Knowledge (XXG)

Resonance Raman spectroscopy

Source đź“ť

20: 2637: 2084: 247: 367:, specifically the bases. Interactions between nucleic acids and DNA-binding compounds such as drugs can be examined by selectively exciting either the nucleobases or the drug itself. The resonance Raman spectra of DNA can be used to identify bacterial DNA in living cells, and to quantitate DNA under different culture conditions, and even to distinguish different bacterial species. 2649: 2096: 127:. If the energy of the photon striking the sample is equal or close to that of an electronic transition in the sample, certain Raman-active vibrational modes—those producing nuclear displacement in the same direction as the electronic transition—will exhibit greatly enhanced scattering, up to 10-fold compared to nonresonance Raman. For totally 179:: By using pulsed lasers with a controllable delay between pulses, resonance Raman spectroscopy can be used to monitor changes in the sample over time, following a laser-induced photochemical change or temperature increase. This method has been used to examine the dynamics of excited electronic states, binding of oxygen or other gases to 236:
is used to focus the excitation laser onto a particular point in the sample, and spectra are collected for many such points. The Raman intensity at different points can then be assembled into a microscopic image of the sample. By appropriate choice of excitation wavelength, a microscopic map of the
151:
in that it occurs without vibrational relaxation during the lifetime of the excited electronic state. It thus exhibits much narrower line widths than fluorescence. However, fluorescence and resonance Raman scattering co-occur in many materials, and interference from fluorescence may complicate the
263:
Because of its selectivity and sensitivity, resonance Raman spectroscopy is typically used to study molecular vibrations in compounds that would have very weak and/or complex Raman spectra in the absence of resonance enhancement. Like ordinary Raman spectroscopy, resonance Raman is compatible with
61:
Resonance Raman spectroscopy has much greater sensitivity than non-resonance Raman spectroscopy, allowing for the analysis of compounds with inherently weak Raman scattering intensities, or at very low concentrations. It also selectively enhances only certain molecular vibrations (those of the
1281:
Mathies, Guinevere; van Hemert, Marc C.; Gast, Peter; Gupta, Karthick B. Sai Sankar; Frank, Harry A.; Lugtenburg, Johan; Groenen, Edgar J.J. (2011). "Configuration of spheroidene in the photosynthetic reaction center of Rhodobacter spheroides: A comparison of wild-type and reconstituted R26".
135:
scattering, due to the nonzero Franck-Condon overlaps between ground and excited states. Nontotally symmetric modes may also be enhanced by B-term or Herzberg-Teller scattering, if the symmetry of the mode is contained in the direct product of the two electronic state symmetries. Resonance
112:). Among the two phenomena, Stokes shift and anti-Stokes shift, the former is the most likely to occur. As a consequence, the relative intensity of Raman spectra acquired in Stokes mode is more intense than the other. For most materials, Raman scattering is extremely weak compared to 264:
samples in water, which has a very weak scattering intensity and little contribution to spectra. However, the need for an excitation laser with a wavelength matching that of an electronic transition in the analyte of interest somewhat limits the applicability of the method.
104:) than the incident photons. This difference in energy is caused by excitation of the sample to a higher or lower vibrational energy level: if the sample was initially in an excited vibrational state, the scattered photon may be higher in energy than the incident photon ( 371:
have also been studied using UV resonance Raman spectroscopy; the method has the capability to separately interrogate the structure of the nucleic acid or capsid protein components of the virus, through the choice of the appropriate excitation wavelength.
272:
Dyes and pigments, all of which exhibit electronic transitions in the visible part of the electromagnetic spectrum, were among the first substances to be studied by resonance Raman spectroscopy. Resonance Raman spectra of
1378:
Hirota, S.; Ogura, T.; Appelman, E.H.; Shinzawaitoh, K.; Yoshikawa, S.; Kitagawa, T. (1994). "Observation of a new oxygen-isotope-sensitive Raman band for oxyhemoproteins and its implication in heme pocket structures".
281:
in intact plant samples were reported in 1970. Since then, the method has been used to noninvasively measure levels of these nutrients in human skin. The resonance Raman spectra of other polyene pigments, such as
203:
in ordinary resonance Raman spectroscopy, with intensity enhancement due to resonance, and also simplifies collection of scattered light. It is especially useful for molecules that are both polar and polarizable.
322:
complexes, can be examined by RRS with minimal spectral overlap from the rest of the molecule. This method has been used to examine gas binding in hemeproteins and the catalytic cycle of various enzymes. Using
223:
of the nanoparticles is used for excitation. If the wavelength of the surface plasmon matches that of an electronic transition in the sample, the Raman scattering will be greatly enhanced compared to ordinary
1932: 257:
on silicon. Note that excitation at 633 nm, near an electronic transition, causes appearance of bands that are too faint to be visible with excitation at 532 nm. Figure courtesy of David Tuschel.
168:
is thus often used for resonance Raman spectroscopy, since a single laser can be used to generate many possible excitation wavelengths to match different samples. By using multiple lasers,
1416:"Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes" 2468: 1246:
Senak, L.; Ju, Z.M.; Noy, N.; Callender, R.; Manor, D. (1997). "The interactions between cellular retinol-binding protein (CRBP-I) and retinal: A vibrational spectroscopic study".
