, C. J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W.-S.; Shen, Z.-X.; Ghiringhelli, G.; Braicovich, L. (2016-10-25).
220:
Exploiting different experimental setups, RIXS can be performed using both soft and hard X-rays, spanning a vast range of absorption edges and thus samples to be studied.
2939:
Schlappa, J.; Wohlfeld, K.; Zhou, K. J.; Mourigal, M.; Haverkort, M. W.; et al. (2012-04-18). "Spin–orbital separation in the quasi-one-dimensional Mott insulator Sr
883: 292: 263: 340: 186:
In the last two decades RIXS has been widely exploited to study the electronic, magnetic and structural properties of quantum materials and molecules. It is a resonant
4575:
Grenier, S.; Hill, J. P.; Kiryukhin, V.; Ku, W.; Kim, Y.-J.; et al. (2005-02-03). "d−d Excitations in Manganites Probed by Resonant Inelastic X-Ray Scattering".
1733:
Ghiringhelli, G.; Piazzalunga, A.; Dallera, C.; Trezzi, G.; Braicovich, L.; Schmitt, T.; Strocov, V. N.; Betemps, R.; Patthey, L.; Wang, X.; Grioni, M. (2006-11-01).
639:. The two-dimensional image shows a vertical dispersive direction and a non-dispersive one. Integrating along the non-dispersive direction one can obtain a spectrum. 125: 2083: 58: 1334:"The Electronic Structure of Mn in Oxides, Coordination Complexes, and the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-ray Scattering" 541: 1786:"The beamline ID32 at the ESRF for soft X-ray high energy resolution resonant inelastic X-ray scattering and polarisation dependent X-ray absorption spectroscopy" 821:
that are present in a RIXS spectrum through the electron-phonon coupling. Only a portion of phonons modes that characterize the sample are visible through RIXS.
654:
to minimize the absorption of X-rays by air. The number of optical elements is typically minimized, which is important for a number of reasons. Indeed, the low
516:
Indirect RIXS process. An electron is excited from a deep-lying core level into the valence shell. Excitations are created through the Coulomb interaction
2104:
Gao, Xing; Gu, Songqi; Gao, Qian; Zou, Yang; Jiang, Zheng; Zhang, Shuo; Wei, Xiangjun; Yu, Haisheng; Sheng, Guodong; Duan, Peiquan; Huang, Yuying (2013).
4510:
Kim, Young-June; Hill, J. P.; Yamaguchi, H.; Gog, T.; Casa, D. (2010-05-04). "Resonant inelastic x-ray scattering study of the electronic structure of Cu
2276: 2237: 5613: 2251: 2106:"A high-resolution X-ray fluorescence spectrometer and its application at SSRF: A high-resolution X-ray fluorescence spectrometer and its application" 1671:
Glatzel, P.; Sikora, M.; Fernández-García, M. (2009). "Resonant X-ray spectroscopy to study K absorption pre-edges in 3d transition metal compounds".
1549:
Hancock, J N; Chabot-Couture, G; Greven, M (2010-03-03). "Lattice coupling and Franck–Condon effects in K-edge resonant inelastic x-ray scattering".
916:
Cartoon of the pump-probe spectroscopy approach. The sample is first prepared in an excited state by a laser pulse and then probed by an X-ray pulse.
398: 5676: 5623: 3851:
Braicovich, L.; Ament, L. J. P.; Bisogni, V.; Forte, F.; Aruta, C.; et al. (2009-04-20). "Dispersion of Magnetic Excitations in the Cuprate La
2044:
Dinardo, M. E.; Piazzalunga, A.; Braicovich, L.; Bisogni, V.; Dallera, C.; Giarda, K.; Marcon, M.; Tagliaferri, A.; Ghiringhelli, G. (2007-01-01).
5295: 2212: 214: 4070:
Dean, M. P. M.; Dellea, G.; Springell, R. S.; Yakhou-Harris, F.; Kummer, K.; et al. (2013-08-04). "Persistence of magnetic excitations in La
1946:
Gog, T.; Casa, D. M.; Knopp, J.; Kim, J.; Upton, M. H.; Krakora, R.; Jaski, A.; Said, A.; Yavaş, H.; Gretarsson, H.; Huang, X. R. (2018-07-01).
5535: 3018:"Magnetic Excitations and Phase Separation in the Underdoped La 2− x Sr x CuO 4 Superconductor Measured by Resonant Inelastic X-Ray Scattering" 728:
Comparing the energy of a neutron, electron or photon with a wavelength of the order of the relevant length scale in a solid - as given by the
5550: 3275: 2548:"Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering" 1216: 1176: 5633: 5628: 5218: 589: 3178:"Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap" 5706: 5560: 3595:
Hasan, M. Z.; Montano, P. A.; Isaacs, E. D.; Shen, Z.-X.; Eisaki, H.; Sinha, S. K.; Islam, Z.; Motoyama, N.; Uchida, S. (2002-04-16).
2729:"Detection of Acoustic Plasmons in Hole-Doped Lanthanum and Bismuth Cuprate Superconductors Using Resonant Inelastic X-Ray Scattering" 948: 298:
for the large class of experiments for which direct scattering is forbidden, RIXS relies exclusively on indirect scattering channels.
3660:
Hasan, M. Z.; Chuang, Y.-D.; Li, Y.; Montano, P.; Beno, M.; Hussain, Z.; Eisaki, H.; Uchida, S.; Gog, T.; Casa, D. M. (2003-08-10).
1017: 194: 792:
Elementary excitations that can be measured by RIXS. The indicated energy scales are the ones relevant for transition metal oxides.
3993:
Dean, M. P. M.; Springell, R. S.; Monney, C.; Zhou, K. J.; Pereiro, J.; et al. (2012-09-02). "Spin excitations in a single La
1992:"A high-energy-resolution resonant inelastic X-ray scattering spectrometer at ID20 of the European Synchrotron Radiation Facility" 1948:"Performance of quartz- and sapphire-based double-crystal high-resolution (∼10 meV) RIXS monochromators under varying power loads" 5608: 5587: 3416:
Chen, Yuan; Wang, Yao; Jia, Chunjing; Moritz, Brian; Shvaika, Andrij M.; Freericks, James K.; Devereaux, Thomas P. (2019-03-22).
901: 5518: 3564:
Stewart, Theodora J. (2017). "Chapter 5. Lead Speciation in Microorganisms". In Astrid, S.; Helmut, S.; Sigel, R. K. O. (eds.).
1278:
Brink, J. van den; Veenendaal, M. van (2006). "Correlation functions measured by indirect resonant inelastic X-ray scattering".
454: 2050:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
1790:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
383:
In direct RIXS, the incoming photon promotes a core-electron to an empty valence band state. Subsequently, an electron from a
230: 5086:
Rueff, Jean-Pascal; Shukla, Abhay (2010-03-18). "Inelastic x-ray scattering by electronic excitations under high pressure".
3771:"Acoustic plasmons and doping evolution of Mott physics in resonant inelastic x-ray scattering from cuprate superconductors" 294:
space the spectrometer angle with respect to the incoming beam can be changed, as well as the incident angle to the sample.
5638: 5603: 565: 4644:
Harada, Yoshihisa; Taguchi, Munetaka; Miyajima, Yoshiharu; Tokushima, Takashi; Horikawa, Yuka; et al. (2009-04-15).
737: 5701: 5671: 5530: 5503: 713: 5263: 646:
RIXS 2D image on a CCD and the corresponding spectrum in energy loss. The red arrow indicates the dispersive direction.
592:, have reached approximately 40000 of combined resolving power, leading to a record energy resolution of 25 meV at Cu L 392:
Momentum and energy conservation require that these are equal to the momentum and energy loss of the scattered photon.
5759: 5681: 5648: 5618: 5582: 5288: 1007: 569: 5555: 2046:"Gaining efficiency and resolution in soft X-ray emission spectrometers thanks to directly illuminated CCD detectors" 5225: 1093:
Ament, Luuk J. P.; van Veenendaal, Michel; Devereaux, Thomas P.; Hill, John P.; van den Brink, Jeroen (2011-06-24).
5727: 5567: 5455: 5211: 967: 856:
are symmetry-allowed in RIXS as well. In particular, RIXS at L and M edges, thanks to the resonant character, also
717: 197:, and the tuning of the incoming X-rays to a specific absorption edge allows for element and chemical specificity. 729: 345: 5764: 5394: 1476:. Proceeding of the Eight International Conference on Electronic Spectroscopy and Structure. 114–116: 705–709. 897: 842: 210: 4933:
Yin, Zhong; Rajkovic, Ivan; Thekku Veedu, Sreevidya; Deinert, Sascha; Raiser, Dirk; et al. (2015-01-28).
4876:
Yin, Zhong; Rajkovic, Ivan; Kubicek, Katharina; Quevedo, Wilson; Pietzsch, Annette; et al. (2014-07-28).
1392:
Hasan, M. Z.; Isaacs, E. D.; Shen, Z.-X.; Miller, L. L.; Tsutsui, K.; Tohyama, T.; Maekawa, S. (2000-06-09).
922: 2255: 904:, and shed light on the nature and symmetry of the electron-electron pairing of the superconducting state. 5696: 5545: 5281: 1012: 130: 5656: 5525: 5333: 2401:"Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor" 2140:"Resonant inelastic hard x-ray scattering with diced analyzer crystals and position-sensitive detectors" 636: 63: 2216: 1846:"I21: an advanced high-resolution resonant inelastic X-ray scattering beamline at Diamond Light Source" 5572: 4443:
Zhou, Ke-Jin; Huang, Yao-Bo; Monney, Claude; Dai, Xi; Strocov, Vladimir N.; et al. (2013-02-12).
4216:
Magnuson, M.; Schmitt, T.; Strocov, V. N.; Schlappa, J.; Kalabukhov, A. S.; Duda, L.-C. (2014-11-12).
2173: 2045: 1785: 5493: 5425: 5358: 5243: 5105: 5000: 4842: 4798: 4746: 4657: 4594: 4533: 4466: 4393: 4318: 4307:"Anisotropic softening of magnetic excitations along the nodal direction in superconducting cuprates" 4251: 4174: 4101: 4020: 3951: 3872: 3817: 3782: 3730: 3673: 3618: 3297:"A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator" 3199: 3126: 2966: 2753: 2314: 1904:
Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina; Coburn, Scott; Leonhardt, William (2016-11-01).
1680: 1629: 1568: 1515: 1507: 1469: 1415: 1287: 585: 20: 5268: 5258: 3661: 1332:
Glatzel, Pieter; Bergmann, Uwe; Yano, Junko; Visser, Hendrik; Robblee, John H.; et al. (2004).
