Knowledge (XXG)

Richards equation

Source đź“ť

2083:
relations. Advanced computational and software solutions are required here to over-come this obstacle. The method has also been criticized for over-emphasizing the role of capillarity, and for being in some ways 'overly simplistic' In one dimensional simulations of rainfall infiltration into dry soils, fine spatial discretization less than one cm is required near the land surface, which is due to the small size of the
1292: 698: 2082:
The numerical solution of the Richards equation is one of the most challenging problems in earth science. Richards' equation has been criticized for being computationally expensive and unpredictable because there is no guarantee that a solver will converge for a particular set of soil constitutive
947: 1149: 1420: 1134: 1645: 566: 582: 1876:
The Richards equation in any of its forms involves soil hydraulic properties, which is a set of five parameters representing soil type. The soil hydraulic properties typically consist of water retention curve parameters by van Genuchten:
335: 416: 1808: 1728: 1482: 125: 855: 996: 1533: 1936: 1864:
is the residual (minimal) water content a successful numerical solution is restricted just for ranges of water content satisfactory below the full saturation (the saturation should be even lower than
1287:{\displaystyle {\frac {\Delta \theta }{\Delta t}}\approx C(h){\frac {\Delta h}{\Delta t}},\quad {\mbox{and so}}\quad {\frac {\Delta \theta }{\Delta t}}-C(h){\frac {\Delta h}{\Delta t}}=\varepsilon .} 720:
between the atmosphere and the aquifer. It also appears in pure mathematical journals because it has non-trivial solutions. The above-given mixed formulation involves two unknown variables:
1334: 1036: 1567: 2035: 1575: 2064: 484: 249: 1314: 1862: 1835: 787: 693:{\displaystyle {\frac {\partial \theta }{\partial t}}={\frac {\partial }{\partial z}}\left(\mathbf {K} (\theta )\left({\frac {\partial h}{\partial z}}+1\right)\right)-S} 160: 274: 1956: 835: 738: 186: 472: 2074:
of second order) should also be provided. Identification of these parameters is often non-trivial and was a subject of numerous publications over several decades.
1028: 1996: 1976: 815: 758: 443: 212: 2730:
Tocci, M. D., C. T. Kelley, and C. T. Miller (1997), Accurate and economical solution of the pressure-head form of Richards' equation by the method of lines,
2796: 279: 351: 1733: 1653: 1428: 2826: 2717:
Short, D., W.R. Dawes, and I. White, (1995). The practicability of using Richards' equation for general purpose soil-water dynamics models.
57: 51:. The equation is based on Darcy-Buckingham law representing flow in porous media under variably saturated conditions, which is stated as 2523:
Angulo-Jaramillo, Rafael; Vandervaere, Jean-Pierre; Roulier, Stéphanie; Thony, Jean-Louis; Gaudet, Jean-Paul; Vauclin, Michel (May 2000).
1316:
that affects the mass conservation of the numerical solution, and so special strategies for temporal derivatives treatment are necessary.
942:{\displaystyle {\frac {\partial \theta (h)}{\partial t}}={\frac {{\textrm {d}}\theta }{{\textrm {d}}h}}{\frac {\partial h}{\partial t}}} 1140:
The head-based Richards equation is prone to the following computational issue: the discretized temporal derivative using the implicit
2087:
for multiphase flow in porous media. In three-dimensional applications the numerical solution of the Richards equation is subject to
956: 2556:"Inverse Dual-Permeability Modeling of Preferential Water Flow in a Soil Column and Implications for Field-Scale Solute Transport" 2084: 1487: 2704:
Farthing, Matthew W., and Fred L. Ogden, (2017). Numerical solution of Richards’ Equation: a review of advances and challenges.
2801: 1880: 2148:"Clean two- and three-dimensional analytical solutions of Richards' equation for testing numerical solvers: TECHNICAL NOTE" 2660:"Automated calibration methodology to avoid convergence issues during inverse identification of soil hydraulic properties" 32: 2283:"The contributions of Lewis Fry Richardson to drainage theory, soil physics, and the soil-plant-atmosphere continuum" 2091:
constraints where the ratio of horizontal to vertical resolution in the solution domain should be less than about 7.