339:) to deduce the local environment and hydrogen-bonding interactions by these residues. With shorter-wavelength ("deep") ultraviolet excitation, it is also possible to excite the 164:
light source to excite the sample. The difference is the choice of the laser wavelength, which must be selected to match the energy of an electronic transition in the sample. A
100:
In Raman scattering, photons collide with a sample and are scattered with a difference in energy: The scattered photons may be higher or lower in energy (have a shorter or longer
86:. Resonance Raman spectroscopy has been used in the characterization of inorganic compounds and complexes, proteins, nucleic acids, pigments, and in archaeology and art history. 716:
Efremov, Evtem V.; Ariese, Freek; Gooijer, Cees (2008). "Achievements in resonance Raman spectroscopy: Review of a technique with a distinct analytical chemistry potential".
1111:
Smith, W.E. (2008). "Practical understanding and use of surface-enhanced Raman scattering/surface-enhanced resonance Raman scattering in chemical and biological analysis".
2141: 1858: 1853: 2359: 2292: 2237: 2206: 1894: 2201: 2574: 2392: 2254: 1197:
Scarmo, Stephanie; Cartmel, Brenda; Lin, Haiqun; Leffell, David J.; Ermakov, Igor V.; Gellermann, Werner; Bernstein, Paul S.; Mayne, Susan T. (2013).
2523: 2342: 2186: 923:
Sahoo, Sangram Keshari; Umapathy, Siva; Parker, Anthony W. (2011). "Time-resolved resonance Raman spectroscopy: Exploring reactive intermediates".
294:
to identify dyes and pigments in cultural artifacts, and the ability of RRS to distinguish different modern inks and dyes has found application in
2463: 2265: 2166: 1917: 559:
Hu, Songzhou; Smith, Kevin M.; Spiro, Thomas G. (January 1996). "Assignment of Protoheme Resonance Raman Spectrum by Heme Labeling in Myoglobin".
424: 123:
Resonance Raman spectroscopy takes advantage of an increase in the intensity of Raman scattering when the incident photons match the energy of an
2409: 2387: 2134: 2475: 2397: 1793: 1698: 363:
Resonance Raman spectroscopy with ultraviolet excitation can be used to examine the chemistry, structure, and intermolecular interactions of
290:, have been used to identify differences in chromophore conformation in photoactive proteins. Resonance Raman spectroscopy has been used in 2227: 751:
Orlando, Andrea; Franceschini, Filippo; Muscas, Cristian; Pidkova, Solomiya; Bartoli, Mattia; Rovere, Massimo; Tagliaferro, Alberto (2021).
355:
have been examined using deep-UV resonance Raman spectroscopy of the polypeptide backbone, with excitation wavelengths shorter than 200 nm.
2332: 2277: 1568:"Raman Spectroscopy of Optical Transitions and Vibrational Energies of ~1 nm HgTe Extreme Nanowires within Single Walled Carbon Nanotubes" 1947: 1937: 872:
Buhrke, David; Hildebrandt, Peter (2020). "Probing structure and reaction dynamics of proteins using time-resolved Raman spectroscopy".
1566:
Spencer, Joseph; Nesbitt, John; Trewhitt, Harrison; Kashtiban, Reza; Bell, Gavin; Ivanov, Victor; Faulques, Eric; Smith, David (2014).
1998: 1679: 1812:
Chao, R.S.; Khanna, R.K.; Lippincott, E.R. (1975). "Theoretical and experimental resonance Raman intensities for the manganate ion".
1609: 2559: 2311: 2127: 995: 212: 1805:
Zhurnal Russkogo Fiziko-khimicheskogo Obschestva, Chast Fizicheskaya (Journal of Russian Physico-Chemical Society, Physics Division
1259: 2564: 2382: 1887: 1859:
http://www.horiba.com/us/en/scientific/products/Raman-spectroscopy/Raman-academy/Raman-faqs/what-is-polarised-Raman-spectroscopy/
589:
Clark, Robin J.H.; Dines, Trevor J. (February 1986). "Resonance Raman spectroscopy, and its application to inorganic chemistry".
2579: 2549: 2480: 2414: 1957: 1952: 1854:
http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Vibrational_Spectroscopy/Raman_Spectroscopy/Raman%3A_Interpretation
1154:
Vogt, Frederick G.; Strohmeier, Mark (2013). "Confocal UV and resonance Raman microscopic imaging of pharmaceutical products".
429: 2508: 2299: 2196: 1199:"Single v. multiple measures of skin carotenoids by resonance Raman spectroscopy as a biomarker of usual carotenoid status" 172:, and/or certain sample preparation techniques, a range of more sophisticated variants of RRS can be performed, including: 2306: 2211: 2061: 1942: 2100: 2440: 2287: 1803:
Landsberg, G.S; Mandelshtam, L.I. (1928). "Novoye yavlenie pri rasseyanii sveta. (New phenomenon in light scattering)".
2596: 160:
Typically, resonance Raman spectroscopy is performed in the same manner as ordinary Raman spectroscopy, using a single
2680: 2435: 2404: 2337: 2088: 1880: 2586: 2528: 2377: 2249: 23:
Energy level diagram showing relationship between Rayleigh, Raman, and resonance Raman scattering and fluorescence.
2675: 2612: 2591: 2354: 2232: 1848: 524:
Morris, Michael D.; Wallan, David J. (1979). "Resonance raman spectroscopy: Current applications and prospects".
258: 220: 148: 1608:
Panda, Jaya Kumar; Roy, Anushree; Gemmi, Mauro; Husnau, Elena; Li, Ang; Ercolani, Daniele; Sorba, Lucia (2013).
2068: 2039: 419: 116:, in which light is scattered without loss of energy. Raman-scattered light, which contains information about 380:
Resonance Raman spectroscopy has also been used to characterize the structure and photophysical properties of
2653: 2485: 2181: 1610:"Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy" 1474:
Oladepo, Sulayman A.; Xiong, Kan; Hong, Zhenmin; Asher, Sanford A.; Handen, Joseph; Lednev, Igor K. (2012).