607: 5445: 5420: 5399: 805: 746: 632: 573: 206: 5201: 3517:"Ultrafast time-resolved x-ray scattering reveals diffusive charge order dynamics in La2-xBaxCuO4" 1735:"SAXES, a high resolution spectrometer for resonant x-ray emission in the 400–1600eV energy range" 1470:"Inelastic X-ray scattering as a novel tool to study electronic excitations in complex insulators" 804:, which hosts both a diffused elastic signal, but also any kind of order proper of the system, as 564:
of a spectral feature is determined by the life-times of initial and final states. Indeed, as for
5686: 5465: 5430: 5363: 5161: 5129: 5095: 4972: 4626: 4584: 4557: 4523: 4456: 4425: 4383: 4241: 4218:"Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa 4198: 4164: 4133: 4091: 4052: 4010: 3975: 3941: 3914: 3746: 3720: 3642: 3608: 3478: 3429: 3344: 3189: 3158: 3116: 3068: 2998: 2956: 2896: 2839: 2790: 2690: 2677:
Jia, Chunjing; Wohlfeld, Krzysztof; Wang, Yao; Moritz, Brian; Devereaux, Thomas P. (2016-05-13).
2609: 2559: 2510: 2461: 2412: 2362: 2330: 2304: 1704: 1653: 1619: 1592: 1558: 1447: 1405: 1311: 1106: 1022: 561: 180: 4877: 912: 859: 635:, to disperse the X-rays scattered from the sample, and on position sensitive detectors, mostly 268: 239: 1906:"Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer" 5734: 5666: 5661: 5488: 5460: 5353: 5179: 5121: 5068: 5060: 5024: 5016: 4964: 4915: 4907: 4858: 4814: 4770: 4762: 4718: 4710: 4675: 4618: 4610: 4549: 4492: 4484: 4417: 4409: 4344: 4336: 4287: 4269: 4190: 4125: 4117: 4044: 4036: 3967: 3906: 3898: 3833: 3689: 3634: 3577: 3536: 3496: 3447: 3316: 3271: 3235: 3217: 3150: 3142: 3088: 3037: 2990: 2982: 2916: 2857: 2808: 2758: 2708: 2627: 2577: 2528: 2479: 2449: 2430: 2380: 2270: 2231: 2193: 2065: 2023: 1967: 1925: 1865: 1815: 1754: 1696: 1645: 1584: 1531: 1485: 1439: 1431: 1371: 1353: 1303: 1253: 1212: 1172: 687: 651: 615: 4934: 2475: 97: 5450: 5328: 5171: 5113: 5052: 5008: 4954: 4946: 4897: 4889: 4850: 4806: 4754: 4702: 4665: 4602: 4541: 4474: 4401: 4326: 4277: 4259: 4182: 4109: 4028: 3959: 3888: 3880: 3825: 3790: 3738: 3709:"Dispersive collective charge modes in an incommensurately modulated cuprate Mott insulator" 3681: 3626: 3569: 3544: 3528: 3488: 3439: 3396: 3386: 3354: 3308: 3263: 3225: 3207: 3134: 3078: 3029: 2974: 2906: 2849: 2800: 2748: 2740: 2700: 2654: 2619: 2569: 2520: 2471: 2422: 2372: 2322: 2185: 2151: 2117: 2057: 2013: 2003: 1959: 1917: 1873: 1857: 1805: 1797: 1746: 1688: 1637: 1576: 1523: 1477: 1423: 1393: 1361: 1345: 1295: 1245: 1164: 1116: 721: 33: 3467:"Probing light-driven quantum materials with ultrafast resonant inelastic X-ray scattering" 642: 519: 236:
The scattering geometry (incidence and scattering angles) determines the momentum transfer
164:
leaves it. The conservation laws of energy and momentum are also highlighted, being ħω and
5722: 5577: 5440: 5404: 5323: 4959: 4902: 4305:
Guarise, M.; Piazza, B. Dalla; Berger, H.; Giannini, E.; Schmitt, T.; et al. (2014).
314: 3596: 543:
between the core hole (and in some cases the excited electron) and the valence electrons.
5109: 5004: 4846: 4802: 4750: 4661: 4598: 4537: 4470: 4397: 4322: 4255: 4178: 4105: 4024: 3955: 3876: 3821: 3786: 3734: 3677: 3622: 3203: 3130: 2970: 2911: 2779:"Gapped Collective Charge Excitations and Interlayer Hopping in Cuprate Superconductors" 2318: 1991: 1947: 1845: 1684: 1633: 1580: 1572: 1519: 1419: 1291: 679: 4282: 4217: 3662:"Direct Spectroscopic Evidence of Holons in a Quantum Antiferromagnetic Spin-1/2 Chain" 3549: 3401: 3374: 3230: 3177: 2105: 1878: 1366: 1333: 977: 957: 733: 3770: 3708: 2350: 2172:
Moretti Sala, M.; Henriquet, C.; Simonelli, L.; Verbeni, R.; Monaco, G. (2013-06-01).
1527: 1481: 929:
wavelength and then its evolution is observed taking snapshots as a function of time.
623: 512: 5753: 5498: 5133: 4561: 4202: 3750: 2334: 1708: 1657: 1596: 1315: 1094: 994: 581: 4976: 4429: 4137: 3646: 3597:"Momentum-Resolved Charge Excitations in a Prototype One-Dimensional Mott Insulator" 3296: 3162: 3017: 3002: 2778: 2728: 2597: 611:
Schematic layout of a varied line spacing (VLS) spherical grating RIXS spectrometer.
5540: 5435: 5348: 5338: 4758: 4630: 4405: 4056: 3979: 3918: 3884: 3138: 3033: 2877: 2827: 2804: 2744: 2647:"High Resolution Resonant Inelastic X-Ray Scattering from Solids in the Soft Range" 2623: 1451: 1233: 770: 306: 4606: 3630: 2853: 2646: 1692: 1427: 1249: 4810: 2878:"Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu 2658: 2189: 5389: 4374:
Insulator Using Resonant X-Ray Scattering: Evidence for Extended Interactions".
4082:
from the undoped insulator to the heavily overdoped non-superconducting metal".
3466: 3417: 3375:"Laser-induced transient magnons in Sr 3 Ir 2 O 7 throughout the Brillouin zone" 3056: 2828:"Spin Excitations in Fluctuating Stripe Phases of Doped Cuprate Superconductors" 1299: 769:) and on the order of 0.1 micrometers in the soft X-ray regime (e.g. transition 655: 5149: 4854: 4545: 4186: 3829: 3794: 3742: 3707:
Wray, L.; Qian, D.; Hsieh, D.; Xia, Y.; Eisaki, H.; Hasan, M. Z. (2007-09-19).
3492: 3443: 3083: 2678: 2547: 2326: 2061: 1801: 1641: 1394:"Electronic Structure of Mott Insulators Studied by Inelastic X-ray Scattering" 788: 441:{\displaystyle \hbar \omega _{\text{transferred}}=\hbar \omega -\hbar \omega '} 5513: 5379: 5244:
Hard X-ray RIXS experiments at ESRF (European Synchrotron Radiation Facility).
5239:
Soft X-ray RIXS experiments at ESRF (European Synchrotron Radiation Facility).
5175: 5117: 3685: 3573: 3312: 2704: 2573: 2008: 1963: 1861: 1120: 631:
State of the art soft X-ray RIXS spectrometers are based on grazing incidence
201: 5183: 5125: 5064: 5020: 4968: 4911: 4862: 4818: 4766: 4714: 4679: 4614: 4553: 4488: 4413: 4340: 4273: 4194: 4121: 4040: 3971: 3902: 3837: 3693: 3540: 3500: 3451: 3320: 3221: 3146: 3092: 3041: 2986: 2920: 2861: 2812: 2762: 2712: 2631: 2581: 2532: 2483: 2434: 2400: 2384: 2197: 2069: 2027: 1971: 1929: 1869: 1819: 1758: 1700: 1649: 1588: 1535: 1489: 1435: 1357: 1307: 1257: 5150:"Resonant inelastic X-ray scattering of magnetic excitations under pressure" 3516: 3391: 2498: 2426: 2376: 983: 5072: 5028: 4950: 4919: 4774: 4722: 4670: 4645: 4622: 4496: 4421: 4348: 4291: 4129: 4048: 3910: 3638: 3581: 3532: 3257: 3239: 3154: 2994: 2524: 1443: 1375: 1158: 4445:"Persistent high-energy spin excitations in iron-pnictide superconductors" 3267: 2598:"Experimental Determination of Momentum-Resolved Electron-Phonon Coupling" 1168: 26: 5384: 4589: 3725: 3613: 3568:. Metal Ions in Life Sciences. Vol. 17. de Gruyter. pp. 79–98. 2844: 2351:"Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba 2 Cu 3 O 6+ x" 2018: 1810: 1624: 1410: 5202:"Resonant inelastic x-ray scattering studies of elementary excitations." 2978: 2138:
Huotari, S.; Albergamo, F.; Vankò, Gy.; Verbeni, R.; Monaco, G. (2006).
732:
equation considering the interatomic lattice spacing is in the order of
5508: 5226:"An introduction to synchrotron radiation: techniques and applications" 4479: 4444: 4331: 4306: 1905: 1734: 1468:
Hasan, M. Z.; Isaacs, E. D.; Shen, Z. -X.; Miller, L. L. (2001-03-01).
1095:"Resonant inelastic x-ray scattering studies of elementary excitations" 973: 835: 826: 5248: 5056: 4893: 4706: 4264: 3963: 3893: 3212: 3176:
Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen (2016-05-06).
2155: 1921: 1750: 1349: 580:
A convolution of the incident X-ray bandpass, defined by the beamline
5343: 5012: 4878:"Probing the Hofmeister Effect with Ultrafast Core–Hole Spectroscopy" 4113: 4032: 3358: 2121: 1506:
Hasan, M. Z.; Isaacs, E. D.; Shen, Z-X.; Miller, L. L. (2000-11-01).
890: 886: 812: 766: 388:
RIXS, resonant X-ray Raman and RXES in the literature is not strict.
5253: 2139: 1508:"Particle-hole excitations in insulating antiferromagnet Ca2CuO2Cl2" 5166: 3483: 3434: 3349: 3073: 2795: 2695: 2614: 2564: 2515: 2466: 2417: 800:
Starting from the low energy loss part of the spectrum, RIXS has a
691:
The hard X-rays RIXS spectrometer of the ID20 beamline of the ESRF.