1415:{\displaystyle \mathbf {K} (h)\nabla h=\mathbf {K} (h){\frac {{\textrm {d}}h}{{\textrm {d}}\theta }}\nabla \theta ,} 716:
The Richards equation appears in many articles in the environmental literature because it describes the flow in the
2447:"Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments" 2743:
Germann, P. (2010), Comment on “Theory for source-responsive and free-surface film modeling of unsaturated flow”,
1129:{\displaystyle C(h){\frac {\partial h}{\partial t}}=\nabla \cdot \left(\mathbf {K} (h)\nabla h+\nabla z\right)-S} 478:
Then substituting the fluxes by the Darcy-Buckingham law the following mixed-form Richards equation is obtained:
2786: 999: 1536: 1541: 1640:{\displaystyle {\frac {\partial \theta }{\partial t}}=\nabla \cdot \mathbf {D} (\theta )\nabla \theta -S.} 2816: 2791: 2001: 1865: 1650:
The saturation-based Richards equation is prone to the following computational issues. Since the limits
790: 561:{\displaystyle {\frac {\partial \theta }{\partial t}}=\nabla \cdot \mathbf {K} (h)(\nabla h+\nabla z)-S} 29: 2659: 2360: 2040: 2622: 2567: 2497: 2458: 2419: 2372: 2333: 2282: 2247: 2120: 705: 223: 35:; its analytical solution is often limited to specific initial and boundary conditions. Proof of the 2361:"An adaptive time discretization of the classical and the dual porosity model of Richards' equation" 2306: 25: 1299: 2821: 2687: 2591: 2524: 2485: 2446: 2216: 2169: 1840: 1813: 704:
Although attributed to L. A. Richards, the equation was originally introduced 9 years earlier by
40: 2609:
Younes, Anis; Mara, Thierry; Fahs, Marwan; Grunberger, Olivier; Ackerer, Philippe (3 May 2017).
2484:
Fodor, Nándor; Sándor, Renáta; Orfanus, Tomas; Lichner, Lubomir; Rajkai, Kálmán (October 2011).
763: 136: 2407: 2679: 2640: 2583: 2388: 2263: 2208: 342: 256: 36: 2756:
Gray, W. G., and S. Hassanizadeh (1991), Paradoxes and realities in unsaturated flow theory,
1941: 820: 723: 171: 2671: 2630: 2575: 2536: 2505: 2466: 2431: 2427: 2380: 2341: 2255: 2200: 2159: 2128: 48: 44: 2555: 448: 1004: 163: 2300: 2626: 2571: 2525:"Field measurement of soil surface hydraulic properties by disc and ring infiltrometers" 2501: 2462: 2423: 2376: 2337: 2251: 2124: 2408:"A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils" 1981: 1961: 800: 743: 428: 197: 2540: 2470: 2235: 2810: 2691: 2675: 2610: 2259: 2220: 2173: 215: 189: 2611:"Hydraulic and transport parameter assessment using column infiltration experiments" 2658:
Kuraz, Michal; Jačka, Lukáš; Ruth Blöcher, Johanna; Lepš, Matěj (1 November 2022).
2509: 2236:"Model for simulating soil-water content considering evapotranspiration — Comments" 2088: 330:{\displaystyle \nabla z=\left({\begin{smallmatrix}0\\0\\1\end{smallmatrix}}\right)} 2595: 2322:"A general mass-conservative numerical solution for the unsaturated flow equation" 411:{\displaystyle {\frac {\partial \theta }{\partial t}}+\nabla \cdot {\vec {q}}+S=0} 2111:
Richards, L.A. (1931). "Capillary conduction of liquids through porous mediums".
1141: 717: 298: 21: 2321: 1803:{\displaystyle \lim _{\theta \to \theta _{r}}||\mathbf {D} (\theta )||=\infty } 1723:{\displaystyle \lim _{\theta \to \theta _{s}}||\mathbf {D} (\theta )||=\infty } 2635: 2384: 1325: 846: 794: 573: 345:
for an incompressible porous medium and constant liquid density, expressed as
2683: 2644: 2587: 2392: 2267: 2212: 1477:{\displaystyle \mathbf {K} (h){\frac {{\textrm {d}}h}{{\textrm {d}}\theta }}} 2345: 2486:"Evaluation method dependency of measured saturated hydraulic conductivity" 2320:
Celia, Michael A.; Bouloutas, Efthimios T.; Zarba, Rebecca L. (July 1990).
2554:
Köhne, J. Maximilian; Mohanty, Binayak P.; Šimůnek, Jirka (January 2006).
2579: 2359:
Kuráž, Michal; Mayer, Petr; Lepš, Matěj; Trpkošová, Dagmar (2010-04-15).
2164: 2147: 2067: 2204: 2132: 2188: 2071: 120:{\displaystyle {\vec {q}}=-\mathbf {K} (\theta )(\nabla h+\nabla z),} 2367:. Finite Element Methods in Engineering and Science (FEMTEC 2009). 760:. This can be easily resolved by considering constitutive relation 2445:
Inoue, M.; Ĺ imĹŻnek, J.; Shiozawa, S.; Hopmans, J.W. (June 2000).
991:{\displaystyle {\frac {{\textrm {d}}\theta }{{\textrm {d}}h}}} 1868:) as well as satisfactory above the residual water content. 1528:{\displaystyle {\frac {\mathbf {K} (\theta )}{C(\theta )}}} 2187:
Wilhelm Alt, Hans; Luckhaus, Stephan (1 September 1983).
