Knowledge (XXG)

Resonating valence bond theory

Source đź“ť

97: 251: 256:
In 1971, Anderson first suggested that this Hamiltonian can have a non-degenerate ground state that is composed of disordered spin states. Shortly after the high-temperature superconductors were discovered, Anderson and Kivelson et al. proposed a
353:
mechanism. However, a rigorous proof for the existence of a superconducting ground state in either the Hubbard or the t-J Hamiltonian is not yet known. Further the stability of the RVB ground state has not yet been confirmed.
87:
In 2014, evidence showing that fractional particles can happen in quasi two-dimensional magnetic materials, was found by EPFL scientists lending support for Anderson's theory of high-temperature superconductivity.
121: 316: 350: 1070: 339: 803: 740: 479: 1193: 421: 778: 1162: 900: 246:{\displaystyle H=-t\sum _{\langle ij\rangle }(c_{i\sigma }^{\dagger }c_{j\sigma }+{\text{h.c.}})+U\sum _{i}n_{i\uparrow }n_{i\downarrow }} 1010: 33: 68:
and are able to superconduct. Anderson observed in his 1987 paper that the origins of superconductivity in doped cuprates was in the
1203: 1098: 819: 1015: 733: 267: 112: 768: 1198: 1139: 991: 935: 910: 1208: 1041: 970: 81: 986: 905: 41: 773: 1093: 1088: 726: 793: 1046: 829: 342: 17: 880: 488: 341:
represented a covering of a lattice by nearest neighbor dimers. Each such covering is weighted equally. In a
1172: 1031: 963: 346: 1083: 1056: 1036: 958: 61: 53: 37: 953: 457:(2010). "A modern, but way too short history of the theory of superconductivity at a high temperature". 1157: 1113: 681: 624: 535: 384: 29: 1144: 895: 855: 640: 525: 458: 49: 666: 579: 920: 749: 697: 561: 402: 1129: 1103: 875: 850: 783: 689: 632: 551: 543: 429: 392: 1152: 885: 609: 685: 667:"Instability of the long-range resonating valence bond state in the mean-field approach" 628: 539: 388: 890: 834: 824: 788: 556: 513: 324: 69: 45: 1187: 109: 73: 644: 925: 915: 870: 865: 101: 65: 57: 96: 1051: 860: 763: 636: 454: 422:"Philip Anderson, legendary theorist whose ideas shaped modern physics, dies" 693: 433: 77: 565: 406: 701: 1078: 547: 514:"Fractional excitations in the square-lattice quantum antiferromagnet" 56:
lattices, electrons from neighboring copper atoms interact to form a
718: 397: 372: 530: 1134: 1108: 463: 95: 1167: 722: 373:"High-temperature superconductivity at 25: Still in suspense" 108:
The physics of Mott insulators is described by the repulsive
487:. École Polytechnique Fédérale de Lausanne. Archived from 349:, and displays a superconducting phase transition per the 311:{\displaystyle |{\text{RVB}}\rangle =\sum _{C}|C\rangle } 586:. École Polytechnique Fédérale de Lausanne. Dec 23, 2014 481:
Variational Study of Strongly Correlated Electron Models
580:"How electrons split: New evidence of exotic behaviors" 72:
nature of crystalline copper oxide. RVB builds on the
327: 270: 124: 1122: 1069: 1024: 1000: 979: 943: 934: 843: 812: 756: 333: 310: 245: 610:"Five-fold way to new high Tc superconductors" 603: 601: 734: 345:, the RVB state can be written in terms of a 261:ground state for these materials, written as 36:, and in particular the superconductivity in 8: 305: 281: 151: 142: 60:, which locks them in place. However, with 940: 741: 727: 719: 665:Dombre, Thierry; Gabriel Kotliar (1989). 555: 529: 462: 396: 326: 297: 291: 276: 271: 269: 234: 221: 211: 193: 181: 171: 163: 141: 123: 363: 104:coupling of nearest-neighbor electrons. 40:compounds. It was first proposed by an 7: 64:, these electrons can act as mobile 52:in 1987. The theory states that in 34:high-temperature superconductivity 14: 48:and Indian theoretical physicist 1194:High-temperature superconductors 298: 272: 238: 225: 198: 156: 22:resonating valence bond theory 1: 420:Cho, Adrian (30 March 2020). 82:strongly correlated materials 608:Baskaran, Ganapathy (2009). 