5318: 5304: 5100: 4646:"Ligand Energy Controls the Heme-Fe Valence in Aqueous Myoglobins" 4528: 4461: 4388: 4246: 4169: 4096: 4015: 3946: 3194: 3121: 3057:"Fractional Spin Excitations in the Infinite-Layer Cuprate CaCuO2" 2961: 2901: 2367: 2309: 1563: 1111: 988: 911: 686: 678: 650:
The whole optical path from the source to the CCD must be kept in
641: 622: 614: 606: 511: 305: 187: 25: 200:
Due to the intrinsic inefficiency of the RIXS process, extremely
5273: 2934: 2932: 2930: 5277: 4935:"Ionic Solutions Probed by Resonant Inelastic X-ray Scattering" 2653:, Cham: Springer International Publishing, pp. 1797–1822, 2450:"Resonant X-Ray Scattering Studies of Charge Order in Cuprates" 2174:"High energy-resolution set-up for Ir L3 edge RIXS experiments" 168:
respectively the energy and momentum transferred to the sample.
3418:"Theory for time-resolved resonant inelastic x-ray scattering" 2679:"Using RIXS to Uncover Elementary Charge and Spin Excitations" 896:
Moreover, it has been theoretically shown that RIXS can probe
2826:
Vojta, Matthias; Vojta, Thomas; Kaul, Ribhu K. (2006-08-28).
2499:"Charge Order at High Temperature in Cuprate Superconductors" 193:
The use of X-rays guarantees bulk sensitivity, as opposed to
700:
crystal analyzers, is less disruptive than for soft X-rays.
5238: 1211:(1st ed.). Oxford university press. pp. 377–479. 3769:
Markiewicz, R. S.; Hasan, M. Z.; Bansil, A. (2008-03-25).
493:{\displaystyle {\textbf {q}}={\textbf {k}}-{\textbf {k}}'} 839:
and their dispersion can be measured by RIXS, as well as
683:
Rowland circle geometry for hard X-rays RIXS experiments.
2955:(7396). Springer Science and Business Media LLC: 82–85. 991:, aqueous solution, aqueous acetic acid, aqueous glycine 1679:(1). Springer Science and Business Media LLC: 207–214. 908:
Pump-probe RIXS with X-ray free electron lasers (XFELs)
217:) as a turning point for the success of the technique. 2497:
Arpaia, Riccardo; Ghiringhelli, Giacomo (2021-11-15).
2178:
Journal of Electron Spectroscopy and Related Phenomena
1474:
Journal of Electron Spectroscopy and Related Phenomena
94:
impinges on the sample and another photon with energy
3863:
Compounds Measured Using Resonant X-Ray Scattering".
862: 811:
In the low-energy window, the signal is dominated by
712:
Compared to other inelastic scattering techniques as
522: 457: 401: 348: 317: 271: 242: 133: 100: 66: 36: 30:
Cartoon of the RIXS experiment. A photon with energy
5051:(49). American Chemical Society (ACS): 16002–16006. 4455:(1). Springer Science and Business Media LLC: 1470. 4317:(1). Springer Science and Business Media LLC: 5760. 5715: 5647: 5596: 5481: 5474: 5413: 5372: 5311: 4999:(39). Royal Society of Chemistry (RSC): 8676–8679. 2180:. Progress in Resonant Inelastic X-Ray Scattering. 4888:(31). American Chemical Society (ACS): 9398–9403. 2651:Synchrotron Light Sources and Free-Electron Lasers 2448:Comin, Riccardo; Damascelli, Andrea (2016-03-10). 1344:(32). American Chemical Society (ACS): 9946–9959. 1327: 1325: 1234:"ESRF-EBS: The Extremely Brilliant Source Project" 877: 535: 492: 440: 371: 334: 286: 257: 156: 119: 86: 52: 19:"RIXS" redirects here. For the plural of rix, see 5254:RIXS experiments at APS (Advanced Photon Source). 5219:"Electron dynamics by inelastic X-ray scattering" 4701:(8). American Chemical Society (ACS): 2555–2557. 4163:(2). American Physical Society (APS): 020513(R). 4841:(13). American Physical Society (APS): 132203. 3871:(16). American Physical Society (APS): 167401. 3816:(20). American Physical Society (APS): 205116. 3379:Proceedings of the National Academy of Sciences 1209:Electron dynamics by inelastic X-ray scattering 552:sub-system is constant throughout the process. 209:(XFELs) and set the advent of third generation 5269:RIXS experiments at DLS (Diamond Light Source) 5264:Soft X-ray RIXS experiment at SOLEIL (France). 4745:(2). American Physical Society (APS): 027801. 4583:(4). American Physical Society (APS): 047203. 627:The Diamond Light Source I21 RIXS spectrometer 5289: 5249:RIXS experiments at SLS (Swiss Light Source). 8: 1673:The European Physical Journal Special Topics 1157:de Groot, Frank; Kotani, Akio (2008-03-10). 619:The ESRF ID32 soft X-rays RIXS spectrometer. 372:{\displaystyle \hbar \omega -\hbar \omega '} 3566:Lead: Its Effects on Environment and Health 5478: 5296: 5282: 5274: 1202: 1200: 1198: 1196: 1194: 1192: 1190: 1188: 5165: 5099: 4958: 4901: 4669: 4588: 4527: 4478: 4460: 4387: 4330: 4281: 4263: 4245: 4168: 4095: 4014: 3945: 3892: 3724: 3666:International Journal of Modern Physics B 3612: 3548: 3482: 3465:Mitrano, Matteo; Wang, Yao (2020-10-19). 3433: 3400: 3390: 3348: 3229: 3211: 3193: 3120: 3082: 3072: 2960: 2910: 2900: 2843: 2794: 2754:1983/4135a219-e672-4666-a98d-94d300a4287b 2752: 2694: 2613: 2563: 2514: 2465: 2454:Annual Review of Condensed Matter Physics 2416: 2366: 2308: 2017: 2007: 1877: 1809: 1623: 1562: 1409: 1365: 1110: 861: 527: 521: 480: 479: 469: 468: 459: 458: 456: 409: 400: 347: 316: 273: 272: 270: 244: 243: 241: 142: 136: 135: 132: 105: 99: 75: 69: 68: 65: 41: 35: 4695:Journal of the American Chemical Society 4656:(4). Physical Society of Japan: 044802. 4650:Journal of the Physical Society of Japan 3259:An Introduction to Synchrotron Radiation 2503:Journal of the Physical Society of Japan 2476:10.1146/annurev-conmatphys-031115-011401 1338:Journal of the American Chemical Society 1152: 1150: 1018:Electron energy loss spectroscopy (EELS) 787: 570:non-resonant X-ray emission spectroscopy 4945:(10–12). Walter de Gruyter GmbH: 1855. 1273: 1271: 1269: 1267: 1148: 1146: 1144: 1142: 1140: 1138: 1136: 1134: 1132: 1130: 1034: 427: 418: 402: 358: 349: 3289: 3287: 3251: 3249: 2275:: CS1 maint: archived copy as title ( 2268: 2236:: CS1 maint: archived copy as title ( 2229: 2167: 2165: 2133: 2131: 2039: 2037: 1985: 1983: 1981: 663:spectrometer and thus the efficiency. 3764: 3762: 3760: 1941: 1939: 1899: 1897: 1895: 1893: 1891: 1889: 1839: 1837: 1835: 1833: 1831: 1829: 1778: 1776: 1774: 1772: 1770: 1768: 1728: 1726: 1724: 1722: 1720: 1718: 1088: 1086: 1084: 1082: 1080: 1078: 1076: 1074: 1072: 1070: 1068: 1066: 1064: 1062: 1060: 1058: 976:(e.g. the oxygen-evolving complex in 16:Advanced X-ray spectroscopy technique 7: 5259:RIXS experiments at SOLEIL (France). 4939:Zeitschrift für Physikalische Chemie 2885:resonant inelastic x-ray scattering" 1501: 1499: 1463: 1461: 1387: 1385: 1056: 1054: 1052: 1050: 1048: 1046: 1044: 1042: 1040: 1038: 5212:"Core level spectroscopy of solids" 5045:The Journal of Physical Chemistry B 4993:Physical Chemistry Chemical Physics 4882:The Journal of Physical Chemistry B 736:- it derives from the relativistic 481: 470: 460: 173:Resonant inelastic X-ray scattering 157:{\displaystyle {\textbf {k}}_{out}} 137: 70: 5210:De Groot, Frank, and Akio Kotani. 1023:Inelastic neutron scattering (INS) 863: 87:{\displaystyle {\textbf {k}}_{in}} 14: 1160:Core Level Spectroscopy of Solids 5154:Journal of Synchrotron Radiation 2144:Review of Scientific Instruments 1996:Journal of Synchrotron Radiation 1952:Journal of Synchrotron Radiation 1910:Review of Scientific Instruments 1850:Journal of Synchrotron Radiation 1739:Review of Scientific Instruments 949:high-temperature superconductors 925:fashion are nowadays available. 902:high-temperature superconductors 1163:. CRC Press. pp. 335–435. 