Knowledge (XXG)

RiAFP

Source 📝

205:) determined by Mass Spectroscopy, Edman degradation and by constructing a partial cDNA sequence and PCR have shown that a TxTxTxT internal repeat exists. Sequence logos constructed from the RiAFP internal repeats, have been particularly helpful in the determination of the consensus sequence of these repeats. The TxTxTxT domains are irregularly spaced within the protein and have been shown to be conserved from the TxT binding motif of other AFPs. The 191: 25: 216:
residues fits well, when spaced as they are in the internal repeats, with the hydroxyl moieties of externally facing water molecules in the forming ice lattice. This mimics the formation of the growth cone at a nucleation site in the absence of AFPs. Thus, the binding of RiAFP inhibits the growth of
142:
point. At a certain low temperature, the maximum convexity of the ice nucleation site is reached. Any further cooling will actually result in a "spreading" of the nucleation site away from this convex region, causing rapid, uncontrollable nucleation of the ice crystal. The temperature at which this
134:
onto the exposed ice crystal force the growth of the ice crystal in a convex fashion as the temperature drops, which elevates the ice vapour pressure at the nucleation sites. Ice vapour pressure continues to increase until it reaches equilibrium with the surrounding solution (water), at which point
253:). On the basis of these observations, it has been predicted that the need for insect AFPs came about after insect evolutionary divergence, much like the evolution of fish AFPs; thus, different AFPs most likely evolved in parallel from adaptations to cold (environmental) stress. As a result, 149:
is further supported by the observation that antifreeze activity increases with increasing AFP concentration – the more AFPs adsorb onto the forming ice crystal, the more 'crowded' these proteins become, making ice crystal nucleation less favourable.
103:, as well as varying numbers of 12- or 13-mer repeats of 8.3-12.5kDa, RiAFP is notable for containing only one disulfide bridge. This property of RiAFP makes it particularly attractive for recombinant expression and biotechnological applications. 169:
allows the tissues and fluids within the beetle to withstand freezing up to -30 °C (the thermal hysteresis point for this AFP). This strategy provides an obvious survival benefit to these beetles, who are endemic to cold climates, such as
94:
prevents its body fluids from freezing altogether. This contrasts with freeze-tolerant species, whose AFPs simply depress levels of ice crystal formation in low temperatures. Whereas most insect antifreeze proteins contain
443:
Kristiansen E, Ramløv H, Hagen L, Pedersen SA, Andersen RA, Zachariassen KE (September 2005). "Isolation and characterization of hemolymph antifreeze proteins from larvae of the longhorn beetle
566:
Graether SP, Kuiper MJ, Gagnè SM, Walker VK, Jia Z, Sykes BD, Davies PL (July 2000). "β-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect".
399:
Kristiansen E, Ramløv H, Højrup P, Pedersen SA, Hagen L, Zachariassen KE (February 2011). "Structural characteristics of a novel antifreeze protein from the longhorn beetle
130:
of the ice crystal lattice are blocked by the AFP, inhibiting the rapid growth of the crystal that could be fatal for the organism. In physical chemistry terms, the AFPs
126:, AFPs disrupt the thermodynamically favourable growth of an ice crystal via kinetic inhibition of contact between solid ice and liquid water. In this manner, the 229:
queries have returned no viable matches, has led some researchers to suggest that RiAFP represents a new type of AFP – one that differs from the heavily studied
197:
A sequence logo constructed from the 13-nucleotide repeat regions found by EBI-RADAR, showing a clear TxTxTxT binding motif embedded within these regions.
617:
Lin FH, Davies PL, Graham LA (May 2011). "The Thr- and Ala-Rich Hyperactive Antifreeze Protein from Inchworm Folds as a Flat Silk-like-β-Helix".
86:
longhorned beetle. It is a type V antifreeze protein with a molecular weight of 12.8 kDa; this type of AFP is noted for its hyperactivity.