1931:{\displaystyle \alpha ,\,n,\,m,\,\theta _{s},\theta _{r}} 2189:"Quasilinear elliptic-parabolic differential equations" 1213: 797:, the Richards equation may be reformulated as either 2043: 2004: 1984: 1964: 1944: 1883: 1843: 1816: 1736: 1656: 1578: 1544: 1490: 1431: 1337: 1302: 1152: 1039: 1007: 959: 858: 823: 803: 766: 746: 726: 585: 487: 451: 431: 354: 282: 259: 226: 200: 174: 139: 60: 276:is the geodetic head gradient, which is assumed as 2058: 2029: 1990: 1970: 1950: 1930: 1856: 1829: 1802: 1722: 1639: 1561: 1527: 1476: 1414: 1308: 1286: 1128: 1022: 990: 941: 829: 809: 781: 752: 732: 692: 572:For modeling of one-dimensional infiltration this 560: 466: 437: 410: 329: 268: 243: 206: 180: 154: 119: 218:, which is negative for unsaturated porous media; 2365:Journal of Computational and Applied Mathematics 1738: 1658: 2037:. Further the saturated hydraulic conductivity 2769:Downer, Charles W., and Fred L. Ogden (2003), 1978:is the pore size distribution parameter , and 1837:is the saturated (maximal) water content and 8: 2797:Finite water-content vadose zone flow method 2305:. Cambridge, The University press. pp.  837:-form (saturation based) Richards equation. 28:who published the equation in 1931. It is a 1144:method yields the following approximation: 251:is the unsaturated hydraulic conductivity; 2634: 2234:Feddes, R. A.; Zaradny, H. (1 May 1978). 2163: 2050: 2045: 2042: 2017: 2003: 1983: 1963: 1943: 1922: 1909: 1904: 1897: 1890: 1882: 1848: 1842: 1821: 1815: 1789: 1784: 1770: 1765: 1760: 1752: 1741: 1735: 1709: 1704: 1690: 1685: 1680: 1672: 1661: 1655: 1608: 1579: 1577: 1545: 1543: 1494: 1491: 1489: 1462: 1461: 1450: 1449: 1446: 1432: 1430: 1391: 1390: 1379: 1378: 1375: 1361: 1338: 1336: 1301: 1255: 1220: 1212: 1188: 1153: 1151: 1086: 1052: 1038: 1006: 976: 975: 964: 963: 960: 958: 919: 907: 906: 895: 894: 891: 859: 857: 822: 802: 765: 745: 725: 648: 629: 609: 586: 584: 517: 488: 486: 455: 450: 430: 385: 384: 355: 353: 296: 281: 258: 227: 225: 199: 173: 141: 140: 138: 79: 62: 61: 59: 2406:van Genuchten, M. Th. (September 1980). 2706:Soil Science Society of America Journal 2432:10.2136/sssaj1980.03615995004400050002x 2412:Soil Science Society of America Journal 2302:Weather prediction by numerical process 2100: 1484:, which could be further formulated as 43:of solution was given only in 1983 by 2773:,18, pp. 1-22. DOI:10.1002/hyp.1306. 1958:is the inverse of air entry value , 1562:{\displaystyle \mathbf {D} (\theta )} 1296:This approximation produces an error 7: 2106: 2104: 20:represents the movement of water in 2615:Hydrology and Earth System Sciences 1328:on the spatial derivative leads to 2030:{\displaystyle m=1-{\frac {1}{n}}} 1797: 1717: 1622: 1602: 1590: 1582: 1403: 1352: 1266: 1258: 1231: 1223: 1199: 1191: 1164: 1156: 1109: 1100: 1075: 1063: 1055: 930: 922: 879: 862: 659: 651: 615: 611: 597: 589: 543: 534: 511: 499: 491: 378: 366: 358: 283: 260: 105: 96: 14: 1569:. The equation is then stated as 1030:. The equation is then stated as 849:on temporal derivative leads to 297: 2676:10.1016/j.advengsoft.2022.103278 2664:Advances in Engineering Software 2085:representative elementary volume 2059:{\displaystyle \mathbf {K} _{s}} 2046: 1771: 1691: 1609: 1546: 1495: 1433: 1362: 1339: 1087: 630: 518: 228: 80: 2802:Soil Moisture Velocity Equation 1219: 1211: 474:], typically root water uptake. 