140:. Like ordinary Raman spectroscopy, RRS observes vibrational transitions producing a nonzero change in the 132: 62:
chemical group undergoing the electronic transition), which simplifies spectra. For large molecules such as
974:
Spiro, Thomas G. (1985). "Resonance Raman spectroscopy as a probe of heme protein structure and dynamics".
388:, it is possible to enhance structure-sensitive vibrational bands of the nanotubes. Nanowires of inorganic 2272: 1922: 199:, rather than by absorption of a single photon. This arrangement allows for excitation of modes that are 2641: 2513: 2244: 2158: 434: 196: 124: 47: 19: 1567: 842:
Spiro, T.G.; Stein, Paul (1977). "Resonance effects in vibrational scattering from complex molecules".
2014: 1821: 1756: 1721: 1029:"Time-resolved resonance Raman spectroscopy and application to studies on ultrafast protein dynamics" 468: 439: 352: 137: 2569: 2282: 2191: 2034: 1973: 414: 344: 117: 113: 2617: 2554: 2533: 2349: 2327: 2260: 2171: 1903: 1772: 1647: 1621: 956: 905: 821: 805: 251: 128: 95: 39: 327:
laser excitation, it is possible to selectively excite the sidechains of aromatic amino acids (
2518: 2445: 2419: 1789: 1744: 1694: 1675: 1639: 1590: 1548: 1540: 1505: 1453: 1435: 1396: 1360: 1352: 1317: 1309: 1263: 1228: 1179: 1171: 1136: 1128: 1093: 1085: 1050: 1009: 1001: 991: 948: 940: 897: 889: 813: 733: 679: 671: 637: 606: 541: 484: 397: 393: 67: 2029: 2024: 2019: 1988: 1829: 1764: 1729: 1631: 1582: 1532: 1495: 1487: 1443: 1427: 1388: 1344: 1299: 1291: 1255: 1218: 1210: 1163: 1120: 1077: 1040: 983: 932: 881: 851: 797: 764: 725: 663: 629: 598: 568: 533: 476: 385: 319: 295: 184: 55: 1081: 348: 307: 200: 108:). Otherwise, the scattered photon has a lower module of energy than the incoming photon ( 1825: 1760: 1725: 855: 472: 1523:
Thomas, George J. (1999). "Raman spectroscopy of protein and nucleic acid assemblies".
1500: 1475: 1448: 1415: 1223: 1198: 400:
have also been shown to exhibit resonance Raman spectra with visible excitation light.
141: 987: 2669: 1978: 909: 667: 633: 389: 381: 364: 340: 328: 274: 216: 169: 165: 1672:
The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules
1651: 960: 2150: 2107: 2044: 1776: 1536: 825: 786:"Molecular geometry in an excited electronic state and a preresonance Raman effect" 306:
Proteins have been widely examined by resonance Raman spectroscopy. Protein-bound
109: 105: 1335:
Stanley, R.J. (2001). "Advances in flavin and flavoprotein optical spectroscopy".
1476:"UV resonance Raman investigations of peptide and protein structure and dynamics" 801: 384:. Using lasers tuned to the visible and near-infrared electronic transitions of 1983: 885: 769: 752: 324: 291: 283: 1865: 1849:
https://www.spectroscopyonline.com/view/exploring-resonance-raman-spectroscopy
1348: 1214: 729: 409: 336: 233: 101: 1643: 1544: 1439: 1400: 1356: 1313: 1267: 1175: 1132: 1089: 1068:
Kelley, Anne Myers (2010). "Hyper-Raman Scattering by Molecular Vibrations".
1054: 1005: 944: 893: 675: 610: 545: 488: 459:
Strommen, Dennis P.; Nakamoto, Kazuo (1977). "Resonance raman spectroscopy".
131:
modes, this increased scattering intensity results from so-called A-term or
83: 51: 1833: 1594: 1552: 1509: 1457: 1431: 1364: 1321: 1232: 1183: 1140: 1097: 952: 901: 817: 737: 602: 136:
enhancement is most apparent in the case of π-π* transitions and least for
1045: 1028: 1013: 683: 641: 332: 278: 71: 63: 58:
of certain vibrational modes, compared to ordinary Raman spectroscopy.
1392: 1304: 537: 50:
of a compound or material under examination. This similarity in energy (
1993: 809: 368: 315: 287: 75: 1691:
Physical Methods in Bioinorganic Chemistry: Spectroscopy and Magnetism
1635: 1586: 1491: 1295: 1260:
10.1002/(SICI)1520-6343(1997)3:2<131::AID-BSPY6>3.0.CO;2-A
1167: 785: 572: 480: 1872: 1768: 1734: 1709: 1124: 936: 43: 246: 1626: 161: 1784:
Skoog, Douglas A.; Holler, James F.; Nieman, Timothy A. (1998).
311: 180: 79: 2123: 2119: 1876: 626:
Protein Structure from ultraviolet resonance Raman spectroscopy
1933:
Rotating-polarization coherent anti-Stokes Raman spectroscopy
1693:. Sausalito, CA: University Science Books. pp. 59–120. 753:"A comprehensive review on Raman spectroscopy applications" 250:
Resonance (top) and nonresonance (bottom) Raman spectra of
662:. Methods in Enzymology. Vol. 246. pp. 416–460. 628:. Methods in Enzymology. Vol. 226. pp. 374–396. 237:
distribution only of a component of interest can be made.