942:Intracellular metal speciation, 4960:11858/00-001M-0000-0028-2D54-A 4903:11858/00-001M-0000-0023-C074-7 4759:10.1103/physrevlett.100.027801 4406:10.1103/physrevlett.105.157006 3885:10.1103/physrevlett.102.167401 3139:10.1103/PhysRevLett.110.117005 3034:10.1103/physrevlett.104.077002 2805:10.1103/physrevlett.129.047001 2745:10.1103/physrevlett.125.257002 2624:10.1103/physrevlett.123.027001 1286:(1). IOP Publishing: 121–127. 278: 249: 1: 4797:(4–6). Elsevier BV: 387–400. 4607:10.1103/physrevlett.94.047203 3631:10.1103/PhysRevLett.88.177403 2912:10.1088/1367-2630/13/4/043026 2854:10.1103/physrevlett.97.097001 1581:10.1088/1367-2630/12/3/033001 1557:(3). IOP Publishing: 033001. 1528:10.1016/S0921-4534(00)00690-0 1482:10.1016/S0368-2048(00)00401-1 1428:10.1126/science.288.5472.1811 1250:10.1080/08940886.2016.1244462 5228:John Wiley & Sons, 2019. 4811:10.1016/j.cplett.2008.04.077 2659:10.1007/978-3-319-14394-1_42 2190:10.1016/j.elspec.2012.08.002 1512:Physica C: Superconductivity 1013:X-ray Raman scattering (XRS) 833:In the charge channel, also 825:Electron-hole continuum and 3262:. Wiley. pp. 107–126. 1693:10.1140/epjst/e2009-00994-7 1232:Raimondi, Pantaleo (2016). 1008:X-ray scattering techniques 954:Iron-based superconductors, 848:charge transfer excitations 5781: 5568:X-Ray Fluorescence Imaging 5456:Anomalous X-ray scattering 4855:10.1103/physrevb.79.132203 4546:10.1103/physrevb.81.195202 4187:10.1103/physrevb.82.020513 3830:10.1103/physrevb.77.205116 3795:10.1103/PhysRevB.77.094518 3743:10.1103/PhysRevB.76.100507 3493:10.1038/s42005-020-00447-6 3444:10.1103/physrevb.99.104306 3084:10.1103/physrevx.12.021041 2645:Braicovich, Lucio (2016), 2327:10.1103/PhysRevB.89.235138 2062:10.1016/j.nima.2006.10.024 1802:10.1016/j.nima.2018.07.001 1642:10.1103/physrevb.77.104519 1238:Synchrotron Radiation News 968:Colossal magnetoresistance 878:{\displaystyle \Delta S=1} 287:{\displaystyle {\vec {q}}} 265:. In order to explore the 258:{\displaystyle {\vec {q}}} 207:X-ray free electron lasers 18: 5221:Vol. 7. OUP Oxford, 2007. 5205:Reviews of Modern Physics 5176:10.1107/s1600577519008877 5118:10.1103/revmodphys.82.847 5088:Reviews of Modern Physics 3686:10.1142/S0217979203021241 3574:10.1515/9783110434330-005 3313:10.1038/s41566-020-0607-z 3256:Willmott, Philip (2019). 2705:10.1103/physrevx.6.021020 2574:10.1103/physrevx.6.041019 2009:10.1107/S1600577518001200 1964:10.1107/S1600577518005945 1862:10.1107/S1600577522000601 1300:10.1209/epl/i2005-10366-9 1280:Europhysics Letters (EPL) 1121:10.1103/RevModPhys.83.705 1099:Reviews of Modern Physics 898:Bogoliubov quasiparticles 843:crystal field excitations 5395:Synchrotron light source 4791:Chemical Physics Letters 738:energy–momentum relation 675:Hard X-ray spectrometers 603:Soft X-ray spectrometers 5414:Interaction with matter 5373:Sources and instruments 5200:Ament, Luuk JP, et al. 4739:Physical Review Letters 4577:Physical Review Letters 4376:Physical Review Letters 3865:Physical Review Letters 3601:Physical Review Letters 3392:10.1073/pnas.2103696118 3109:Physical Review Letters 3022:Physical Review Letters 2832:Physical Review Letters 2783:Physical Review Letters 2733:Physical Review Letters 2602:Physical Review Letters 2427:10.1126/science.aav1315 2377:10.1126/science.1223532 885:spin flip excitations ( 802:purely elastic response 195:electron spectroscopies 120:{\displaystyle E_{out}} 5546:Diffraction tomography 4951:10.1515/zpch-2015-0610 4671:10.1143/jpsj.78.044802 3533:10.1126/sciadv.aax3346 3471:Communications Physics 2889:New Journal of Physics 2525:10.7566/jpsj.90.111005 1551:New Journal of Physics 917: 879: 793: 784:RIXS spectral features 692: 684: 647: 628: 620: 612: 544: 537: 494: 442: 380: 373: 336: 288: 259: 169: 158: 121: 88: 54: 53:{\displaystyle E_{in}} 5657:X-ray crystallography 5526:Soft x-ray microscopy 5494:Panoramic radiography 5334:Synchrotron radiation 4449:Nature Communications 4311:Nature Communications 3268:10.1002/9781119280453 1169:10.1201/9781420008425 915: 880: 791: 744:RIXS can utilize the 690: 682: 659:terms of setup time. 645: 626: 618: 610: 538: 536:{\displaystyle U_{c}} 515: 495: 443: 374: 337: 309: 289: 260: 159: 122: 89: 55: 29: 5426:Photoelectric effect 5359:Characteristic X-ray 3672:(18n20): 3479–3483. 1514:. 341–348: 781–782. 1207:Schülke, W. (2007). 980:) aqueous myoglobins 860: 806:charge density waves 778:small sample volumes 633:diffraction gratings 556:Experimental details 520: 455: 399: 346: 335:{\displaystyle k'-k} 315: 269: 240: 131: 98: 64: 34: 5446:Photodisintegration 5421:Rayleigh scattering 5400:Free-electron laser 5217:Schülke, Winfried. 5110:2010RvMP...82..847R 5005:2009PCCP...11.8676H 4847:2009PhRvB..79m2203F 4803:2008CPL...460..387T 4751:2008PhRvL.100b7801F 4662:2009JPSJ...78d4802H 4599:2005PhRvL..94d7203G 4538:2010PhRvB..81s5202K 4471:2013NatCo...4.1470Z 4398:2010PhRvL.105o7006G 4323:2014NatCo...5.5760G 4256:2014NatSR...4E7017M 4179:2010PhRvB..82b0513H 4106:2013NatMa..12.1019D 4025:2012NatMa..11..850D 3956:2011NatPh...7..725L 3877:2009PhRvL.102p7401B 3822:2008PhRvB..77t5116K 3787:2008PhRvB..77i4518M 3735:2007PhRvB..76j0507W 3678:2003IJMPB..17.3479H 3623:2002PhRvL..88q7403H 3204:2016NatSR...625386M 3131:2013PhRvL.110k7005M 2979:10.1038/nature10974 2971:2012Natur.485...82S 2319:2014PhRvB..89w5138B 1685:2009EPJST.169..207G 1634:2008PhRvB..77j4519V 1573:2010NJPh...12c3001H 1520:2000PhyC..341..781H 1420:2000Sci...288.1811H 1404:(5472): 1811–1814. 1292:2006EL.....73..121V 5760:X-ray spectroscopy 5687:X-ray reflectivity 5466:X-ray fluorescence 5431:Compton scattering 5364:High-energy X-rays 5224:Willmott, Philip. 4480:10.1038/ncomms2428 4332:10.1038/ncomms6760 4234:Scientific Reports 3182:Scientific Reports 2110:X-Ray Spectrometry 2086:. Physics.nist.gov 2084:"Physics.nist.gov" 918: 875: 794: 693: 685: 648: 629: 621: 613: 545: 533: 490: 438: 381: 369: 332: 284: 255: 231:Kramers-Heisenberg 181:X-ray spectroscopy 170: 154: 117: 84: 50: 5747: 5746: 5743: 5742: 5735:X-ray lithography 5667:Backscatter X-ray 5662:X-ray diffraction 5489:X-ray radiography 5461:X-ray diffraction 5354:Siegbahn notation 5207:83.2 (2011): 705. 5057:10.1021/jp905998x 4894:10.1021/jp504577a 4835:Physical Review B 4707:10.1021/ja907760p 4516:Physical Review B 4265:10.1038/srep07017 4157:Physical Review B 4090:(11): 1019–1023. 3964:10.1038/nphys2041 3810:Physical Review B 3775:Physical Review B 3713:Physical Review B 3422:Physical Review B 3277:978-1-119-28039-2 3213:10.1038/srep25386 3061:Physical Review X 2683:Physical Review X 2552:Physical Review X 2411:(6456): 906–910. 2361:(6096): 821–825. 2297:Physical Review B 2156:10.1063/1.2198805 1922:10.1063/1.4964847 1751:10.1063/1.2372731 1612:Physical Review B 1350:10.1021/ja038579z 1218:978-0-19-851017-8 1178:978-0-429-19579-2 951:(e.g., cuprates), 819:vibrational modes 574:energy resolution 562:natural linewidth 483: 472: 462: 412: 281: 252: 179:) is an advanced 139: 72: 5772: 5765:X-ray scattering 5573:X-ray holography 5479: 5451:Radiation damage 5298: 5291: 5284: 5275: 5214:CRC press, 2008. 5188: 5187: 5169: 5160:(5): 1725–1732. 