337:for three-dimensional problems. 244:{\displaystyle \mathbf {K} (h)} 2827:Partial differential equations 2510:10.1016/j.geoderma.2011.07.004 2299:Richardson, Lewis Fry (1922). 1790: 1785: 1781: 1775: 1766: 1761: 1745: 1710: 1705: 1701: 1695: 1686: 1681: 1665: 1619: 1613: 1556: 1550: 1519: 1513: 1505: 1499: 1443: 1437: 1372: 1366: 1349: 1343: 1252: 1246: 1185: 1179: 1097: 1091: 1049: 1043: 1017: 1011: 874: 868: 776: 770: 640: 634: 549: 531: 528: 522: 390: 238: 232: 146: 111: 93: 90: 84: 67: 1: 2541:10.1016/S0167-1987(00)00098-2 2471:10.1016/S0309-1708(00)00011-7 33:partial differential equation 2288:. EGU General Assembly 2016. 2281:Knight, John; Raats, Peter. 2260:10.1016/0022-1694(78)90030-6 2146:Tracy, F. T. (August 2006). 1309:{\displaystyle \varepsilon } 24:soils, and is attributed to 2451:Advances in Water Resources 1857:{\displaystyle \theta _{r}} 1830:{\displaystyle \theta _{s}} 2843: 782:{\displaystyle \theta (h)} 155:{\displaystyle {\vec {q}}} 2636:10.5194/hess-21-2263-2017 2529:Soil and Tillage Research 2385:10.1016/j.cam.2009.11.056 2193:Mathematische Zeitschrift 2787:Infiltration (hydrology) 2326:Water Resources Research 2152:Water Resources Research 1000:retention water capacity 789:, which is known as the 269:{\displaystyle \nabla z} 190:volumetric water content 2346:10.1029/WR026i007p01483 1998:is usually assumed as 1951:{\displaystyle \alpha } 830:{\displaystyle \theta } 733:{\displaystyle \theta } 341:Considering the law of 181:{\displaystyle \theta } 2708:, 81(6), pp.1257-1269. 2060: 2031: 1992: 1972: 1952: 1932: 1858: 1831: 1804: 1724: 1641: 1563: 1537:soil water diffusivity 1529: 1478: 1416: 1310: 1288: 1130: 1024: 992: 943: 831: 817:-form (head based) or 811: 783: 754: 734: 694: 562: 468: 439: 412: 331: 270: 245: 208: 182: 156: 121: 2792:Water retention curve 2061: 2032: 1993: 1973: 1953: 1933: 1859: 1832: 1805: 1725: 1642: 1564: 1530: 1479: 1417: 1311: 1289: 1131: 1025: 993: 944: 832: 812: 791:water retention curve 784: 755: 735: 695: 563: 469: 467:{\displaystyle ^{-1}} 440: 413: 332: 271: 246: 209: 183: 157: 122: 2580:10.2136/vzj2005.0008 2240:Journal of Hydrology 2165:10.1029/2005WR004638 2041: 2002: 1982: 1962: 1942: 1881: 1841: 1814: 1734: 1654: 1576: 1542: 1488: 1429: 1335: 1300: 1150: 1037: 1023:{\displaystyle C(h)} 1005: 957: 856: 821: 801: 764: 744: 724: 706:Lewis Fry Richardson 583: 485: 449: 429: 352: 280: 257: 224: 198: 172: 137: 58: 2760:, 27(8), 1847-1854. 2627:2017HESS...21.2263Y 2572:2006VZJ.....5...59K 2560:Vadose Zone Journal 2502:2011Geode.165...60F 2463:2000AdWR...23..677I 2424:1980SSASJ..44..892V 2377:2010JCoAM.233.3167K 2338:1990WRR....26.1483C 2252:1978JHyd...37..393F 2125:1931Physi...1..318R 445:is the sink term [T 26:Lorenzo A. Richards 2758:Water Resour. Res. 2205:10.1007/BF01176474 2066:(which is for non 2056: 2027: 1988: 1968: 1948: 1928: 1854: 1827: 1800: 1759: 1720: 1679: 1637: 1559: 1535:, is known as the 1525: 1474: 1412: 1306: 1284: 1217: 1126: 1020: 988: 939: 827: 807: 779: 750: 730: 690: 558: 464: 435: 408: 327: 321: 320: 266: 241: 204: 178: 152: 117: 2732:Adv. Wat. Resour. 2371:(12): 3167–3177. 