120:, is therefore difficult to observe for many substances. 1525:
Annual Review of Biophysics and Biomolecular Structure
310:
that absorb in the visible wavelength range, such as
2605: 2542: 2501: 2494: 2456: 2428: 2370: 2320: 2220: 2157: 2053: 2007: 1966: 1910: 624:Austin, J.C.; Rodgers, K.R.; Spiro, T.G. (1993). 660:Resonance Raman spectroscopy of metalloproteins 837: 835: 784:Hirakawa, Akiko Y.; Tsuboi, Masamichi (1975). 54:) leads to greatly increased intensity of the 2135: 1888: 1710:"A Change of Wave-Length in Light Scattering" 209:Surface-enhanced resonance Raman spectroscopy 144:of the molecule or material being studied. 8: 2207:Vibrational spectroscopy of linear molecules 1788:(5th ed.). Saunders. pp. 429–443. 1414:Mukherjee, Manjistha; Dey, Abhishek (2021). 2498: 2202:Nuclear resonance vibrational spectroscopy 2142: 2128: 2120: 1895: 1881: 1873: 1469: 1467: 177:Time-resolved resonance Raman spectroscopy 2575:Inelastic electron tunneling spectroscopy 2255:Resonance-enhanced multiphoton ionization 1733: 1625: 1499: 1447: 1303: 1222: 1044: 1033:Bulletin of the Chemical Society of Japan 867: 865: 768: 711: 709: 707: 705: 703: 701: 699: 697: 695: 693: 658:Spiro, T.G.; Czernuszewicz, R.S. (1995). 2343:Extended X-ray absorption fine structure 1381:Journal of the American Chemical Society 561:Journal of the American Chemical Society 519: 517: 515: 513: 245: 147:Resonance Raman scattering differs from 18: 1918:Coherent anti-Stokes Raman spectroscopy 653: 651: 591:Angewandte Chemie International Edition 584: 582: 451: 425:Coherent anti-Stokes Raman spectroscopy 215:. The sample is applied to conducting 152:collection of resonance Raman spectra. 1082:10.1146/annurev.physchem.012809.103347 66:, this selectivity helps to identify 195:: Excitation of the sample occurs by 7: 2648: 2095: 1866:"Resonance hyper-Raman spectroscopy" 1743:Raman, C.V.; Krishnan, K.S. (1928). 1708:Raman, C.V.; Krishnan, K.S. (1928). 1948:Surface-enhanced Raman spectroscopy 1938:Spatially offset Raman spectroscopy 1868:. University of California, Merced. 1786:Principles of Instrumental Analysis 1745:"A New Type of Secondary Radiation" 1070:Annual Review of Physical Chemistry 856:10.1146/annurev.pc.28.100177.002441 844:Annual Review of Physical Chemistry 1999:Stimulated Raman adiabatic passage 1337:Antioxidants & Redox Signaling 193:Resonance hyper-Raman spectroscopy 14: 2560:Deep-level transient spectroscopy 2312:Saturated absorption spectroscopy 343:of a protein in order to examine 213:surface-enhanced Raman scattering 2647: 2636: 2635: 2565:Dual-polarization interferometry 2094: 2083: 2082: 138:metal centered (d–d) transitions 96:Raman spectroscopy § Theory 46:energy is close in energy to an 2580:Scanning tunneling spectroscopy 2555:Circular dichroism spectroscopy 2550:Acoustic resonance spectroscopy 1958:Transmission Raman spectroscopy 1953:Tip-enhanced Raman spectroscopy 1689:Que, Lawrence Jr., ed. (2000). 1284:Journal of Physical Chemistry A 430:Tip-enhanced Raman spectroscopy 2509:Fourier-transform spectroscopy 2197:Vibrational circular dichroism 1537:10.1146/annurev.biophys.28.1.1 1: 2307:Cavity ring-down spectroscopy 2212:Thermal infrared spectroscopy 2062:Journal of Raman Spectroscopy 1943:Stimulated Raman spectroscopy 1814:Journal of Raman Spectroscopy 988:10.1016/S0065-3233(08)60064-9 976:Advances in Protein Chemistry 504:Physical Methods in Chemistry 461:Journal of Chemical Education 2441:Inelastic neutron scattering 1928:Resonance Raman spectroscopy 1203:British Journal of Nutrition 802:10.1126/science.188.4186.359 668:10.1016/0076-6879(95)46020-9 634:10.1016/0076-6879(93)26017-4 106:anti-Stokes Raman scattering 28:Resonance Raman spectroscopy 16:Raman spectroscopy technique 2502:Data collection, processing 2378:Photoelectron/photoemission 1027:Mizutani, Yasuhisa (2017). 