5144: 5138: 5137: 5103: 5083: 5077: 5076: 5039: 5033: 5032: 5013:10.1039/b910039c 4987: 4981: 4980: 4962: 4930: 4924: 4923: 4905: 4873: 4867: 4866: 4829: 4823: 4822: 4785: 4779: 4778: 4733: 4727: 4726: 4690: 4684: 4683: 4673: 4641: 4635: 4634: 4592: 4590:cond-mat/0407326 4572: 4566: 4565: 4531: 4507: 4501: 4500: 4482: 4464: 4440: 4434: 4433: 4391: 4359: 4353: 4352: 4334: 4302: 4296: 4295: 4285: 4267: 4249: 4213: 4207: 4206: 4172: 4148: 4142: 4141: 4114:10.1038/nmat3723 4099: 4084:Nature Materials 4067: 4061: 4060: 4033:10.1038/nmat3409 4018: 4003:Nature Materials 3990: 3984: 3983: 3949: 3929: 3923: 3922: 3896: 3848: 3842: 3841: 3805: 3799: 3798: 3766: 3755: 3754: 3728: 3726:cond-mat/0612207 3704: 3698: 3697: 3657: 3651: 3650: 3616: 3614:cond-mat/0102485 3592: 3586: 3585: 3561: 3555: 3554: 3552: 3521:Science Advances 3511: 3505: 3504: 3486: 3462: 3456: 3455: 3437: 3413: 3407: 3406: 3404: 3394: 3369: 3363: 3362: 3359:10.1038/nmat4641 3352: 3337:Nature Materials 3331: 3325: 3324: 3301:Nature Photonics 3291: 3282: 3281: 3253: 3244: 3243: 3233: 3215: 3197: 3173: 3167: 3166: 3124: 3103: 3097: 3096: 3086: 3076: 3052: 3046: 3045: 3013: 3007: 3006: 2964: 2936: 2925: 2924: 2914: 2904: 2872: 2866: 2865: 2847: 2845:cond-mat/0510448 2823: 2817: 2816: 2798: 2773: 2767: 2766: 2756: 2723: 2717: 2716: 2698: 2674: 2668: 2667: 2666: 2665: 2642: 2636: 2635: 2617: 2592: 2586: 2585: 2567: 2543: 2537: 2536: 2518: 2494: 2488: 2487: 2469: 2445: 2439: 2438: 2420: 2395: 2389: 2388: 2370: 2345: 2339: 2338: 2312: 2287: 2281: 2280: 2274: 2266: 2264: 2263: 2254:. Archived from 2248: 2242: 2241: 2235: 2227: 2225: 2224: 2215:. Archived from 2208: 2202: 2201: 2169: 2160: 2159: 2135: 2126: 2125: 2122:10.1002/xrs.2511 2101: 2095: 2094: 2092: 2091: 2080: 2074: 2073: 2041: 2032: 2031: 2021: 2011: 1987: 1976: 1975: 1958:(4): 1030–1035. 1943: 1934: 1933: 1901: 1884: 1883: 1881: 1841: 1824: 1823: 1813: 1780: 1763: 1762: 1730: 1713: 1712: 1668: 1662: 1661: 1627: 1625:cond-mat/0702026 1607: 1601: 1600: 1566: 1546: 1540: 1539: 1503: 1494: 1493: 1465: 1456: 1455: 1413: 1411:cond-mat/0102489 1389: 1380: 1379: 1369: 1329: 1320: 1319: 1275: 1262: 1261: 1229: 1223: 1222: 1204: 1183: 1182: 1154: 1125: 1124: 1114: 1090: 884: 882: 881: 876: 854:Spin excitations 776:RIXS needs only 756:element specific 722:Raman scattering 566:X-ray absorption 542: 540: 539: 534: 532: 531: 499: 497: 496: 491: 489: 485: 484: 474: 473: 464: 463: 447: 445: 444: 439: 437: 414: 413: 410: 378: 376: 375: 370: 368: 341: 339: 338: 333: 325: 293: 291: 290: 285: 283: 282: 274: 264: 262: 261: 256: 254: 253: 245: 163: 161: 160: 155: 153: 152: 141: 140: 126: 124: 123: 118: 116: 115: 93: 91: 90: 85: 83: 82: 74: 73: 59: 57: 56: 51: 49: 48: 5780: 5779: 5775: 5774: 5773: 5771: 5770: 5769: 5750: 5749: 5748: 5739: 5723:X-ray astronomy 5711: 5643: 5592: 5578:X-ray telescope 5470: 5441:Photoionization 5409: 5405:X-ray nanoprobe 5368: 5324:Absorption edge 5312:Characteristics 5307: 5302: 5235: 5197: 5195:Further reading 5192: 5191: 5146: 5145: 5141: 5085: 5084: 5080: 5041: 5040: 5036: 4989: 4988: 4984: 4932: 4931: 4927: 4875: 4874: 4870: 4831: 4830: 4826: 4787: 4786: 4782: 4735: 4734: 4730: 4692: 4691: 4687: 4643: 4642: 4638: 4574: 4573: 4569: 4513: 4509: 4508: 4504: 4442: 4441: 4437: 4373: 4369: 4365: 4361: 4360: 4356: 4304: 4303: 4299: 4229: 4225: 4221: 4215: 4214: 4210: 4154: 4150: 4149: 4145: 4081: 4077: 4073: 4069: 4068: 4064: 4009:(10): 850–854. 4000: 3996: 3992: 3991: 3987: 3931: 3930: 3926: 3862: 3858: 3854: 3850: 3849: 3845: 3807: 3806: 3802: 3768: 3767: 3758: 3706: 3705: 3701: 3659: 3658: 3654: 3594: 3593: 3589: 3563: 3562: 3558: 3513: 3512: 3508: 3464: 3463: 3459: 3415: 3414: 3410: 3371: 3370: 3366: 3333: 3332: 3328: 3293: 3292: 3285: 3278: 3255: 3254: 3247: 3175: 3174: 3170: 3105: 3104: 3100: 3054: 3053: 3049: 3015: 3014: 3010: 2946: 2942: 2938: 2937: 2928: 2884: 2874: 2873: 2869: 2825: 2824: 2820: 2775: 2774: 2770: 2725: 2724: 2720: 2676: 2675: 2671: 2663: 2661: 2644: 2643: 2639: 2594: 2593: 2589: 2545: 2544: 2540: 2496: 2495: 2491: 2447: 2446: 2442: 2397: 2396: 2392: 2347: 2346: 2342: 2294: 2289: 2288: 2284: 2267: 2261: 2259: 2252:"Archived copy" 2250: 2249: 2245: 2228: 2222: 2220: 2213:"Archived copy" 2211: 2209: 2205: 2171: 2170: 2163: 2137: 2136: 2129: 2103: 2102: 2098: 2089: 2087: 2082: 2081: 2077: 2043: 2042: 2035: 1989: 1988: 1979: 1945: 1944: 1937: 1903: 1902: 1887: 1843: 1842: 1827: 1782: 1781: 1766: 1732: 1731: 1716: 1670: 1669: 1665: 1609: 1608: 1604: 1548: 1547: 1543: 1505: 1504: 1497: 1467: 1466: 1459: 1391: 1390: 1383: 1331: 1330: 1323: 1277: 1276: 1265: 1231: 1230: 1226: 1219: 1206: 1205: 1186: 1179: 1156: 1155: 1128: 1092: 1091: 1036: 1031: 1004: 974:Metalloproteins 963: 945:Mott insulators 939: 910: 858: 857: 786: 710: 708:RIXS properties 677: 605: 595: 560:In general the 558: 523: 518: 517: 510: 500: 478: 453: 452: 448: 430: 405: 397: 396: 361: 344: 343: 318: 313: 312: 304: 267: 266: 238: 237: 226: 134: 129: 128: 101: 96: 95: 67: 62: 61: 37: 32: 31: 24: 17: 12: 11: 5: 5778: 5776: 5768: 5767: 5762: 5752: 5751: 5745: 5744: 5741: 5740: 5738: 5737: 5732: 5731: 5730: 5719: 5717: 5713: 5712: 5710: 5709: 5704: 5699: 5694: 5689: 5684: 5679: 5674: 5669: 5664: 5659: 5653: 5651: 5645: 5644: 5642: 5641: 5636: 5631: 5626: 5621: 5616: 5611: 5606: 5600: 5598: 5594: 5593: 5591: 5590: 5585: 5580: 5575: 5570: 5565: 5564: 5563: 5558: 5553: 5543: 5538: 5533: 5528: 5523: 5522: 5521: 5516: 5506: 5501: 5496: 5491: 5485: 5483: 5476: 5472: 5471: 5469: 5468: 5463: 5458: 5453: 5448: 5443: 5438: 5433: 5428: 5423: 5417: 5415: 5411: 5410: 5408: 5407: 5402: 5397: 5392: 5387: 5382: 5376: 5374: 5370: 5369: 5367: 5366: 5361: 5356: 5351: 5346: 5341: 5336: 5331: 5326: 5321: 5315: 5313: 5309: 5308: 5303: 5301: 5300: 5293: 5286: 5278: 5272: 5271: 5266: 5261: 5256: 5251: 5246: 5241: 5234: 5233:External links 5231: 5230: 5229: 5222: 5215: 5208: 5196: 5193: 5190: 5189: 5139: 5094:(1): 847–896. 5078: 5034: 4982: 4925: 4868: 4824: 4780: 4728: 4685: 4636: 4567: 4522:(19): 195202. 4511: 4502: 4435: 4382:(15): 157006. 4371: 4367: 4363: 4354: 4297: 4227: 4223: 4219: 4208: 4152: 4143: 4079: 4075: 4071: 4062: 3998: 3994: 3985: 3940:(9): 725–730. 3934:Nature Physics 3924: 3860: 3856: 3852: 3843: 3800: 3756: 3719:(10): 100507. 3699: 3652: 3607:(17): 177403. 3587: 3556: 3506: 3457: 3408: 3364: 3343:(6): 601–605. 3326: 3307:(6): 391–397. 3283: 3276: 3245: 3168: 3115:(11): 117005. 3098: 3047: 3008: 2944: 2940: 2926: 2882: 2867: 2818: 2768: 2718: 2669: 2637: 2587: 2538: 2509:(11): 111005. 2489: 2460:(1): 369–405. 2440: 2390: 2340: 2303:(23): 235138. 2292: 2282: 2243: 2203: 2161: 2127: 2116:(6): 502–507. 2096: 2075: 2056:(1): 176–181. 2033: 2002:(2): 580–591. 1977: 1935: 1885: 1856:(2): 563–580. 1825: 1764: 1714: 1663: 1618:(10): 104519. 1602: 1541: 1495: 1457: 1381: 1321: 1263: 1224: 1217: 1184: 1177: 1126: 1105:(2): 705–767. 