Knowledge (XXG)

Ringwoodite

Source 📝

738: 29: 755: 549:
Because the transition zone between the Earth's upper and lower mantle helps govern the scale of mass and heat transport throughout the Earth, the presence of water within this region, whether global or localized, may have a significant effect on mantle rheology and therefore mantle circulation. In
442:
Ringwoodite is thought to be the most abundant mineral phase in the lower part of Earth's transition zone. The physical and chemical property of this mineral partly determine properties of the mantle at those depths. The pressure range for stability of ringwoodite lies in the approximate range from
817:
A closer look at coloured aggregates shows that the colour is not homogeneous, but seems to originate from something with a size similar to the ringwoodite crystallites. In synthetic samples, pure Mg ringwoodite is colourless, whereas samples containing more than one mole percent
534:
Ringwoodite in the lower half of the transition zone is inferred to play a pivotal role in mantle dynamics, and the plastic properties of ringwoodite are thought to be critical in determining flow of material in this part of the mantle. The ability of ringwoodite to incorporate
435:. Spinel group minerals crystallize in the isometric system with an octahedral habit. Olivine is most abundant in the upper mantle, above about 410 km (250 mi); the olivine polymorphs wadsleyite and ringwoodite are thought to dominate the 813:
The colour of ringwoodite varies between the meteorites, between different ringwoodite bearing aggregates, and even in one single aggregate. The ringwoodite aggregates can show every shade of blue, purple, grey and green, or have no colour at all.
681:). On an atomic scale, magnesium and silicon are in octahedral and tetrahedral coordination with oxygen, respectively. The Si-O and Mg-O bonds have mixed ionic and covalent character. The cubic unit cell parameter is 8.063 Å for pure Mg 773:
The physical properties of ringwoodite are affected by pressure and temperature. At the pressure and temperature condition of the Mantle Transition Zone, the calculated density value of ringwoodite is 3.90 g/cm for pure
572:
The mantle reservoir could contain about three times more water, in the form of hydroxide contained within the wadsleyite and ringwoodite crystal structure, than the Earth's oceans combined.
561:
in western Brazil contained an inclusion of ringwoodite — at the time the only known sample of natural terrestrial origin — thus providing evidence of significant amounts of water as
1107:
Chen. M, El Goresy A., and Gillet P. (2004). "Ringwoodite lamellae in olivine: Clues to olivine–ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs".
931: 1440:
D. G. Pearson; F. E. Brenker; F. Nestola; J. McNeill; L. Nasdala; M. T. Hutchison; S. Matveev; K. Mather; G. Silversmit; S. Schmitz; B. Vekemans; L. Vincze (13 March 2014).
1292:
J. R. Smyth; C. M. Holl; D. J. Frost; S. D. Jacobsen; F. Langenhorst; C. A. McCammon (2003). "Structural systematics of hydrous ringwoodite and water in Earth's interior".
1876: 1813: 1748: 1017:
Schmandt, Brandon; Jacobsen, Steven D.; Becker, Thorsten W.; Liu, Zhenxian; Dueker, Kenneth G. (13 June 2014). "Dehydration melting at the top of the lower mantle".
1705:
Katsura, T., Yokoshi, S., Song, M., Kawabe, K., Tsujimura, T., Kubo, A., Ito, E., Tange, Y., Tomioka, N., Saito, K. and Nozawa, A. (2004). "Thermal expansion of Mg
1641:
Price, Geoffrey D.; Parker, Stephen C. (April 1984). "Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg
641:
of pressure at 1,523 K (1,250 °C; 2,282 °F) for three or four hours turns this into ringwoodite, which can then be cooled and depressurized.
1959: 930:
Ye, Y.; Brown, D.A.; Smyth, J. R.; Panero, W.R.; Jacobsen, S.D.; Chang, Y.-Y.; Townsend, J.P.; Thomas, S.M.; Hauri, E.; Dera, P.; Frost, D.J. (2012).