171: 111:
AFPs work through an interaction with small ice crystals that is similar to an enzyme-ligand binding mechanism which inhibits
272: 291:
protein, having six β-strand regions consisting of 13-amino acids (including one TxTxTxT binding motif) per strand.
225:
The fact that the binding motif appears as a "triplet" of the conserved TxT repeat, as well as the observation that
736:
Sicheri, F; Yang DS (1995). "Ice-binding structure and mechanism of an antifreeze protein from winter flounder".
115:
of ice. This explanation of the interruption of the ice crystal structure by the AFP has come to be known as the
299: 190: 295: 226: 806: 745: 575: 342: 284: 35: 779: 599: 368: 254: 139: 82: 77: 801: 771: 714: 634: 591: 548: 499: 464: 420: 360: 179: 761: 753: 704: 696: 661: 652:
Scott GK, Fletcher GL, Davies PL (1986). "Fish Antifreeze Proteins: Recent Gene Evolution".
626: 583: 538: 530: 491: 456: 412: 350: 287:
are located at the ends of β-strand regions. These data suggest that RiAFP is a well-folded
209: 127: 112: 749: 681:"Expression, purification, crystallization, and preliminary crystallographic studies of 579: 346: 709: 680: 543: 518: 298:, have been published on a RiAFP crystal (which diffracted to 1.3Å resolution) in the 795: 495: 372: 482:
Duman JG (2001). "Antifreeze and ice nucleator proteins in terrestrial arthropods".
603: 783: 275:
have determined that the internal repeats are spaced sufficiently to tend towards
519:"Theoretical study of interaction of winter flounder antifreeze protein with ice" 202: 280: 276: 161:, a fluid that bathes all the cells of the beetle and fills a cavity called the 460: 416: 700: 288: 158: 123: 100: 213: 54: 44: 718: 638: 595: 552: 503: 468: 424: 138:
The aforementioned effect of AFPs on ice crystal nucleation is lost at the
24: 775: 364: 206: 162: 131: 96: 534: 175: 766: 630: 757: 587: 665: 355: 330: 189: 18: 90:
is a freeze-avoidant species, meaning that, due to its AFP,
310:
21), with unit-cell parameters a = b = 46.46, c = 193.21Å.
201:
The primary structure of RiAFP (the sequence may be found
329:
Graham LA, Liou YC, Walker VK, Davies PL (August 1997).
49: 39: 217:
the crystal in the basal and prism planes of the ice.
679:Hakim A, Thakral D, Zhu DF, Nguyen JB (May 2012). 143:phenomenon occurs is the thermal hysteresis point. 438: 436: 434: 394: 392: 390: 388: 386: 384: 382: 283:regions include the conserved repeats; and all 331:"Hyperactive antifreeze protein from beetles" 8: 324: 322: 765: 708: 542: 517:Jorov A, Zhorov BS, Yang DS (June 2004). 354: 273:Secondary structure modelling algorithms 318: 135:the growth of the ice crystal stops. 7: 14: 496:10.1146/annurev.physiol.63.1.327 147:adsorption-inhibition hypothesis 117:adsorption-inhibition hypothesis 23: 157:beetle, AFPs are found in the 1: 269:would prove to be fruitless. 823: 461:10.1016/j.cbpc.2005.06.004 417:10.1016/j.ibmb.2010.11.002 165:. The presence of AFPs in 701:10.1107/S1744309112010421 221:RiAFP Predicted Structure 296:crystallographic studies 38:, as no other articles 449:Comp Biochem Physiol B 198: 80:(AFP) produced by the 193: 99:at least every sixth 654:Can J Fish Aquat Sci 405:Insect Biochem Molec 300:trigonal space group 750:1995Natur.375..427S 685:antifreeze protein" 580:2000Natur.406..325G 535:10.1110/ps.04641104 347:1997Natur.388..727G 689:Acta Crystallogr F 683:Rhagium inquisitor 484:Annu. Rev. Physiol 445:Rhagium inquisitor 401:Rhagium inquisitor 279:configuration; no 255:homology modelling 199: 140:thermal hysteresis 122:According to this 83:Rhagium inquisitor 78:antifreeze protein 57:for suggestions. 47:to this page from 16:Antifreeze protein 744:(6530): 427–431. 631:10.1021/bi2003108 625:(21): 4467–4478. 574:(6793): 325–328. 186:RiAFP Ice Binding 113:recrystallization 71: 70: 814: 787: 769: 758:10.1038/375427a0 723: 722: 712: 676: 670: 669: 660:(5): 1028–1034. 