886:10.1021/acs.chemrev.9b00429 770:10.3390/chemosensors9090262 2697: 2587:Photoacoustic spectroscopy 2529:Time-resolved spectroscopy 230:Resonance Raman microscopy 183:-containing proteins, and 93: 2631: 2613:Astronomical spectroscopy 2592:Photothermal spectroscopy 2078: 1349:10.1089/15230860152665028 1215:10.1017/S000711451200582X 730:10.1016/j.aca.2007.11.006 359:Nucleic acids and viruses 221:surface plasmon resonance 219:and a laser matching the 70:of specific parts of the 2069:Vibrational Spectroscopy 2040:Rule of mutual exclusion 1113:Chemical Society Reviews 506:. Saunders. p. 152. 420:X-ray Raman spectroscopy 396:and carbon-encapsulated 2597:Pump–probe spectroscopy 2486:Ferromagnetic resonance 2278:Laser-induced breakdown 1614:Applied Physics Letters 1156:Molecular Pharmaceutics 118:vibrational transitions 110:Stokes Raman scattering 2293:Glow-discharge optical 2273:Raman optical activity 2187:Rotational–vibrational 1923:Raman optical activity 1834:10.1002/jrs.1250030203 1670:Long, Derek A (2002). 1432:10.1021/jacsau.1c00100 718:Analytica Chimica Acta 603:10.1002/anie.198601311 260: 211:: A hybrid of RRS and 42:in which the incident 24: 2514:Hyperspectral imaging 1046:10.1246/bcsj.20170218 435:Vibronic spectroscopy 249: 197:two-photon absorption 125:electronic transition 48:electronic transition 22: 2266:Coherent anti-Stokes 2221:UV–Vis–NIR "Optical" 2015:Depolarization ratio 925:Applied Spectroscopy 526:Analytical Chemistry 502:Drago, R.S. (1977). 440:Depolarization ratio 392:materials including 2570:Hadron spectroscopy 2360:Conversion electron 2321:X-ray and Gamma ray 2228:Ultraviolet–visible 2035:Rayleigh scattering 1974:Raman amplification 1826:1975JRSp....3..121C 1761:1928Natur.121..501R 1726:1928Natur.121..619R 1393:10.1021/ja00102a025 1387:(23): 10564–10570. 538:10.1021/ac50038a001 473:1977JChEd..54..474S 415:Rayleigh scattering 345:secondary structure 114:Rayleigh scattering 2681:Raman spectroscopy 2618:Force spectroscopy 2543:Measured phenomena 2534:Video spectroscopy 2238:Cold vapour atomic 1904:Raman spectroscopy 261: 40:Raman spectroscopy 38:) is a variant of 25: 2663: 2662: 2627: 2626: 2519:Spectrophotometry 2446:Neutron spin echo 2420:Beta spectroscopy 2333:Energy-dispersive 2117: 2116: 1795:978-0-03-002078-0 1755:(3048): 501–502. 1700:978-1-891389-02-3 1636:10.1063/1.4813625 1587:10.1021/nn5023632 1492:10.1021/cr200198a 1296:10.1021/jp112413d 1290:(34): 9552–9556. 1168:10.1021/mp400314s 1162:(11): 4216–4228. 1039:(12): 1344–1371. 931:(10): 1087–1115. 796:(4186): 359–361. 573:10.1021/ja962239e 481:10.1021/ed054p474 398:mercury telluride 394:gallium phosphide 268:Pigments and Dyes 68:vibrational modes 2688: 2676:Raman scattering 2651: 2650: 2639: 2638: 2499: 2410:phenomenological 2159:Vibrational (IR) 2144: 2137: 2130: 2121: 2098: 2097: 2086: 2085: 2030:Raman scattering 2025:Nonlinear optics 2020:Four-wave mixing 1989:Raman microscope 1897: 1890: 1883: 1874: 1869: 1837: 1820:(2–3): 121–131. 1808: 1799: 1780: 1769:10.1038/121501c0 1739: 1737: 1735:10.1038/121619b0 1704: 1685: 1656: 1655: 1629: 1605: 1599: 1598: 1572: 1563: 1557: 1556: 1520: 1514: 1513: 1503: 1486:(5): 2604–2628. 1480:Chemical Reviews 1471: 1462: 1461: 1451: 1426:(9): 1296–1311. 1411: 1405: 1404: 1375: 1369: 1368: 1332: 1326: 1325: 1307: 1278: 1272: 1271: 1243: 1237: 1236: 1226: 1194: 1188: 1187: 1151: 1145: 1144: 1125:10.1039/b708841h 1108: 1102: 1101: 1065: 1059: 1058: 1048: 1024: 1018: 1017: 971: 965: 964: 937:10.1366/11-06406 920: 914: 913: 880:(7): 3577–3630. 874:Chemical Reviews 869: 860: 859: 839: 830: 829: 781: 775: 774: 772: 748: 742: 741: 713: 688: 687: 655: 646: 645: 621: 615: 614: 586: 577: 576: 567:(50): 12638–46. 556: 550: 549: 532:(2): 182A–192A. 521: 508: 507: 499: 493: 492: 456: 386:carbon nanotubes 320:transition metal 296:forensic science 185:protein dynamics 56:Raman scattering 2696: 2695: 2691: 2690: 2689: 2687: 2686: 2685: 2666: 2665: 2664: 2659: 2623: 2601: 2538: 2490: 2452: 2424: 2366: 2316: 2216: 2177:Resonance Raman 2153: 2148: 2118: 2113: 2074: 2049: 2003: 1962: 1906: 1901: 1863: 1845: 1840: 1811: 1802: 1796: 1783: 1742: 1707: 1701: 1688: 1682: 1669: 1665: 1663:Further reading 1660: 1659: 1607: 1606: 1602: 1570: 1565: 1564: 1560: 1522: 1521: 1517: 1473: 1472: 1465: 1413: 1412: 1408: 1377: 1376: 1372: 1334: 1333: 1329: 1280: 1279: 1275: 1248:Biospectroscopy 1245: 1244: 1240: 1196: 1195: 1191: 1153: 1152: 