986: 500:
In Earth's interior, olivine occurs in the upper mantle at depths less than about 410 km, and ringwoodite is inferred to be present within the
1120:
Chi Ma, Oliver Tschauner, John R. Beckett, Yang Liu, George R. Rossman, Stanislav V. Sinogeikin, Jesse S. Smith, Lawrence A. Taylor (July 2016).
523:(beta-phase) to ringwoodite (gamma-phase), while the 660-km depth discontinuity by the phase transformation of ringwoodite (gamma-phase) to a 1974: 1762:
Nishihara, Y., Takahashi, E., Matsukage, K. N., Iguchi, T., Nakayama, K., & Funakoshi, K. I. (2004). "Thermal equation of state of (Mg
1145:
A. Deuss; J. Woodhouse (12 October 2001). "Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle".
461:
Natural ringwoodite generally contains much more magnesium than iron and can form a gapless solid solution series from the pure magnesium
1889:
Lingemann C. M. and D. Stöffler 1994. "New Evidence for the Colouration and Formation of Ringwoodite in Severely Shocked Chondrites".
1122:"Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars" 966: 358:
bound together) within its structure. In this case two hydroxide ions usually take the place of a magnesium ion and two oxide ions.
1533: 90: 513: 319: 1370:
Y. Xu; D.J. Weider; J.Chen; M.T. Vaughan; Y. Wang; T. Uchida (2003). "Flow-law for ringwoodite at subduction zone conditions".
1406: 1068:
Binns, R A.; Davis, R. J.; Reed, No S. J. B (1969). "Ringwoodite, natural (Mg,Fe)2SiO4 Spinel group in the Tenham meteorite".
546:
Ringwoodite has been synthesized at conditions appropriate to the transition zone, containing up to 2.6 weight percent water.
1979: 1560: 1241:
David L. Kohlstedt; Hans Keppler; David C. Rubie (1996). "Solubility of water in the alpha, beta, and gamma phases of (Mg,Fe)
361:
Combined with evidence of its occurrence deep in the Earth's mantle, this suggests that there is from one to three times the
195: 1944: 1506: 569:
eruption. The ringwoodite inclusion is too small to see with the naked eye. A second such diamond was later found.
366: 33:
Crystal (~150 micrometers across) of Fo90 composition blue ringwoodite synthesized at 20 GPa and 1200 °C.
394:
of the earth. At depths greater than about 660 kilometres (410 mi), other minerals, including some with the
654: 519:
The 520-km depth discontinuity is generally believed to be caused by the transition of the olivine polymorph
508:
activity discontinuities at about 410 km, 520 km, and at 660 km depth have been attributed to
1969: 501: 436: 370: 80: 1954: 1949: 1964: 1870: 1807: 1742: 1441: 1121: 1848: 1787: 1722: 1658: 1599: 1458: 1379: 1344: 1301: 1258: 1154: 1026: 856: 395: 391: 105: 1691:
Smyth, J.R. and T.C. McCormick (1995). "Crystallographic data for minerals". in (T.J. Ahrens, ed.)
991: 807: 524: 455: 1920: 1903:
Keppler, H.; Smyth, J.R. (2005). "Optical and near infrared spectra of ringwoodite to 21.5 GPa".
1674: 1623: 1615: 1482: 1422: 1317: 1274: 1223: 1178: 1087: 1050: 958: 874: 494: 411:(1930–1993), who studied polymorphic phase transitions in the common mantle minerals olivine and 398:, are stable. The properties of these minerals determine many of the properties of the mantle. 1474: 1215: 1170: 1042: 337: 307: 151: 1912: 1856: 1795: 1730: 1666: 1607: 1466: 1449: 1414: 1387: 1352: 1348: 1309: 1266: 1207: 1198: 1162: 1129: 1079: 1070: 1034: 950: 864: 509: 478: 377: 257: 205: 58: 932:"Compressibility and thermal expansion study of hydrous Fo100 ringwoodite with 2.5(3) wt% H 891: 493:
of quenched shock-melt cutting the matrix and replacing olivine probably produced during
1852: 1791: 1726: 1662: 1603: 1592:
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
1537: 1462: 1383: 1305: 1262: 1158: 1030: 860: 528: 490: 100: 1391: 1356: 1938: 1486: 1426: 1335:
A. Kavner (2003). "Elasticity and strength of hydrous ringwoodite at high pressure".
1054: 878: 444: 405: 267: 185: 112: 47: 1924: 1678: 1627: 1321: 1278: 1182: 962: 1511: 1227: 1091: 913: 826:
are deep blue in colour. The colour is thought to be due to Fe–Fe charge transfer.