649: 643: 642: 614: 608: 607: 588:10.1038/35018610 563: 557: 556: 546: 514: 508: 507: 479: 473: 472: 440: 429: 428: 396: 377: 376: 358: 326: 128:nucleation sites 66: 63: 52: 50:related articles 27: 19: 822: 821: 817: 816: 815: 813: 812: 811: 792: 791: 790: 735: 731: 729:Further reading 726: 678: 677: 673: 666:10.1139/f86-128 651: 650: 646: 616: 615: 611: 565: 564: 560: 516: 515: 511: 481: 480: 476: 442: 441: 432: 398: 397: 380: 341:(6644): 727–8. 328: 327: 320: 316: 309: 305: 223: 188: 144: 109: 67: 61: 58: 48: 45:introduce links 28: 17: 12: 11: 5: 820: 818: 810: 809: 804: 794: 793: 789: 788: 732: 730: 727: 725: 724: 695:(5): 547–550. 671: 644: 609: 558: 529:(6): 1524–37. 509: 474: 430: 411:(2): 109–117. 378: 317: 315: 312: 307: 303: 222: 219: 187: 184: 108: 105: 69: 68: 55:Find link tool 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 819: 808: 805: 803: 800: 799: 797: 785: 781: 777: 773: 768: 763: 759: 755: 751: 747: 743: 739: 734: 733: 728: 720: 716: 711: 706: 702: 698: 694: 690: 686: 684: 675: 672: 667: 663: 659: 655: 648: 645: 640: 636: 632: 628: 624: 620: 613: 610: 605: 601: 597: 593: 589: 585: 581: 577: 573: 569: 562: 559: 554: 550: 545: 540: 536: 532: 528: 524: 520: 513: 510: 505: 501: 497: 493: 489: 485: 478: 475: 470: 466: 462: 458: 454: 450: 446: 439: 437: 435: 431: 426: 422: 418: 414: 410: 406: 402: 395: 393: 391: 389: 387: 385: 383: 379: 374: 370: 366: 362: 357: 356:10.1038/41908 352: 348: 344: 340: 336: 332: 325: 323: 319: 313: 311: 301: 297: 292: 290: 286: 282: 278: 274: 270: 268: 264: 260: 256: 252: 251:C. fumiferana 248: 244: 243:D. canadensis 240: 236: 232: 228: 220: 218: 215: 211: 208: 204: 196: 192: 185: 183: 181: 177: 173: 168: 167:R. inquisitor 164: 160: 156: 155:R. inquisitor 151: 148: 141: 136: 133: 129: 125: 120: 118: 114: 106: 104: 102: 98: 93: 92:R. inquisitor 89: 88:R. inquisitor 85: 84: 79: 76:refers to an 75: 65: 56: 51: 46: 42: 41: 37: 32:This article 30: 26: 21: 20: 741: 737: 692: 688: 682: 674: 657: 653: 647: 622: 619:Biochemistry 618: 612: 571: 567: 561: 526: 522: 512: 487: 483: 477: 455:(1): 90–97. 452: 448: 444: 408: 404: 400: 338: 334: 293: 285:turn regions 271: 266: 262: 258: 250: 246: 242: 238: 234: 230: 224: 200: 194: 166: 154: 152: 146: 137: 121: 116: 110: 91: 87: 81: 73: 72: 59: 33: 807:Cryobiology 523:Protein Sci 172:Scandinavia 796:Categories 767:11375/7005 490:: 327–57. 314:References 235:T. molitor 159:haemolymph 124:hypothesis 53:; try the 40:link to it 373:205029622 306:21 (or P3 289:β-helical 195:Figure 1: 163:haemocoel 97:cysteines 62:June 2016 43:. Please 802:Proteins 719:22691785 639:21486083 596:10917537 553:15152087 504:11181959 469:15993638 425:21078390 294:Primary 277:β-strand 207:hydroxyl 132:adsorbed 776:7760940 746:Bibcode 710:3374510 604:4345188 576:Bibcode 544:2279984 365:9285581 343:Bibcode 281:helical 245:), and 212:of the 176:Siberia 153:In the 101:residue 784:758990 782:  774:  738:Nature 717:  707:  637:  602:  594:  568:Nature 551:  541:  502:  467:  423:  371:  363:  335:Nature 249:(from 241:(from 233:(from 227:blastp 210:moiety 180:Alaska 178:, and 36:orphan 34:is an 780:S2CID 600:S2CID 369:S2CID 267:CfAFP 265:, or 263:DcAFP 259:TmAFP 257:with 247:CfAFP 239:DcAFP 231:TmAFP 74:RiAFP 772:PMID 715:PMID 635:PMID 592:PMID 549:PMID 500:PMID 465:PMID 421:PMID 361:PMID 203:here 145:The 107:AFPs 762:hdl 754:doi 742:375 705:PMC 697:doi 662:doi 627:doi 584:doi 572:406 539:PMC 531:doi 492:doi 457:doi 453:142 447:". 413:doi 403:". 351:doi 339:388 237:), 798:: 778:. 770:. 760:. 752:. 740:. 713:. 703:. 693:68 691:. 687:. 658:43 656:. 633:. 623:50 621:. 598:. 590:. 582:. 570:. 547:. 537:. 527:13 525:. 521:. 498:. 488:63 486:. 463:. 451:. 433:^ 419:. 409:41 407:. 381:^ 367:. 359:. 349:. 337:. 333:. 321:^ 302:P3 261:, 182:. 174:, 119:. 786:. 764:: 756:: 748:: 721:. 699:: 668:. 664:: 641:. 629:: 606:. 586:: 578:: 555:. 533:: 506:. 494:: 471:. 459:: 427:. 415:: 375:. 353:: 345:: 308:2 304:1 214:T 64:) 60:(

Index


orphan
link to it
introduce links
related articles
Find link tool
antifreeze protein
Rhagium inquisitor
cysteines
residue
recrystallization
hypothesis
nucleation sites
adsorbed
thermal hysteresis
haemolymph
haemocoel
Scandinavia
Siberia
Alaska

here
hydroxyl
moiety
T
blastp
homology modelling
Secondary structure modelling algorithms
β-strand
helical

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.