1148: 1110: 1109: 1105: 1067: 1066: 1062: 1026: 1025: 1021: 998: 973: 972: 968: 922: 921: 917: 871: 870: 863: 841: 840: 833: 783: 782: 778: 750: 749: 745: 715: 714: 691: 657: 656: 649: 623: 622: 618: 588: 587: 580: 558: 557: 553: 523: 522: 511: 501: 500: 496: 458: 457: 453: 448: 406: 378: 361: 349:Protein folding 304: 270: 255: 244: 158: 98: 92: 32:RR spectroscopy 17: 12: 11: 5: 2694: 2692: 2684: 2683: 2678: 2668: 2667: 2661: 2660: 2658: 2657: 2645: 2632: 2629: 2628: 2625: 2624: 2622: 2621: 2615: 2609: 2607: 2603: 2602: 2600: 2599: 2594: 2589: 2584: 2583: 2582: 2572: 2567: 2562: 2557: 2552: 2546: 2544: 2540: 2539: 2537: 2536: 2531: 2526: 2521: 2516: 2511: 2505: 2503: 2496: 2492: 2491: 2489: 2488: 2483: 2478: 2473: 2472: 2471: 2460: 2458: 2454: 2453: 2451: 2450: 2449: 2448: 2438: 2432: 2430: 2426: 2425: 2423: 2422: 2417: 2412: 2407: 2402: 2401: 2400: 2395: 2393:Angle-resolved 2390: 2385: 2374: 2372: 2368: 2367: 2365: 2364: 2363: 2362: 2352: 2347: 2346: 2345: 2340: 2335: 2324: 2322: 2318: 2317: 2315: 2314: 2309: 2304: 2303: 2302: 2297: 2296: 2295: 2280: 2275: 2270: 2269: 2268: 2258: 2252: 2247: 2242: 2241: 2240: 2230: 2224: 2222: 2218: 2217: 2215: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2163: 2161: 2155: 2154: 2149: 2147: 2146: 2139: 2132: 2124: 2115: 2114: 2112: 2111: 2104: 2092: 2079: 2076: 2075: 2073: 2072: 2065: 2057: 2055: 2051: 2050: 2048: 2047: 2042: 2037: 2032: 2027: 2022: 2017: 2011: 2009: 2005: 2004: 2002: 2001: 1996: 1991: 1986: 1981: 1976: 1970: 1968: 1964: 1963: 1961: 1960: 1955: 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1914: 1912: 1908: 1907: 1902: 1900: 1899: 1892: 1885: 1877: 1871: 1870: 1861: 1856: 1851: 1844: 1843:External links 1841: 1839: 1838: 1809: 1800: 1794: 1781: 1740: 1705: 1699: 1686: 1681:978-0471490289 1680: 1666: 1664: 1661: 1658: 1657: 1600: 1581:(9): 9044–52. 1558: 1515: 1463: 1406: 1370: 1343:(5): 847–866. 1327: 1273: 1254:(2): 131–142. 1238: 1209:(5): 911–917. 1189: 1146: 1119:(5): 955–964. 1103: 1060: 1019: 996: 966: 915: 861: 831: 776: 743: 724:(2): 119–134. 689: 647: 616: 597:(2): 131–158. 578: 551: 509: 494: 450: 449: 447: 444: 443: 442: 437: 432: 427: 422: 417: 412: 405: 402: 377: 374: 360: 357: 303: 300: 269: 266: 253: 243: 240: 239: 238: 226: 225: 205: 204: 189: 188: 157: 154: 142:polarizability 94:Main article: 91: 88: 78:, such as the 15: 13: 10: 9: 6: 4: 3: 2: 2693: 2682: 2679: 2677: 2674: 2673: 2671: 2656: 2655: 2646: 2644: 2643: 2634: 2633: 2630: 2619: 2616: 2614: 2611: 2610: 2608: 2604: 2598: 2595: 2593: 2590: 2588: 2585: 2581: 2578: 2577: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2547: 2545: 2541: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2506: 2504: 2500: 2497: 2493: 2487: 2484: 2482: 2479: 2477: 2474: 2470: 2467: 2466: 2465: 2462: 2461: 2459: 2455: 2447: 2444: 2443: 2442: 2439: 2437: 2434: 2433: 2431: 2427: 2421: 2418: 2416: 2413: 2411: 2408: 2406: 2403: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2380: 2379: 2376: 2375: 2373: 2369: 2361: 2358: 2357: 2356: 2353: 2351: 2348: 2344: 2341: 2339: 2336: 2334: 2331: 2330: 2329: 2326: 2325: 2323: 2319: 2313: 2310: 2308: 2305: 2301: 2298: 2294: 2291: 2290: 2289: 2286: 2285: 2284: 2281: 2279: 2276: 2274: 2271: 2267: 2264: 2263: 2262: 2259: 2256: 2253: 2251: 2250:Near-infrared 2248: 2246: 2243: 2239: 2236: 2235: 2234: 2231: 2229: 2226: 2225: 2223: 2219: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2164: 2162: 2160: 2156: 2152: 2145: 2140: 2138: 2133: 2131: 2126: 2125: 2122: 2110: 2109: 2105: 2103: 2102: 2093: 2091: 2090: 2081: 2080: 2077: 2071: 2070: 2066: 2064: 2063: 2059: 2058: 2056: 2052: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2012: 2010: 2006: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1979:Raman cooling 1977: 1975: 1972: 1971: 1969: 1965: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1915: 1913: 1909: 1905: 1898: 1893: 1891: 1886: 1884: 1879: 1878: 1875: 1867: 1864:Kelley, A.M. 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1846: 1842: 1835: 1831: 1827: 1823: 1819: 1815: 1810: 1806: 1801: 1797: 1791: 1787: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1750: 1746: 1741: 1736: 1731: 1727: 1723: 1720:(3051): 619. 