1033: 1032: 1030: 1027: 1026: 1025: 1020: 1015: 1010: 1003: 1000: 999: 998: 992: 986: 981: 978:photosystem II 971: 965: 961: 958:Semiconductors 955: 952: 946: 943: 938: 935: 923:pump and probe 909: 906: 874: 871: 868: 865: 785: 782: 763:bulk sensitive 709: 706: 676: 673: 604: 601: 593: 557: 554: 530: 526: 509: 506: 488: 477: 467: 451: 436: 433: 429: 426: 423: 420: 417: 408: 404: 395: 367: 364: 360: 357: 354: 351: 331: 328: 324: 321: 303: 300: 280: 277: 251: 248: 225: 222: 151: 148: 145: 114: 111: 108: 104: 81: 78: 47: 44: 40: 15: 13: 10: 9: 6: 4: 3: 2: 5777: 5766: 5763: 5761: 5758: 5757: 5755: 5736: 5733: 5729: 5726: 5725: 5724: 5721: 5720: 5718: 5714: 5708: 5705: 5703: 5700: 5698: 5695: 5693: 5690: 5688: 5685: 5683: 5680: 5678: 5675: 5673: 5670: 5668: 5665: 5663: 5660: 5658: 5655: 5654: 5652: 5650: 5646: 5640: 5637: 5635: 5632: 5630: 5627: 5625: 5622: 5620: 5617: 5615: 5612: 5610: 5607: 5605: 5602: 5601: 5599: 5595: 5589: 5586: 5584: 5581: 5579: 5576: 5574: 5571: 5569: 5566: 5562: 5559: 5557: 5554: 5552: 5549: 5548: 5547: 5544: 5542: 5539: 5537: 5534: 5532: 5529: 5527: 5524: 5520: 5517: 5515: 5512: 5511: 5510: 5507: 5505: 5502: 5500: 5499:Tomosynthesis 5497: 5495: 5492: 5490: 5487: 5486: 5484: 5480: 5477: 5473: 5467: 5464: 5462: 5459: 5457: 5454: 5452: 5449: 5447: 5444: 5442: 5439: 5437: 5434: 5432: 5429: 5427: 5424: 5422: 5419: 5418: 5416: 5412: 5406: 5403: 5401: 5398: 5396: 5393: 5391: 5388: 5386: 5383: 5381: 5378: 5377: 5375: 5371: 5365: 5362: 5360: 5357: 5355: 5352: 5350: 5347: 5345: 5342: 5340: 5337: 5335: 5332: 5330: 5329:Moseley's law 5327: 5325: 5322: 5320: 5317: 5316: 5314: 5310: 5306: 5305:X-ray science 5299: 5294: 5292: 5287: 5285: 5280: 5279: 5276: 5270: 5267: 5265: 5262: 5260: 5257: 5255: 5252: 5250: 5247: 5245: 5242: 5240: 5237: 5236: 5232: 5227: 5223: 5220: 5216: 5213: 5209: 5206: 5203: 5199: 5198: 5194: 5185: 5181: 5177: 5173: 5168: 5163: 5159: 5155: 5151: 5143: 5140: 5135: 5131: 5127: 5123: 5119: 5115: 5111: 5107: 5102: 5097: 5093: 5089: 5082: 5079: 5074: 5070: 5066: 5062: 5058: 5054: 5050: 5046: 5038: 5035: 5030: 5026: 5022: 5018: 5014: 5010: 5006: 5002: 4998: 4994: 4986: 4983: 4978: 4974: 4970: 4966: 4961: 4956: 4952: 4948: 4944: 4940: 4936: 4929: 4926: 4921: 4917: 4913: 4909: 4904: 4899: 4895: 4891: 4887: 4883: 4879: 4872: 4869: 4864: 4860: 4856: 4852: 4848: 4844: 4840: 4836: 4828: 4825: 4820: 4816: 4812: 4808: 4804: 4800: 4796: 4792: 4784: 4781: 4776: 4772: 4768: 4764: 4760: 4756: 4752: 4748: 4744: 4740: 4732: 4729: 4724: 4720: 4716: 4712: 4708: 4704: 4700: 4696: 4689: 4686: 4681: 4677: 4672: 4667: 4663: 4659: 4655: 4651: 4647: 4640: 4637: 4632: 4628: 4624: 4620: 4616: 4612: 4608: 4604: 4600: 4596: 4591: 4586: 4582: 4578: 4571: 4568: 4563: 4559: 4555: 4551: 4547: 4543: 4539: 4535: 4530: 4525: 4521: 4517: 4506: 4503: 4498: 4494: 4490: 4486: 4481: 4476: 4472: 4468: 4463: 4458: 4454: 4450: 4446: 4439: 4436: 4431: 4427: 4423: 4419: 4415: 4411: 4407: 4403: 4399: 4395: 4390: 4385: 4381: 4377: 4358: 4355: 4350: 4346: 4342: 4338: 4333: 4328: 4324: 4320: 4316: 4312: 4308: 4301: 4298: 4293: 4289: 4284: 4279: 4275: 4271: 4266: 4261: 4257: 4253: 4248: 4243: 4239: 4235: 4231: 4212: 4209: 4204: 4200: 4196: 4192: 4188: 4184: 4180: 4176: 4171: 4166: 4162: 4158: 4147: 4144: 4139: 4135: 4131: 4127: 4123: 4119: 4115: 4111: 4107: 4103: 4098: 4093: 4089: 4085: 4066: 4063: 4058: 4054: 4050: 4046: 4042: 4038: 4034: 4030: 4026: 4022: 4017: 4012: 4008: 4004: 3989: 3986: 3981: 3977: 3973: 3969: 3965: 3961: 3957: 3953: 3948: 3943: 3939: 3935: 3928: 3925: 3920: 3916: 3912: 3908: 3904: 3900: 3895: 3890: 3886: 3882: 3878: 3874: 3870: 3866: 3847: 3844: 3839: 3835: 3831: 3827: 3823: 3819: 3815: 3811: 3804: 3801: 3796: 3792: 3788: 3784: 3781:(9): 094518. 3780: 3776: 3772: 3765: 3763: 3761: 3757: 3752: 3748: 3744: 3740: 3736: 3732: 3727: 3722: 3718: 3714: 3710: 3703: 3700: 3695: 3691: 3687: 3683: 3679: 3675: 3671: 3667: 3663: 3656: 3653: 3648: 3644: 3640: 3636: 3632: 3628: 3624: 3620: 3615: 3610: 3606: 3602: 3598: 3591: 3588: 3583: 3579: 3575: 3571: 3567: 3560: 3557: 3551: 3546: 3542: 3538: 3534: 3530: 3526: 3522: 3518: 3510: 3507: 3502: 3498: 3494: 3490: 3485: 3480: 3476: 3472: 3468: 3461: 3458: 3453: 3449: 3445: 3441: 3436: 3431: 3427: 3423: 3419: 3412: 3409: 3403: 3398: 3393: 3388: 3384: 3380: 3376: 3368: 3365: 3360: 3356: 3351: 3346: 3342: 3338: 3330: 3327: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3290: 3288: 3284: 3279: 3273: 3269: 3265: 3261: 3260: 3252: 3250: 3246: 3241: 3237: 3232: 3227: 3223: 3219: 3214: 3209: 3205: 3201: 3196: 3191: 3187: 3183: 3179: 3172: 3169: 3164: 3160: 3156: 3152: 3148: 3144: 3140: 3136: 3132: 3128: 3123: 3118: 3114: 3110: 3102: 3099: 3094: 3090: 3085: 3080: 3075: 3070: 3066: 3062: 3058: 3051: 3048: 3043: 3039: 3035: 3031: 3027: 3023: 3019: 3012: 3009: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2968: 2963: 2958: 2954: 2950: 2935: 2933: 2931: 2927: 2922: 2918: 2913: 2908: 2903: 2898: 2895:(4): 043026. 2894: 2890: 2886: 2881: 2871: 2868: 2863: 2859: 2855: 2851: 2846: 2841: 2837: 2833: 2829: 2822: 2819: 2814: 2810: 2806: 2802: 2797: 2792: 2788: 2784: 2780: 2772: 2769: 2764: 2760: 2755: 2750: 2746: 2742: 2738: 2734: 2730: 2722: 2719: 2714: 2710: 2706: 2702: 2697: 2692: 2688: 2684: 2680: 2673: 2670: 2660: 2656: 2652: 2648: 2641: 2638: 2633: 2629: 2625: 2621: 2616: 2611: 2607: 2603: 2599: 2591: 2588: 2583: 2579: 2575: 2571: 2566: 2561: 2557: 2553: 2549: 2542: 2539: 2534: 2530: 2526: 2522: 2517: 2512: 2508: 2504: 2500: 2493: 2490: 2485: 2481: 2477: 2473: 2468: 2463: 2459: 2455: 2451: 2444: 2441: 2436: 2432: 2428: 2424: 2419: 2414: 2410: 2406: 2402: 2394: 2391: 2386: 2382: 2378: 2374: 2369: 2364: 2360: 2356: 2352: 2344: 2341: 2336: 2332: 2328: 2324: 2320: 2316: 2311: 2306: 2302: 2298: 2286: 2283: 2278: 2272: 2258:on 2013-02-09 2257: 2253: 2247: 2244: 2239: 2233: 2219:on 2013-02-09 2218: 2214: 2207: 2204: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2168: 2166: 2162: 2157: 2153: 2149: 2145: 2141: 2134: 2132: 2128: 2123: 2119: 2115: 2111: 2107: 2100: 2097: 2085: 2079: 2076: 2071: 2067: 2063: 2059: 2055: 2051: 2047: 2040: 2038: 2034: 2029: 2025: 2020: 2019:11311/1049071 2015: 2010: 2005: 2001: 1997: 1993: 1986: 1984: 1982: 1978: 1973: 1969: 1965: 1961: 1957: 1953: 1949: 1942: 1940: 1936: 1931: 1927: 1923: 1919: 1915: 1911: 1907: 1900: 1898: 1896: 1894: 1892: 1890: 1886: 1880: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1840: 1838: 1836: 1834: 1832: 1830: 1826: 1821: 1817: 1812: 1811:11311/1128322 1807: 1803: 1799: 1795: 1791: 1787: 1779: 1777: 1775: 1773: 1771: 1769: 1765: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1729: 1727: 1725: 1723: 1721: 1719: 1715: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1667: 1664: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1626: 1621: 1617: 1613: 1606: 1603: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1565: 1560: 1556: 1552: 1545: 1542: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1502: 1500: 1496: 1491: 1487: 1483: 1479: 1475: 1471: 1464: 1462: 1458: 1453: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1412: 1407: 1403: 1399: 1395: 1388: 1386: 1382: 1377: 1373: 1368: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1328: 1326: 1322: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1274: 1272: 1270: 1268: 1264: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1228: 1225: 1220: 1214: 1210: 1203: 1201: 1199: 1197: 1195: 1193: 1191: 1189: 1185: 1180: 1174: 1170: 1166: 1162: 1161: 1153: 1151: 1149: 1147: 1145: 1143: 1141: 1139: 1137: 1135: 1133: 1131: 1127: 1122: 1118: 1113: 1108: 1104: 1100: 1096: 1089: 1087: 1085: 1083: 1081: 1079: 1077: 1075: 1073: 1071: 1069: 1067: 1065: 1063: 1061: 1059: 1057: 1055: 1053: 1051: 1049: 1047: 1045: 1043: 1041: 1039: 1035: 1028: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1005: 1001: 996: 995:High pressure 993: 990: 987: 985: 982: 979: 975: 972: 969: 966: 959: 956: 953: 950: 947: 944: 941: 940: 936: 934: 930: 926: 924: 914: 907: 905: 903: 899: 894: 892: 888: 872: 869: 866: 855: 851: 849: 845: 844: 838: 837: 831: 829: 828: 822: 820: 816: 815: 809: 807: 803: 798: 790: 783: 781: 779: 774: 772: 771:metal L-edges 768: 764: 759: 757: 752: 749: 748: 742: 739: 735: 731: 726: 723: 719: 715: 707: 705: 701: 697: 689: 681: 674: 672: 671:the figures. 