2133:10.1063/1.1745010 2025: 1991:{\displaystyle m} 1971:{\displaystyle n} 1737: 1657: 1597: 1523: 1472: 1465: 1453: 1401: 1394: 1382: 1273: 1238: 1216: 1206: 1171: 1070: 986: 979: 967: 937: 917: 910: 898: 886: 810:{\displaystyle h} 753:{\displaystyle h} 666: 622: 604: 506: 438:{\displaystyle S} 393: 373: 343:mass conservation 207:{\displaystyle h} 149: 70: 18:Richards equation 2834: 2774: 2767: 2761: 2754: 2748: 2747:9(4), 1000-1101. 2741: 2735: 2728: 2722: 2721:. 21(5):723-730. 2715: 2709: 2702: 2696: 2695: 2655: 2649: 2648: 2638: 2621:(5): 2263–2275. 2606: 2600: 2599: 2551: 2545: 2544: 2520: 2514: 2513: 2481: 2475: 2474: 2442: 2436: 2435: 2403: 2397: 2396: 2356: 2350: 2349: 2332:(7): 1483–1496. 2317: 2311: 2310: 2296: 2290: 2289: 2287: 2278: 2272: 2271: 2231: 2225: 2224: 2184: 2178: 2177: 2167: 2143: 2137: 2136: 2108: 2065: 2063: 2062: 2057: 2055: 2054: 2049: 2036: 2034: 2033: 2028: 2026: 2018: 1997: 1995: 1994: 1989: 1977: 1975: 1974: 1969: 1957: 1955: 1954: 1949: 1937: 1935: 1934: 1929: 1927: 1926: 1914: 1913: 1863: 1861: 1860: 1855: 1853: 1852: 1836: 1834: 1833: 1828: 1826: 1825: 1809: 1807: 1806: 1801: 1793: 1788: 1774: 1769: 1764: 1758: 1757: 1756: 1729: 1727: 1726: 1721: 1713: 1708: 1694: 1689: 1684: 1678: 1677: 1676: 1646: 1644: 1643: 1638: 1612: 1598: 1596: 1588: 1580: 1568: 1566: 1565: 1560: 1549: 1534: 1532: 1531: 1526: 1524: 1522: 1508: 1498: 1492: 1483: 1481: 1480: 1475: 1473: 1471: 1467: 1466: 1463: 1459: 1455: 1454: 1451: 1447: 1436: 1421: 1419: 1418: 1413: 1402: 1400: 1396: 1395: 1392: 1388: 1384: 1383: 1380: 1376: 1365: 1342: 1324:By applying the 1320:Saturation-based 1315: 1313: 1312: 1307: 1293: 1291: 1290: 1285: 1274: 1272: 1264: 1256: 1239: 1237: 1229: 1221: 1218: 1214: 1207: 1205: 1197: 1189: 1172: 1170: 1162: 1154: 1135: 1133: 1132: 1127: 1119: 1115: 1090: 1071: 1069: 1061: 1053: 1029: 1027: 1026: 1021: 998:is known as the 997: 995: 994: 989: 987: 985: 981: 980: 977: 973: 969: 968: 965: 961: 948: 946: 945: 940: 938: 936: 928: 920: 918: 916: 912: 911: 908: 904: 900: 899: 896: 892: 887: 885: 877: 860: 845:By applying the 836: 834: 833: 828: 816: 814: 813: 808: 788: 786: 785: 780: 759: 757: 756: 751: 739: 737: 736: 731: 699: 697: 696: 691: 683: 679: 678: 674: 667: 665: 657: 649: 633: 623: 621: 610: 605: 603: 595: 587: 576:form reduces to 567: 565: 564: 559: 521: 507: 505: 497: 489: 473: 471: 470: 465: 463: 462: 444: 442: 441: 436: 417: 415: 414: 409: 395: 394: 386: 374: 372: 364: 356: 336: 334: 333: 328: 326: 322: 275: 273: 272: 267: 250: 248: 247: 242: 231: 213: 211: 210: 205: 187: 185: 184: 179: 161: 159: 158: 153: 151: 150: 142: 126: 124: 123: 118: 83: 72: 71: 63: 2842: 2841: 2837: 2836: 2835: 2833: 2832: 2831: 2807: 2806: 2783: 2778: 2777: 2768: 2764: 2755: 2751: 2742: 2738: 2729: 2725: 2716: 2712: 2703: 2699: 2657: 2656: 2652: 2608: 2607: 2603: 2553: 2552: 2548: 2522: 2521: 2517: 2483: 2482: 2478: 2444: 2443: 2439: 2405: 2404: 2400: 2358: 2357: 2353: 2319: 2318: 2314: 2298: 2297: 2293: 2285: 2280: 2279: 2275: 2233: 2232: 2228: 2186: 2185: 2181: 2145: 2144: 2140: 2110: 2109: 2102: 2097: 2080: 2044: 2039: 2038: 2000: 1999: 1980: 1979: 1960: 1959: 1940: 1939: 1918: 1905: 1879: 1878: 1874: 1872:Parametrization 1866:air entry value 1844: 1839: 1838: 1817: 1812: 1811: 1748: 1732: 1731: 1668: 1652: 1651: 1589: 1581: 1574: 1573: 1540: 1539: 1509: 1493: 1486: 1485: 1460: 1448: 1427: 1426: 1389: 1377: 1333: 1332: 1322: 1298: 1297: 1265: 1257: 