1719: 1715: 1711: 1706: 1702: 1696: 1692: 1687: 1683: 1677: 1673: 1668: 1667: 1662: 1653: 1649: 1645: 1641: 1637: 1633: 1628: 1623: 1620:(2): 023108. 1619: 1615: 1611: 1604: 1601: 1596: 1592: 1588: 1584: 1580: 1576: 1569: 1562: 1559: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1519: 1516: 1511: 1507: 1502: 1497: 1493: 1489: 1485: 1481: 1477: 1470: 1468: 1464: 1459: 1455: 1450: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1410: 1407: 1402: 1398: 1394: 1390: 1386: 1382: 1374: 1371: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1331: 1328: 1323: 1319: 1315: 1311: 1306: 1301: 1297: 1293: 1289: 1285: 1277: 1274: 1269: 1265: 1261: 1257: 1253: 1249: 1242: 1239: 1234: 1230: 1225: 1220: 1216: 1212: 1208: 1204: 1200: 1193: 1190: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1147: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1107: 1104: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1064: 1061: 1056: 1052: 1047: 1042: 1038: 1034: 1030: 1023: 1020: 1015: 1011: 1007: 1003: 999: 997:9780120342372 993: 989: 985: 981: 977: 970: 967: 962: 958: 954: 950: 946: 942: 938: 934: 930: 926: 919: 916: 911: 907: 903: 899: 895: 891: 887: 883: 879: 875: 868: 866: 862: 857: 853: 849: 845: 838: 836: 832: 827: 823: 819: 815: 811: 807: 803: 799: 795: 791: 787: 780: 777: 771: 766: 762: 758: 754: 747: 744: 739: 735: 731: 727: 723: 719: 712: 710: 708: 706: 704: 702: 700: 698: 696: 694: 690: 685: 681: 677: 673: 669: 665: 661: 654: 652: 648: 643: 639: 635: 631: 627: 620: 617: 612: 608: 604: 600: 596: 592: 585: 583: 579: 574: 570: 566: 562: 555: 552: 547: 543: 539: 535: 531: 527: 520: 518: 516: 514: 510: 505: 498: 495: 490: 486: 482: 478: 474: 470: 466: 462: 455: 452: 445: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 411: 408: 407: 403: 401: 399: 395: 391: 390:semiconductor 387: 383: 382:nanoparticles 376:Nanomaterials 375: 373: 370: 366: 365:nucleic acids 358: 356: 354: 350: 346: 342: 341:peptide bonds 338: 334: 330: 329:phenylalanine 326: 321: 317: 313: 309: 301: 299: 297: 293: 289: 285: 280: 276: 275:beta-carotene 267: 265: 259: 256: 248: 241: 235: 231: 228: 227: 222: 218: 217:nanoparticles 214: 210: 207: 206: 202: 198: 194: 191: 190: 186: 182: 178: 175: 174: 173: 171: 170:pulsed lasers 167: 166:tunable laser 163: 155: 153: 150: 145: 143: 139: 134: 133:Franck-Condon 130: 126: 121: 119: 115: 111: 107: 103: 97: 89: 87: 85: 81: 77: 73: 69: 65: 59: 57: 53: 49: 45: 41: 37: 33: 29: 21: 2652: 2640: 2620:(a misnomer) 2606:Applications 2524:Time-stretch 2415:paramagnetic 2233:Fluorescence 2176: 2151:Spectroscopy 2108:Spectroscopy 2106: 2099: 2087: 2067: 2060: 2045:Stokes shift 1967:Applications 1927: 1817: 1813: 1804: 1785: 1752: 1748: 1717: 1713: 1690: 1671: 1617: 1613: 1603: 1578: 1574: 1561: 1528: 1524: 1518: 1483: 1479: 1423: 1419: 1409: 1384: 1380: 1373: 1340: 1336: 1330: 1305:1887/3570972 1287: 1283: 1276: 1251: 1247: 1241: 1206: 1202: 1192: 1159: 1155: 1149: 1116: 1112: 1106: 1076:(1): 41–61. 1073: 1069: 1063: 1036: 1032: 1022: 979: 975: 969: 928: 924: 918: 877: 873: 847: 843: 793: 789: 779: 760: 757:Chemosensors 756: 746: 721: 717: 659: 625: 619: 594: 590: 564: 560: 554: 529: 525: 503: 497: 464: 460: 454: 379: 362: 353:denaturation 305: 271: 262: 242:Applications 229: 208: 192: 176: 159: 149:fluorescence 146: 122: 99: 82:unit within 60: 35: 31: 27: 26: 2192:Vibrational 1984:Raman laser 982:: 111–159. 850:: 501–521. 325:ultraviolet 292:archaeology 284:spheroidene 2670:Categories 2398:Two-photon 2300:absorption 2182:Rotational 1911:Techniques 763:(9): 262. 467:(8): 474. 446:References 410:Scattering 337:tryptophan 234:microscope 102:wavelength 2476:Terahertz 2457:Radiowave 2355:Mössbauer 1674:. Wiley. 1644:0003-6951 1627:1303.7058 1545:1056-8700 1440:2691-3704 1401:0002-7863 1357:1523-0864 1314:1089-5639 1268:1075-4261 1176:1543-8384 1133:1460-4744 1090:0066-426X 1055:0009-2673 1006:0065-3233 945:0003-7028 910:208954659 894:0009-2665 676:0076-6879 611:0570-0833 546:0003-2700 489:0021-9584 308:cofactors 201:forbidden 129:symmetric 84:myoglobin 52:resonance 2642:Category 2371:Electron 2338:Emission 2288:emission 2245:Vibronic 2089:Category 2054:Journals 1652:93629086 1595:25163005 1575:ACS Nano 1553:10410793 1531:: 1–27. 