668: 664: 660: 657: 653: 644: 640: 638: 634: 625: 617: 609: 602: 600: 597: 591: 587: 583: 582:monochromator 578: 575: 571: 567: 563: 555: 553: 550: 528: 524: 514: 508:Indirect RIXS 507: 505: 501: 486: 475: 465: 449: 434: 431: 424: 421: 415: 406: 393: 389: 386: 365: 362: 355: 352: 329: 326: 322: 319: 308: 301: 299: 295: 275: 246: 234: 232: 223: 221: 218: 216: 212: 208: 203: 198: 196: 191: 189: 184: 182: 178: 174: 167: 149: 146: 143: 127:and momentum 112: 109: 106: 102: 79: 76: 60:and momentum 45: 42: 38: 28: 22: 5691: 5597:Spectroscopy 5541:Ptychography 5475:Applications 5436:Auger effect 5339:Water window 5204: 5157: 5153: 5142: 5091: 5087: 5081: 5048: 5044: 5037: 4996: 4992: 4985: 4942: 4938: 4928: 4885: 4881: 4871: 4838: 4834: 4827: 4794: 4790: 4783: 4742: 4738: 4731: 4698: 4694: 4688: 4653: 4649: 4639: 4580: 4576: 4570: 4519: 4515: 4505: 4452: 4448: 4438: 4379: 4375: 4357: 4314: 4310: 4300: 4237: 4233: 4211: 4160: 4156: 4146: 4087: 4083: 4065: 4006: 4002: 3988: 3937: 3933: 3927: 3868: 3864: 3846: 3813: 3809: 3803: 3778: 3774: 3716: 3712: 3702: 3669: 3665: 3655: 3604: 3600: 3590: 3565: 3559: 3524: 3520: 3509: 3474: 3470: 3460: 3425: 3421: 3411: 3382: 3378: 3367: 3340: 3336: 3329: 3304: 3300: 3258: 3188:(1): 25386. 3185: 3181: 3171: 3112: 3108: 3101: 3064: 3060: 3050: 3025: 3021: 3011: 2952: 2948: 2892: 2888: 2879: 2870: 2835: 2831: 2821: 2786: 2782: 2771: 2736: 2732: 2721: 2686: 2682: 2672: 2662:, retrieved 2650: 2640: 2605: 2601: 2590: 2555: 2551: 2541: 2506: 2502: 2492: 2457: 2453: 2443: 2408: 2404: 2393: 2358: 2354: 2343: 2300: 2296: 2285: 2260:. Retrieved 2256:the original 2246: 2221:. Retrieved 2217:the original 2206: 2181: 2177: 2147: 2143: 2113: 2109: 2099: 2088:. Retrieved 2078: 2053: 2049: 1999: 1995: 1955: 1951: 1913: 1909: 1853: 1849: 1793: 1789: 1742: 1738: 1676: 1672: 1666: 1615: 1611: 1605: 1554: 1550: 1544: 1511: 1473: 1401: 1397: 1341: 1337: 1283: 1279: 1241: 1237: 1227: 1208: 1159: 1102: 1098: 937:Applications 931: 927: 919: 895: 853: 852: 847: 841:orbital and 840: 834: 832: 824: 823: 818: 813: 810: 801: 799: 795: 777: 775: 762: 760: 755: 753: 747:polarization 745: 743: 727: 711: 702: 698: 694: 669: 665: 661: 656:reflectivity 649: 630: 598: 579: 559: 548: 546: 502: 450: 394: 390: 384: 382: 296: 235: 227: 224:RIXS process 219: 211:synchrotrons 199: 192: 185: 176: 172: 171: 165: 5390:Synchrotron 4240:(1): 7017. 2184:: 150–154. 1796:: 175–192. 1244:(6): 8–15. 970:manganites. 411:transferred 342:and energy 302:Direct RIXS 183:technique. 5754:Categories 5649:Scattering 5514:Helical CT 5380:X-ray tube 5167:1907.09519 3894:2066/75508 3484:2009.11315 3435:1901.11255 3350:1604.02439 3074:2110.06666 2796:2206.14083 2696:1510.05068 2664:2023-07-06 2615:1902.09163 2565:1605.03129 2516:2106.00731 2467:1509.03313 2418:1809.04949 2262:2012-06-06 2223:2012-06-06 2090:2023-07-06 1029:References 730:de Broglie 720:, EELS or 5184:1600-5775 5134:118507544 5126:0034-6861 5101:0812.0538 5065:1520-6106 5021:1463-9076 4969:0942-9352 4912:1520-6106 4863:1098-0121 4819:0009-2614 4767:0031-9007 4715:0002-7863 4680:0031-9015 4615:0031-9007 4562:117289462 4554:1098-0121 4529:0904.3937 4489:2041-1723 4462:1301.1289 4414:0031-9007 4389:1004.2441 4341:2041-1723 4274:2045-2322 4247:1411.3301 4203:119225498 4195:1098-0121 4170:1004.3759 4122:1476-1122 4097:1303.5359 4041:1476-1122 4016:1208.0018 3972:1745-2473 3947:1106.2641 3903:0031-9007 3859:and CaCuO 3838:1098-0121 3751:119333385 3694:0217-9792 3541:2375-2548 3501:2399-3650 3452:2469-9950 3321:1749-4893 3222:2045-2322 3195:1405.5556 3147:0031-9007 3122:1212.0112 3093:2160-3308 3042:0031-9007 2987:0028-0836 2962:1205.1954 2921:1367-2630 2902:1009.4882 2862:0031-9007 2813:0031-9007 2763:0031-9007 2713:2160-3308 2632:0031-9007 2582:2160-3308 2533:0031-9015 2484:1947-5454 2435:0036-8075 2385:0036-8075 2368:1207.0915 2335:119231739 2310:1009.3630 2198:0368-2048 2070:0168-9002 2028:1600-5775 1972:1600-5775 1930:0034-6748 1870:1600-5775 1820:0168-9002 1759:0034-6748 1709:121110109 1701:1951-6355 1658:119045219 1650:1098-0121 1597:118673022 1589:1367-2630 1564:1004.0859 1536:0921-4534 1490:0368-2048 1436:0036-8075 1358:0002-7863 1316:250849541 1308:0295-5075 1258:0894-0886 1112:1009.3630 984:Catalysis 864:Δ 734:Ångströms 476:− 432:ω 428:ℏ 425:− 422:ω 419:ℏ 407:ω 403:ℏ 385:different 363:ω 359:ℏ 356:− 353:ω 350:ℏ 327:− 279:→ 250:→ 233:formula. 202:brilliant 5385:Betatron 5073:19916538 5029:20449008 4977:42044741 4920:25029209 4775:18232928 4723:20121279 4623:15783591 4497:23403571 4430:22995067 4422:21230933 4349:25519803 4292:25388860 4138:10231086 4130:23913170 4049:22941330 4001:layer". 3911:19518752 3647:30809135 3639:12005784 3582:28731298 3240:27151253 3163:21978160 3155:25166567 3003:43990784 2995:22522933 2271:cite web 2232:cite web 1444:10846160 1376:15303869 1002:See also 960:(e.g. Cu 836:plasmons 827:excitons 761:RIXS is 754:RIXS is 487:′ 435:′ 366:′ 323:′ 5728:History 5482:Imaging 5106:Bibcode 5001:Bibcode 4843:Bibcode 4799:Bibcode 4747:Bibcode 4658:Bibcode 4631:2908407 4595:Bibcode 4534:Bibcode 4467:Bibcode 4394:Bibcode 4319:Bibcode 4283:4228345 4252:Bibcode 4175:Bibcode 4102:Bibcode 4057:6600719 4021:Bibcode 3980:8992693 3952:Bibcode 3919:2543028 3873:Bibcode 3818:Bibcode 3783:Bibcode 3731:Bibcode 3674:Bibcode 3619:Bibcode 3550:6697434 3402:8179144 3231:4858731 3200:Bibcode 3127:Bibcode 2967:Bibcode 2405:Science 2355:Science 2315:Bibcode 1879:8900866 1681:Bibcode 1630:Bibcode 1569:Bibcode 1516:Bibcode 1452:2581764 1416:Bibcode 1398:Science 1367:3960404 1288:Bibcode 891:spinons 887:magnons 814:phonons 767:K-edges 590:NSLS II 588:and at 213:(1994, 5716:Others 5677:GISAXS 5349:L-edge 5344:K-edge 5182:  5132:  5124:  5071:  5063:  5027:  5019:  4975:  4967:  4918:  4910:  4861:  4817:  4773:  4765:  4721:  4713:  4678:  4629:  4621:  4613:  4560:  4552:  4495:  4487:  4428:  4420:  4412:  4347:  4339:  4290:  4280:  4272:  4201:  4193:  4136:  4128:  4120:  4055:  4047:  4039:  3978:  3970:  3917:  3909:  3901:  3836:  3749:  3692:  3645:  3637:  3580:  3547:  3539:  3499:  3450:  3428:(10). 3399:  3385:(22). 3319:  3274:  3238:  3228:  3220:  3161:  3153:  3145:  3091:  3040:  3001:  2993:  2985:  2949:Nature 2919:  2860:  2811:  2761:  2739:(25). 2711:  2630:  2580:  2531:  2482:  2433:  2383:  2333:  2196:  2068:  2026:  1970:  1928:  1916:(11). 1876:  1868:  1818:  1757:  1745:(11). 1707:  1699:  1656:  1648:  1595:  1587:  1534:  1488:  1450:  1442:  1434:  1374:  1364:  1356:  1314:  1306:  1256:  1215:  1175:  596:edge. 188:X-rays 5707:EDXRD 5629:XANES 5624:EXAFS 5614:ARPES 5561:3DXRD 5319:X-ray 5162:arXiv 5130:S2CID 5096:arXiv 4973:S2CID 4627:S2CID 4585:arXiv 4558:S2CID 4524:arXiv 4457:arXiv 4426:S2CID 4384:arXiv 4242:arXiv 4199:S2CID 4165:arXiv 4155:Te". 4153:1.087 4134:S2CID 4092:arXiv 4053:S2CID 4011:arXiv 3976:S2CID 3942:arXiv 3915:S2CID 3747:S2CID 3721:arXiv 3643:S2CID 3609:arXiv 3527:(8). 3479:arXiv 3477:(1). 3430:arXiv 3345:arXiv 3190:arXiv 3159:S2CID 3117:arXiv 3069:arXiv 3067:(2). 3028:(7). 2999:S2CID 2957:arXiv 2897:arXiv 2840:arXiv 2838:(9). 2791:arXiv 2789:(4). 2691:arXiv 2689:(2). 2610:arXiv 2608:(2). 2560:arXiv 2558:(4). 2511:arXiv 2462:arXiv 2413:arXiv 2363:arXiv 2331:S2CID 2305:arXiv 2150:(5). 