1225: 1071:Technological applications 32:that attempts to describe 813:Characteristic parameters 637:10.1007/s12043-009-0094-8 512:Piazza, B. Dalla (2015). 1204:Condensed matter physics 830:London penetration depth 343:mean field approximation 18:condensed matter physics 1123:List of superconductors 1001:By critical temperature 694:10.1103/PhysRevB.39.855 434:10.1126/science.abb9809 259:resonating valence bond 478:Weber, CĂ©dric (2007). 335: 312: 247: 105: 769:Bean's critical state 347:Gutzwiller projection 336: 313: 248: 99: 80:used in the study of 1199:Correlated electrons 944:By magnetic response 325: 268: 122: 1209:Theoretical physics 896:persistent currents 881:Little–Parks effect 686:1989PhRvB..39..855D 629:2009Prama..73...61B 540:2015NatPh..11...62D 389:2011Natur.475..280M 371:Mann, Adam (2011). 351:Kosterlitz–Thouless 176: 100:The RVB state with 856:Andreev reflection 851:Abrikosov vortices 331: 308: 296: 243: 216: 159: 155: 106: 50:Ganapathy Baskaran 1181: 1180: 1099:quantum computing 1065: 1064: 921:superdiamagnetism 750:Superconductivity 674:Physical Review B 548:10.1038/nphys3172 383:(7356): 280–282. 334:{\displaystyle C} 287: 279: 207: 196: 137: 30:theoretical model 1216: 1130:bilayer graphene 1104:Rutherford cable 1016:room temperature 1011:high temperature 941: 901:proximity effect 876:Josephson effect 820:coherence length 743: 736: 729: 720: 713: 712: 710: 708: 671: 662: 656: 655: 653: 651: 614: 605: 596: 595: 593: 591: 576: 570: 569: 559: 533: 509: 503: 502: 500: 499: 493: 486: 475: 469: 468: 466: 451: 445: 444: 442: 440: 417: 411: 410: 400: 368: 340: 338: 337: 332: 317: 315: 314: 309: 301: 295: 280: 277: 275: 252: 250: 249: 244: 242: 241: 229: 228: 215: 197: 194: 189: 188: 175: 170: 154: 1224: 1223: 1219: 1218: 1217: 1215: 1214: 1213: 1184: 1183: 1182: 1177: 1148: 1118: 1061: 1020: 1007:low temperature 996: 975: 930: 886:Meissner effect 839: 835:Silsbee current 808: 774:Ginzburg–Landau 752: 747: 717: 716: 706: 704: 669: 664: 663: 659: 649: 647: 612: 607: 606: 599: 589: 587: 578: 577: 573: 511: 510: 506: 497: 495: 491: 484: 477: 476: 472: 453: 452: 448: 438: 436: 419: 418: 414: 398:10.1038/475280a 370: 369: 365: 360: 323: 322: 266: 265: 230: 217: 177: 120: 119: 94: 12: 11: 5: 1222: 1220: 1212: 1211: 1206: 1201: 1196: 1186: 1185: 1179: 1178: 1176: 1175: 1170: 1165: 1160: 1155: 1150: 1146: 1142: 1137: 1132: 1126: 1124: 1120: 1119: 1117: 1116: 1111: 1106: 1101: 1096: 1091: 1086: 1084:electromagnets 1081: 1075: 1073: 1067: 1066: 1063: 1062: 1060: 1059: 1054: 1049: 1044: 1039: 1034: 1028: 1026: 1025:By composition 1022: 1021: 1019: 1018: 1013: 1008: 1004: 1002: 998: 997: 995: 994: 992:unconventional 989: 983: 981: 980:By explanation 977: 976: 974: 973: 968: 967: 966: 961: 956: 947: 945: 938: 936:Classification 932: 931: 929: 928: 923: 918: 913: 908: 903: 898: 893: 888: 883: 878: 873: 868: 863: 858: 853: 847: 845: 841: 840: 838: 837: 832: 827: 825:critical field 822: 816: 814: 810: 809: 807: 806: 801: 796: 794:Mattis–Bardeen 791: 786: 781: 779:Kohn–Luttinger 776: 771: 766: 760: 758: 754: 753: 748: 746: 745: 738: 731: 723: 715: 714: 680:(1): 855–857. 657: 597: 571: 518:Nature Physics 504: 470: 446: 412: 362: 361: 359: 356: 330: 319: 318: 307: 304: 300: 294: 290: 286: 283: 274: 254: 253: 240: 237: 233: 227: 224: 220: 214: 210: 206: 203: 200: 192: 187: 184: 180: 174: 169: 166: 162: 158: 153: 150: 147: 144: 140: 136: 133: 130: 127: 93: 90: 70:Mott insulator 46:P. W. Anderson 13: 10: 9: 6: 4: 3: 2: 1221: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1191: 1189: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1127: 1125: 1121: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1076: 1074: 1072: 1068: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1042:heavy fermion 1040: 1038: 1035: 1033: 1030: 1029: 1027: 1023: 