1510:22335827 1458:34604840 1365:11761332 1322:21604722 1233:23351238 1184:24050305 1141:18443681 1098:20055673 961:20448809 953:21986070 902:31814387 818:17807877 738:18082644 404:See also 333:tyrosine 302:Proteins 279:lycopene 156:Variants 72:molecule 64:proteins 2654:Commons 2481:ESR/EPR 2429:Nucleon 2257:(REMPI) 2101:Commons 1994:SHERLOC 1822:Bibcode 1807:: 60–4. 1777:4128161 1757:Bibcode 1722:Bibcode 1501:3349015 1449:8479764 1420:JACS Au 1224:3696054 1014:2998161 826:7686714 810:1739341 790:Science 684:7752933 642:8277873 469:Bibcode 369:Viruses 316:flavins 288:retinal 76:protein 2495:Others 2283:Atomic 2008:Theory 1792:  1775:  1749:Nature 1714:Nature 1697:  1678:  1650:  1642:  1593:  1551:  1543:  1508:  1498:  1456:  1446:  1438:  1399:  1363:  1355:  1320:  1312:  1266:  1231:  1221:  1182:  1174:  1139:  1131:  1096:  1088:  1053:  1012:  1004:  994:  959:  951:  943:  908:  900:  892:  824:  816:  808:  736:  682:  674:  640:  609:  544:  487:  335:, and 90:Theory 44:photon 2436:Alpha 2405:Auger 2383:X-ray 2350:Gamma 2328:X-ray 2261:Raman 2172:Raman 2167:FT-IR 1773:S2CID 1648:S2CID 1622:arXiv 1571:(PDF) 957:S2CID 906:S2CID 822:S2CID 806:JSTOR 318:, or 162:laser 1790:ISBN 1695:ISBN 1676:ISBN 1640:ISSN 1591:PMID 1549:PMID 1541:ISSN 1506:PMID 1454:PMID 1436:ISSN 1397:ISSN 1361:PMID 1353:ISSN 1318:PMID 1310:ISSN 1264:ISSN 1229:PMID 1180:PMID 1172:ISSN 1137:PMID 1129:ISSN 1094:PMID 1086:ISSN 1051:ISSN 1010:PMID 1002:ISSN 992:ISBN 949:PMID 941:ISSN 898:PMID 890:ISSN 814:PMID 734:PMID 680:PMID 672:ISSN 638:PMID 607:ISSN 542:ISSN 485:ISSN 351:and 312:heme 286:and 277:and 232:: A 224:RRS. 181:heme 80:heme 2464:NMR 1830:doi 1765:doi 1753:121 1730:doi 1718:121 1632:doi 1618:103 1583:doi 1533:doi 1496:PMC 1488:doi 1484:112 1444:PMC 1428:doi 1389:doi 1385:116 1345:doi 1300:hdl 1292:doi 1288:115 1256:doi 1219:PMC 1211:doi 1207:110 1164:doi 1121:doi 1078:doi 1041:doi 984:doi 933:doi 882:doi 878:120 852:doi 798:doi 794:188 765:doi 726:doi 722:606 664:doi 630:doi 599:doi 569:doi 565:118 534:doi 477:doi 347:. 252:MoS 74:or 36:RRS 34:or 2672:: 2469:2D 2388:UV 1828:. 1816:. 1771:. 1763:. 1751:. 1747:. 1728:. 1716:. 1712:. 1646:. 1638:. 1630:. 1616:. 1612:. 1589:. 1577:. 1573:. 1547:. 1539:. 1529:28 1527:. 1504:. 1494:. 1482:. 1478:. 1466:^ 1452:. 1442:. 1434:. 1422:. 1418:. 1395:. 1383:. 1359:. 1351:. 1339:. 1316:. 1308:. 1298:. 1286:. 1262:. 1250:. 1227:. 1217:. 1205:. 1201:. 1178:. 1170:. 1160:10 1158:. 1135:. 1127:. 1117:37 1115:. 1092:. 1084:. 1074:61 1072:. 1049:. 1037:90 1035:. 1031:. 1008:. 1000:. 990:. 980:37 978:. 955:. 947:. 939:. 929:65 927:. 904:. 896:. 888:. 876:. 864:^ 848:28 846:. 834:^ 820:. 812:. 804:. 792:. 788:. 759:. 755:. 732:. 720:. 692:^ 678:. 670:. 650:^ 636:. 605:. 595:25 593:. 581:^ 563:. 540:. 530:51 528:. 512:^ 483:. 475:. 465:54 463:. 331:, 314:, 298:. 2143:e 2136:t 2129:v 1896:e 1889:t 1882:v 1836:. 1832:: 1824:: 1818:3 1798:. 1779:. 1767:: 1759:: 1738:. 1732:: 1724:: 1703:. 1684:. 1654:. 1634:: 1624:: 1597:. 1585:: 1579:8 1555:. 1535:: 1512:. 1490:: 1460:. 1430:: 1424:1 1403:. 1391:: 1367:. 1347:: 1341:3 1324:. 1302:: 1294:: 1270:. 1258:: 1252:3 1235:. 1213:: 1186:. 1166:: 1143:. 1123:: 1100:. 1080:: 1057:. 1043:: 1016:. 986:: 963:. 935:: 912:. 884:: 858:. 854:: 828:. 800:: 773:. 767:: 761:9 740:. 728:: 686:. 666:: 644:. 632:: 613:. 601:: 575:. 571:: 548:. 536:: 491:. 479:: 471:: 254:2 187:. 30:(

Index

Energy level diagram showing scattering and fluorescence
Raman spectroscopy
photon
electronic transition
resonance
Raman scattering
proteins
vibrational modes
molecule
protein
heme
myoglobin
Raman spectroscopy § Theory
wavelength
anti-Stokes Raman scattering
Stokes Raman scattering
Rayleigh scattering
vibrational transitions
electronic transition
symmetric
Franck-Condon
metal centered (d–d) transitions
polarizability
fluorescence
laser
tunable laser
pulsed lasers
heme
protein dynamics
two-photon absorption

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