1705:S2CID 1654:S2CID 1620:arXiv 1593:S2CID 1559:arXiv 1448:S2CID 1406:arXiv 1312:S2CID 1107:arXiv 989:Water 5692:RIXS 5682:WAXS 5672:SAXS 5583:DFXM 5551:XDCT 5536:STXM 5531:XPCI 5519:XACT 5180:ISSN 5122:ISSN 5069:PMID 5061:ISSN 5025:PMID 5017:ISSN 4965:ISSN 4916:PMID 4908:ISSN 4859:ISSN 4815:ISSN 4771:PMID 4763:ISSN 4719:PMID 4711:ISSN 4676:ISSN 4619:PMID 4611:ISSN 4550:ISSN 4514:O". 4493:PMID 4485:ISSN 4418:PMID 4410:ISSN 4345:PMID 4337:ISSN 4288:PMID 4270:ISSN 4191:ISSN 4126:PMID 4118:ISSN 4045:PMID 4037:ISSN 3968:ISSN 3907:PMID 3899:ISSN 3834:ISSN 3690:ISSN 3635:PMID 3578:PMID 3537:ISSN 3497:ISSN 3448:ISSN 3317:ISSN 3272:ISBN 3236:PMID 3218:ISSN 3151:PMID 3143:ISSN 3089:ISSN 3038:ISSN 2991:PMID 2983:ISSN 2917:ISSN 2858:ISSN 2809:ISSN 2759:ISSN 2709:ISSN 2628:ISSN 2578:ISSN 2529:ISSN 2480:ISSN 2431:ISSN 2381:ISSN 2291:TiSe 2277:link 2238:link 2194:ISSN 2066:ISSN 2024:ISSN 1968:ISSN 1926:ISSN 1866:ISSN 1816:ISSN 1755:ISSN 1697:ISSN 1646:ISSN 1585:ISSN 1532:ISSN 1486:ISSN 1440:PMID 1432:ISSN 1372:PMID 1354:ISSN 1304:ISSN 1254:ISSN 1213:ISBN 1173:ISBN 846:and 817:and 637:CCDs 572:the 568:and 549:same 215:ESRF 177:RIXS 5697:XRS 5639:XFH 5634:EDS 5619:AES 5609:XPS 5604:XAS 5588:DXA 5556:DCT 5504:CDI 5172:doi 5114:doi 5053:doi 5049:113 5009:doi 4955:hdl 4947:doi 4943:229 4898:hdl 4890:doi 4886:118 4851:doi 4807:doi 4795:460 4755:doi 4743:100 4703:doi 4699:132 4666:doi 4603:doi 4542:doi 4475:doi 4402:doi 4380:105 4366:CuO 4327:doi 4278:PMC 4260:doi 4228:6.9 4183:doi 4110:doi 4078:CuO 4072:2−x 4029:doi 3997:CuO 3960:doi 3889:hdl 3881:doi 3869:102 3855:CuO 3826:doi 3791:doi 3739:doi 3682:doi 3627:doi 3570:doi 3545:PMC 3529:doi 3489:doi 3440:doi 3397:PMC 3387:doi 3383:118 3355:doi 3309:doi 3264:doi 3226:PMC 3208:doi 3135:doi 3113:110 3079:doi 3030:doi 3026:104 2975:doi 2953:485 2947:". 2943:CuO 2907:doi 2850:doi 2801:doi 2787:129 2749:hdl 2741:doi 2737:125 2701:doi 2655:doi 2620:doi 2606:123 2570:doi 2521:doi 2472:doi 2423:doi 2409:365 2373:doi 2359:337 2323:doi 2295:". 2186:doi 2182:188 2152:doi 2118:doi 2058:doi 2054:570 2014:hdl 2004:doi 1960:doi 1918:doi 1874:PMC 1858:doi 1806:hdl 1798:doi 1794:903 1747:doi 1689:doi 1677:169 1638:doi 1577:doi 1524:doi 1478:doi 1424:doi 1402:288 1362:PMC 1346:doi 1342:126 1296:doi 1246:doi 1165:doi 1117:doi 900:in 773:). 718:IXS 714:INS 652:UHV 586:DLS 21:Rix 5756:: 5702:XS 5509:CT 5178:. 5170:. 5158:26 5156:. 5152:. 5128:. 5120:. 5112:. 5104:. 5092:82 5090:. 5067:. 5059:. 5047:. 5023:. 5015:. 5007:. 4997:11 4995:. 4971:. 4963:. 4953:. 4941:. 4937:. 4914:. 4906:. 4896:. 4884:. 4880:. 4857:. 4849:. 4839:79 4837:. 4813:. 4805:. 4793:. 4769:. 4761:. 4753:. 4741:. 4717:. 4709:. 4697:. 4674:. 4664:. 4654:78 4652:. 4648:. 4625:. 4617:. 4609:. 4601:. 4593:. 4581:94 4579:. 4556:. 4548:. 4540:. 4532:. 4520:81 4518:. 4491:. 4483:. 4473:. 4465:. 4451:. 4447:. 4424:. 4416:. 4408:. 4400:. 4392:. 4378:. 4370:Cl 4343:. 4335:. 4325:. 4313:. 4309:. 4286:. 4276:. 4268:. 4258:. 4250:. 4236:. 4232:. 4222:Cu 4197:. 4189:. 4181:. 4173:. 4161:82 4159:. 4132:. 4124:. 4116:. 4108:. 4100:. 4088:12 4086:. 4074:Sr 4051:. 4043:. 4035:. 4027:. 4019:. 4007:11 4005:. 3974:. 3966:. 3958:. 3950:. 3936:. 3913:. 3905:. 3897:. 3887:. 3879:. 3867:. 3832:. 3824:. 3814:77 3812:. 3789:. 3779:77 3777:. 3773:. 3759:^ 3745:. 3737:. 3729:. 3717:76 3715:. 3711:. 3688:. 3680:. 3670:17 3668:. 3664:. 3641:. 3633:. 3625:. 3617:. 3605:88 3603:. 3599:. 3576:. 3543:. 3535:. 3523:. 3519:. 3495:. 3487:. 3473:. 3469:. 3446:. 3438:. 3426:99 3424:. 3420:. 3395:. 3381:. 3377:. 3353:. 3341:15 3339:. 3315:. 3305:14 3303:. 3299:. 3286:^ 3270:. 3248:^ 3234:. 3224:. 3216:. 3206:. 3198:. 3184:. 3180:. 3157:. 3149:. 3141:. 3133:. 3125:. 3111:. 3087:. 3077:. 3065:12 3063:. 3059:. 3036:. 3024:. 3020:. 2997:. 2989:. 2981:. 2973:. 2965:. 2951:. 2929:^ 2915:. 2905:. 2893:13 2891:. 2887:. 2856:. 2848:. 2836:97 2834:. 2830:. 2807:. 2799:. 2785:. 2781:. 2757:. 2747:. 2735:. 2731:. 2707:. 2699:. 2685:. 2681:. 2649:, 2626:. 2618:. 2604:. 2600:. 2576:. 2568:. 2554:. 2550:. 2527:. 2519:. 2507:90 2505:. 2501:. 2478:. 2470:. 2456:. 2452:. 2429:. 2421:. 2407:. 2403:. 2379:. 2371:. 2357:. 2353:. 2329:. 2321:. 2313:. 2301:89 2299:. 2273:}} 2269:{{ 2234:}} 2230:{{ 2192:. 2176:. 2164:^ 2148:77 2146:. 2142:. 2130:^ 2114:42 2112:. 2108:. 2064:. 2052:. 2048:. 2036:^ 2022:. 2012:. 2000:25 1998:. 1994:. 1980:^ 1966:. 1956:25 1954:. 1950:. 1938:^ 1924:. 1914:87 1912:. 1908:. 1888:^ 1872:. 1864:. 1854:29 1852:. 1848:. 1828:^ 1814:. 1804:. 1792:. 1788:. 1767:^ 1753:. 1743:77 1741:. 1737:. 1717:^ 1703:. 1695:. 1687:. 1675:. 1652:. 1644:. 1636:. 1628:. 1616:77 1614:. 1591:. 1583:. 1575:. 1567:. 1555:12 1553:. 1530:. 1522:. 1510:. 1498:^ 1484:. 1472:. 1460:^ 1446:. 1438:. 1430:. 1422:. 1414:. 1400:. 1396:. 1384:^ 1370:. 1360:. 1352:. 1340:. 1336:. 1324:^ 1310:. 1302:. 1294:. 1284:73 1282:. 1266:^ 1252:. 1242:29 1240:. 1236:. 1187:^ 1171:. 1129:^ 1115:. 1103:83 1101:. 1097:. 1037:^ 964:O) 893:. 850:. 808:. 716:, 5297:e 5290:t 5283:v 5186:. 5174:: 5164:: 5136:. 5116:: 5108:: 5098:: 5075:. 5055:: 5031:. 5011:: 5003:: 4979:. 4957:: 4949:: 4922:. 4900:: 4892:: 4865:. 4853:: 4845:: 4821:. 4809:: 4801:: 4777:. 4757:: 4749:: 4725:. 4705:: 4682:. 4668:: 4660:: 4633:. 4605:: 4597:: 4587:: 4564:. 4544:: 4536:: 4526:: 4512:2 4499:. 4477:: 4469:: 4459:: 4453:4 4432:. 4404:: 4396:: 4386:: 4372:2 4368:2 4364:2 4351:. 4329:: 4321:: 4315:5 4294:. 4262:: 4254:: 4244:: 4238:4 4230:" 4226:O 4224:3 4220:2 4205:. 4185:: 4177:: 4167:: 4140:. 4112:: 4104:: 4094:: 4080:4 4076:x 4059:. 4031:: 4023:: 4013:: 3999:4 3995:2 3982:. 3962:: 3954:: 3944:: 3938:7 3921:. 3891:: 3883:: 3875:: 3861:2 3857:4 3853:2 3840:. 3828:: 3820:: 3797:. 3793:: 3785:: 3753:. 3741:: 3733:: 3723:: 3696:. 3684:: 3676:: 3649:. 3629:: 3621:: 3611:: 3584:. 3572:: 3553:. 3531:: 3525:5 3503:. 3491:: 3481:: 3475:3 3454:. 3442:: 3432:: 3405:. 3389:: 3361:. 3357:: 3347:: 3323:. 3311:: 3280:. 3266:: 3242:. 3210:: 3202:: 3192:: 3186:6 3165:. 3137:: 3129:: 3119:: 3095:. 3081:: 3071:: 3044:. 3032:: 3005:. 2977:: 2969:: 2959:: 2945:3 2941:2 2923:. 2909:: 2899:: 2883:3 2880:L 2864:. 2852:: 2842:: 2815:. 2803:: 2793:: 2765:. 2751:: 2743:: 2715:. 2703:: 2693:: 2687:6 2657:: 2634:. 2622:: 2612:: 2584:. 2572:: 2562:: 2556:6 2535:. 2523:: 2513:: 2486:. 2474:: 2464:: 2458:7 2437:. 2425:: 2415:: 2387:. 2375:: 2365:: 2337:. 2325:: 2317:: 2307:: 2293:2 2279:) 2265:. 2240:) 2226:. 2210:[ 2200:. 2188:: 2158:. 2154:: 2124:. 2120:: 2093:. 2072:. 2060:: 2030:. 2016:: 2006:: 1974:. 1962:: 1932:. 1920:: 1882:. 1860:: 1822:. 1808:: 1800:: 1761:. 1749:: 1711:. 1691:: 1683:: 1660:. 1640:: 1632:: 1622:: 1599:. 1579:: 1571:: 1561:: 1538:. 1526:: 1518:: 1492:. 1480:: 1454:. 1426:: 1418:: 1408:: 1378:. 1348:: 1318:. 1298:: 1290:: 1260:. 1248:: 1221:. 1181:. 1167:: 1123:. 1119:: 1109:: 997:. 962:2 873:1 870:= 867:S 594:3 529:c 525:U 482:k 471:k 466:= 461:q 416:= 379:. 330:k 320:k 276:q 247:q 175:( 166:q 150:t 147:u 144:o 138:k 113:t 110:u 107:o 103:E 80:n 77:i 71:k 46:n 43:i 39:E 23:.

Index

Rix

X-ray spectroscopy
X-rays
electron spectroscopies
brilliant
X-ray free electron lasers
synchrotrons
ESRF
Kramers-Heisenberg


natural linewidth
X-ray absorption
non-resonant X-ray emission spectroscopy
energy resolution
monochromator
DLS
NSLS II



diffraction gratings
CCDs

UHV
reflectivity


INS

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.