1230: 1222: 1198: 1190: 1163: 1155: 1148: 1147: 1085: 1081: 1062: 1054: 1035: 1034: 1003: 1002: 974: 962: 955: 954: 929: 921: 905: 893: 878: 861: 854: 853: 843: 819: 818: 799: 798: 793:. Applying the 762: 761: 742: 741: 722: 721: 714: 658: 650: 647: 643: 628: 624: 614: 596: 588: 581: 580: 498: 490: 483: 482: 452: 447: 446: 427: 426: 365: 357: 350: 349: 319: 318: 312: 311: 305: 304: 292: 278: 277: 255: 254: 222: 221: 196: 195: 170: 169: 164:volumetric flux 135: 134: 56: 55: 12: 11: 5: 2840: 2838: 2830: 2829: 2824: 2819: 2809: 2808: 2805: 2804: 2799: 2794: 2789: 2782: 2779: 2776: 2775: 2762: 2749: 2745:Vadose Zone J. 2736: 2734:, 20(1), 1–14. 2723: 2710: 2697: 2650: 2601: 2546: 2515: 2476: 2457:(7): 677–688. 2437: 2418:(5): 892–898. 2398: 2351: 2312: 2291: 2273: 2246:(3): 393–397. 2226: 2199:(3): 311–341. 2179: 2138: 2119:(5): 318–333. 2099: 2098: 2096: 2093: 2079: 2076: 2070:environment a 2053: 2048: 2024: 2021: 2016: 2013: 2010: 2007: 1987: 1967: 1947: 1925: 1921: 1917: 1912: 1908: 1903: 1900: 1896: 1893: 1889: 1886: 1873: 1870: 1851: 1847: 1824: 1820: 1799: 1796: 1792: 1787: 1783: 1780: 1777: 1773: 1768: 1763: 1755: 1751: 1747: 1744: 1740: 1719: 1716: 1712: 1707: 1703: 1700: 1697: 1693: 1688: 1683: 1675: 1671: 1667: 1664: 1660: 1648: 1647: 1636: 1633: 1630: 1627: 1624: 1621: 1618: 1615: 1611: 1607: 1604: 1601: 1595: 1592: 1587: 1584: 1558: 1555: 1552: 1548: 1521: 1518: 1515: 1512: 1507: 1504: 1501: 1497: 1470: 1458: 1445: 1442: 1439: 1435: 1423: 1422: 1411: 1408: 1405: 1399: 1387: 1374: 1371: 1368: 1364: 1360: 1357: 1354: 1351: 1348: 1345: 1341: 1321: 1318: 1305: 1283: 1280: 1277: 1271: 1268: 1263: 1260: 1254: 1251: 1248: 1245: 1242: 1236: 1233: 1228: 1225: 1210: 1204: 1201: 1196: 1193: 1187: 1184: 1181: 1178: 1175: 1169: 1166: 1161: 1158: 1138: 1137: 1125: 1122: 1118: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1089: 1084: 1080: 1077: 1074: 1068: 1065: 1060: 1057: 1051: 1048: 1045: 1042: 1019: 1016: 1013: 1010: 984: 972: 951: 950: 935: 932: 927: 924: 915: 903: 890: 884: 881: 876: 873: 870: 867: 864: 842: 839: 826: 806: 778: 775: 772: 769: 749: 729: 713: 710: 702: 701: 689: 686: 682: 677: 673: 670: 664: 661: 656: 653: 646: 642: 639: 636: 632: 627: 620: 617: 613: 608: 602: 599: 594: 591: 570: 569: 557: 554: 551: 548: 545: 542: 539: 536: 533: 530: 527: 524: 520: 516: 513: 510: 504: 501: 496: 493: 476: 475: 461: 458: 454: 434: 420: 419: 407: 404: 401: 398: 392: 389: 383: 380: 377: 371: 368: 363: 360: 339: 338: 325: 317: 314: 313: 310: 307: 306: 303: 300: 299: 295: 291: 288: 285: 265: 262: 252: 240: 237: 234: 230: 219: 214:is the liquid 203: 193: 177: 167: 148: 145: 128: 127: 116: 113: 110: 107: 104: 101: 98: 95: 92: 89: 86: 82: 78: 75: 69: 66: 13: 10: 9: 6: 4: 3: 2: 2839: 2828: 2825: 2823: 2820: 2818: 2815: 2814: 2812: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2784: 2780: 2772: 2771:Hydrol. Proc. 2766: 2763: 2759: 2753: 2750: 2746: 2740: 2737: 2733: 2727: 2724: 2720: 2714: 2711: 2707: 2701: 2698: 2693: 2689: 2685: 2681: 2677: 2673: 2669: 2665: 2661: 2654: 2651: 2646: 2642: 2637: 2632: 2628: 2624: 2620: 2616: 2612: 2605: 2602: 2597: 2593: 2589: 2585: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2550: 2547: 2542: 2538: 2535:(1–2): 1–29. 