1017: 1014: 1012: 1009: 1006: 1005: 1003: 999: 993: 990: 988: 985: 984: 982: 978: 972: 971:ferromagnetic 969: 965: 962: 960: 957: 955: 952: 951: 949: 948: 946: 942: 939: 937: 933: 927: 924: 922: 919: 917: 916:supercurrents 914: 912: 909: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 872: 869: 867: 864: 862: 859: 857: 854: 852: 849: 848: 846: 842: 836: 833: 831: 828: 826: 823: 821: 818: 817: 815: 811: 805: 802: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 765: 762: 761: 759: 755: 751: 744: 739: 737: 732: 730: 725: 724: 721: 703: 699: 695: 691: 687: 683: 679: 675: 668: 661: 658: 646: 642: 638: 634: 630: 626: 623:(1): 61–112. 622: 618: 611: 604: 602: 598: 585: 581: 575: 572: 567: 563: 558: 553: 549: 545: 541: 537: 532: 527: 523: 519: 515: 508: 505: 494:on 2018-10-01 490: 483: 482: 474: 471: 465: 460: 456: 450: 447: 435: 431: 427: 423: 416: 413: 408: 404: 399: 394: 390: 386: 382: 378: 374: 367: 364: 357: 355: 352: 348: 344: 328: 302: 292: 288: 284: 264: 263: 262: 260: 235: 231: 222: 218: 212: 208: 204: 201: 190: 185: 182: 178: 172: 167: 164: 160: 148: 145: 138: 134: 131: 128: 125: 118: 117: 116: 114: 111: 110:Hubbard model 103: 98: 91: 89: 85: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 1052:oxypnictides 987:conventional 926:superstripes 871:flux pumping 866:flux pinning 861:Cooper pairs 798: 705:. Retrieved 677: 673: 660: 648:. Retrieved 620: 616: 588:. Retrieved 583: 574: 524:(1): 62–68. 521: 517: 507: 496:. Retrieved 489:the original 480: 473: 449: 437:. Retrieved 425: 415: 380: 376: 366: 320: 258: 255: 107: 102:valence bond 86: 66:Cooper pairs 58:valence bond 54:copper oxide 25: 21: 15: 911:SU(2) color 891:Homes's law 455:Zaanen, Jan 113:Hamiltonian 92:Description 1188:Categories 1047:iron-based 906:reentrance 531:1501.01767 498:2012-04-08 358:References 78:t-J models 44:physicist 844:Phenomena 464:1012.5461 306:⟩ 289:∑ 282:⟩ 239:↓ 226:↑ 209:∑ 186:σ 173:† 168:σ 152:⟩ 143:⟨ 139:∑ 132:− 1079:cryotron 1037:cuprates 1032:covalent 789:Matthias 757:Theories 645:73670216 584:Nanowerk 566:25729400 428:. AAAS. 407:21776057 42:American 1173:more... 1057:organic 707:8 April 702:9947250 682:Bibcode 650:8 April 625:Bibcode 617:Pramana 590:Dec 23, 557:4340518 536:Bibcode 426:Science 385:Bibcode 74:Hubbard 38:cuprate 28:) is a 950:Types 784:London 700:  643:  564:  554:  439:25 May 405:  377:Nature 321:where 62:doping 20:, the 1163:TBCCO 1135:BSCCO 1114:wires 1109:SQUID 670:(PDF) 641:S2CID 613:(PDF) 526:arXiv 492:(PDF) 485:(PDF) 459:arXiv 1168:YBCO 1158:NbTi 1153:NbSn 1140:LBCO 709:2012 698:PMID 652:2012 592:2014 562:PMID 441:2020 403:PMID 195:h.c. 76:and 1145:MgB 1094:NMR 1089:MRI 964:1.5 804:WHH 799:RVB 764:BCS 690:doi 633:doi 552:PMC 544:doi 430:doi 393:doi 381:475 278:RVB 26:RVB 16:In 1190:: 959:II 696:. 688:. 678:39 676:. 672:. 639:. 631:. 621:73 619:. 615:. 600:^ 582:. 560:. 550:. 542:. 534:. 522:11 520:. 516:. 424:. 401:. 391:. 379:. 375:. 115:: 84:. 1147:2 954:I 742:e 735:t 728:v 711:. 692:: 684:: 654:. 635:: 627:: 594:. 568:. 546:: 538:: 528:: 501:. 467:. 461:: 443:. 432:: 409:. 395:: 387:: 329:C 303:C 299:| 293:C 285:= 273:| 236:i 232:n 223:i 219:n 213:i 205:U 202:+ 199:) 191:+ 183:j 179:c 165:i 161:c 157:( 149:j 146:i 135:t 129:= 126:H 24:(

Index

condensed matter physics
theoretical model
high-temperature superconductivity
cuprate
American
P. W. Anderson
Ganapathy Baskaran
copper oxide
valence bond
doping
Cooper pairs
Mott insulator
Hubbard
t-J models
strongly correlated materials

valence bond
Hubbard model
Hamiltonian
mean field approximation
Gutzwiller projection
Kosterlitz–Thouless
"High-temperature superconductivity at 25: Still in suspense"
Bibcode
2011Natur.475..280M
doi
10.1038/475280a
PMID
21776057
"Philip Anderson, legendary theorist whose ideas shaped modern physics, dies"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