2534: 2530: 2526: 2519: 2516: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2480: 2477: 2472: 2468: 2464: 2460: 2456: 2452: 2448: 2441: 2438: 2433: 2429: 2425: 2421: 2417: 2413: 2409: 2402: 2399: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2366: 2362: 2355: 2352: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2316: 2313: 2308: 2304: 2303: 2295: 2292: 2284: 2277: 2274: 2269: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2230: 2227: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2183: 2180: 2175: 2171: 2166: 2161: 2157: 2153: 2149: 2142: 2139: 2134: 2130: 2126: 2122: 2118: 2114: 2107: 2105: 2101: 2094: 2092: 2090: 2086: 2077: 2075: 2073: 2069: 2051: 2022: 2019: 2014: 2011: 2008: 2005: 1985: 1965: 1945: 1923: 1919: 1915: 1910: 1906: 1901: 1898: 1894: 1891: 1887: 1884: 1871: 1869: 1867: 1849: 1845: 1822: 1818: 1794: 1778: 1753: 1749: 1742: 1714: 1698: 1673: 1669: 1662: 1634: 1631: 1628: 1625: 1616: 1605: 1599: 1593: 1585: 1572: 1571: 1570: 1553: 1538: 1516: 1510: 1502: 1468: 1456: 1440: 1409: 1406: 1397: 1385: 1369: 1358: 1355: 1346: 1331: 1330: 1329: 1327: 1319: 1317: 1303: 1294: 1281: 1278: 1275: 1269: 1261: 1249: 1243: 1240: 1234: 1226: 1208: 1202: 1194: 1182: 1176: 1173: 1167: 1159: 1145: 1143: 1123: 1120: 1116: 1112: 1106: 1103: 1094: 1082: 1078: 1072: 1066: 1058: 1046: 1040: 1033: 1032: 1031: 1014: 1008: 1001: 982: 970: 933: 925: 913: 901: 888: 882: 871: 865: 852: 851: 850: 848: 840: 838: 824: 804: 796: 792: 773: 767: 747: 727: 719: 711: 709: 707: 687: 684: 680: 675: 671: 668: 662: 654: 644: 637: 625: 618: 606: 600: 592: 579: 578: 577: 575: 555: 552: 546: 540: 537: 525: 514: 508: 502: 494: 481: 480: 479: 459: 456: 453: 432: 425: 424: 423: 405: 402: 399: 396: 387: 381: 375: 369: 361: 348: 347: 346: 344: 323: 315: 308: 301: 293: 289: 286: 263: 253: 235: 220: 217: 216:pressure head 201: 194: 191: 175: 168: 165: 143: 133: 132: 131: 114: 108: 102: 99: 87: 76: 73: 64: 54: 53: 52: 50: 46: 42: 38: 34: 31: 27: 23: 19: 2817:Soil physics 2770: 2765: 2757: 2752: 2744: 2739: 2731: 2726: 2719:Envir. Int'l 2718: 2713: 2705: 2700: 2667: 2663: 2653: 2618: 2614: 2604: 2566:(1): 59–76. 2563: 2559: 2549: 2532: 2528: 2518: 2496:(1): 60–68. 2493: 2489: 2479: 2454: 2450: 2440: 2415: 2411: 2401: 2368: 2364: 2354: 2329: 2325: 2315: 2301: 2294: 2276: 2243: 2239: 2229: 2196: 2192: 2182: 2155: 2151: 2141: 2116: 2112: 2089:aspect ratio 2081: 1875: 1649: 1424: 1323: 1295: 1146: 1139: 952: 844: 715: 712:Formulations 703: 571: 477: 421: 340: 129: 17: 15: 2078:Limitations 718:vadose zone 30:quasilinear 22:unsaturated 2811:Categories 2670:: 103278. 2095:References 1326:chain rule 847:chain rule 841:Head-based 795:chain rule 574:divergence 41:uniqueness 2822:Hydrology 2692:252508220 2684:0965-9978 2645:1607-7938 2588:1539-1663 2393:0377-0427 2268:0022-1694 2221:120607569 2213:1432-1823 2174:119938184 2068:isotropic 2015:− 1946:α 1938:), where 1920:θ 1907:θ 1885:α 1846:θ 1819:θ 1798:∞ 1779:θ 1750:θ 1746:→ 1743:θ 1718:∞ 1699:θ 1670:θ 1666:→ 1663:θ 1629:− 1626:θ 1623:∇ 1617:θ 1606:⋅ 1603:∇ 1591:∂ 1586:θ 1583:∂ 1554:θ 1517:θ 1503:θ 1469:θ 1407:θ 1404:∇ 1398:θ 1353:∇ 1304:ε 1279:ε 1267:Δ 1259:Δ 1241:− 1232:Δ 1227:θ 1224:Δ 1200:Δ 1192:Δ 1174:≈ 1165:Δ 1160:θ 1157:Δ 1121:− 1110:∇ 1101:∇ 1079:⋅ 1076:∇ 1064:∂ 1056:∂ 971:θ 931:∂ 923:∂ 902:θ 880:∂ 866:θ 863:∂ 825:θ 768:θ 728:θ 708:in 1922. 685:− 660:∂ 652:∂ 638:θ 616:∂ 612:∂ 598:∂ 593:θ 590:∂ 553:− 544:∇ 535:∇ 515:⋅ 512:∇ 500:∂ 495:θ 492:∂ 457:− 391:→ 382:⋅ 379:∇ 367:∂ 362:θ 359:∂ 284:∇ 261:∇ 176:θ 147:→ 106:∇ 97:∇ 88:θ 77:− 68:→ 37:existence 2781:See also 2490:Geoderma 1810:, where 188:is the 162:is the 49:Luckhaus 2623:Bibcode 2568:Bibcode 2498:Bibcode 2459:Bibcode 2420:Bibcode 2373:Bibcode 2334:Bibcode 2248:Bibcode 2121:Bibcode 2113:Physics 953:where 422:where 130:where 2690:  2682:  2643:  2596:781417 2594:  2586:  2391:  2266:  2219:  2211:  2172:  2072:tensor 1425:where 1215:and so 2688:S2CID 2592:S2CID 2286:(PDF) 2217:S2CID 2170:S2CID 2158:(8). 1142:Rothe 2680:ISSN 2641:ISSN 2584:ISSN 2389:ISSN 2264:ISSN 2209:ISSN 1730:and 740:and 47:and 39:and 16:The 2672:doi 2668:173 2631:doi 2576:doi 2537:doi 2506:doi 2494:165 2467:doi 2428:doi 2381:doi 2369:233 2342:doi 2307:262 2256:doi 2201:doi 2197:183 2160:doi 2129:doi 1739:lim 1659:lim 45:Alt 2813:: 2686:. 2678:. 2666:. 2662:. 2639:. 2629:. 2619:21 2617:. 2613:. 2590:. 2582:. 2574:. 2562:. 2558:. 2533:55 2531:. 2527:. 2504:. 2492:. 2488:. 2465:. 2455:23 2453:. 2449:. 2426:. 2416:44 2414:. 2410:. 2387:. 2379:. 2363:. 2340:. 2330:26 2328:. 2324:. 2262:. 2254:. 2244:37 2242:. 2238:. 2215:. 2207:. 2195:. 2191:. 2168:. 2156:42 2154:. 2150:. 2127:. 2115:. 2103:^ 2694:. 2674:: 2647:. 2633:: 2625:: 2598:. 2578:: 2570:: 2564:5 2543:. 2539:: 2512:. 2508:: 2500:: 2473:. 2469:: 2461:: 2434:. 2430:: 2422:: 2395:. 2383:: 2375:: 2348:. 2344:: 2336:: 2309:. 2270:. 2258:: 2250:: 2223:. 2203:: 2176:. 2162:: 2135:. 2131:: 2123:: 2117:1 2052:s 2047:K 2023:n 2020:1 2012:1 2009:= 2006:m 1986:m 1966:n 1924:r 1916:, 1911:s 1902:, 1899:m 1895:, 1892:n 1888:, 1877:( 1850:r 1823:s 1795:= 1791:| 1786:| 1782:) 1776:( 1772:D 1767:| 1762:| 1754:r 1715:= 1711:| 1706:| 1702:) 1696:( 1692:D 1687:| 1682:| 1674:s 1635:. 1632:S 1620:) 1614:( 1610:D 1600:= 1594:t 1557:) 1551:( 1547:D 1520:) 1514:( 1511:C 1506:) 1500:( 1496:K 1464:d 1457:h 1452:d 1444:) 1441:h 1438:( 1434:K 1410:, 1393:d 1386:h 1381:d 1373:) 1370:h 1367:( 1363:K 1359:= 1356:h 1350:) 1347:h 1344:( 1340:K 1282:. 1276:= 1270:t 1262:h 1253:) 1250:h 1247:( 1244:C 1235:t 1209:, 1203:t 1195:h 1186:) 1183:h 1180:( 1177:C 1168:t 1136:. 1124:S 1117:) 1113:z 1107:+ 1104:h 1098:) 1095:h 1092:( 1088:K 1083:( 1073:= 1067:t 1059:h 1050:) 1047:h 1044:( 1041:C 1018:) 1015:h 1012:( 1009:C 983:h 978:d 966:d 949:, 934:t 926:h 914:h 909:d 897:d 889:= 883:t 875:) 872:h 869:( 805:h 777:) 774:h 771:( 748:h 700:. 688:S 681:) 676:) 672:1 669:+ 663:z 655:h 645:( 641:) 635:( 631:K 626:( 619:z 607:= 601:t 568:. 556:S 550:) 547:z 541:+ 538:h 532:( 529:) 526:h 523:( 519:K 509:= 503:t 460:1 433:S 418:, 406:0 403:= 400:S 397:+ 388:q 376:+ 370:t 324:) 316:1 309:0 302:0 294:( 290:= 287:z 264:z 239:) 236:h 233:( 229:K 202:h 192:; 166:; 144:q 115:, 112:) 109:z 103:+ 100:h 94:( 91:) 85:( 81:K 74:= 65:q

Index

unsaturated
Lorenzo A. Richards
quasilinear
partial differential equation
existence
uniqueness
Alt
Luckhaus
volumetric flux
volumetric water content
pressure head
mass conservation
divergence
Lewis Fry Richardson
vadose zone
water retention curve
chain rule
chain rule
retention water capacity
Rothe
chain rule
soil water diffusivity
air entry value
isotropic
tensor
representative elementary volume
aspect ratio


Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