721:
in synthesis experiments. Ringwoodite can incorporate up to 2.6 percent by weight H
650: 550:
subduction zones, the ringwoodite stability field hosts high levels of seismicity.
432: 408: 51: 1590:
N. W. Grimes; et al. (Apr 8, 1983). "New Symmetry and Structure for Spinel".
380:
in 1969, and is inferred to be present in large quantities in the Earth's mantle.
1442:"Hydrous mantle transition zone indicated by ringwoodite included within diamond" 658: 362: 277: 135: 1799: 637:) so as to give the desired final elemental composition. Putting this under 20 580:
For experiments, hydrous ringwoodite has been synthesized by mixing powders of
1418: 1133: 638: 581: 520: 387: 327: 123: 28: 310:
between 525 and 660 km (326 and 410 mi) depth. It may also contain
1166: 1038: 737: 562: 536: 462: 451: 402: 344: 331: 1611: 1478: 1219: 1174: 1046: 987:"Rare Diamond confirms that Earth's mantle holds an ocean's worth of water" 1270: 754: 1916: 1861: 1828: 1734: 1313: 954: 566: 565:
in the Earth's mantle. The gemstone, about 5mm long, was brought up by a
558: 540: 412: 315: 250: 1470: 869: 844: 1670: 1619: 606: 554: 505: 465:
to the pure iron endmember. The latter, the iron-rich endmember of the
383: 323: 902: 306:(magnesium silicate) formed at high temperatures and pressures of the 1693:
Mineral Physics and Crystallography: A Handbook of Physical Constants
1211: 1083: 622: 351: 439:
of the mantle, a zone present from about 410 to 660 km depth.
1577:
The structure of spinel structure is more accurately described as
741:
Molar volume vs. pressure at room temperature for ringwoodite γ-Mg
736: 454:, in which the ringwoodite occurs as fine-grained polycrystalline 415:
at pressures equivalent to depths as great as about 600 km.
758:
Molar volume vs. pressure at room temperature for ahrensite γ-Fe
355: 334: 311: 1507:"Rough diamond hints at vast quantities of water inside Earth" 347: 1837:
ringwoodite and implications for the Earth's transition zone"
1407:"Tiny diamond impurity reveals water riches of deep Earth" 1196:
G. R. Helffrich; B. J. Wood (2001). "The Earth's mantle".
1829:"High pressure, high temperature equation of state for Fe 477:, was named ahrensite in honor of US mineral physicist 450:Natural ringwoodite has been found in many shocked 286: 276: 266: 256: 246: 204: 194: 184: 172:
Deep blue, also red, violet, or colourless (pure Mg
168: 163: 150: 134: 111: 99: 89: 79: 57: 43: 38: 21: 1561:"Massive 'ocean' discovered towards Earth's core" 1103: 1101: 557:(one that has risen from a great depth) found in 343:Ringwoodite is notable for being able to contain 1500: 1498: 1496: 925: 923: 921: 423:Ringwoodite is polymorphous with forsterite, Mg 390:, and ringwoodite are polymorphs found in the 1012: 1010: 981: 979: 8: 1875:: CS1 maint: multiple names: authors list ( 1812:: CS1 maint: multiple names: authors list ( 1780:Physics of the Earth and Planetary Interiors 1747:: CS1 maint: multiple names: authors list ( 1715:Journal of Geophysical Research: Solid Earth 1372:Physics of the Earth and Planetary Interiors 705:Ringwoodite compositions range from pure Mg 27: 1860: 1827:Armentrout, M., & Kavner, A. (2011). 1251:Contributions to Mineralogy and Petrology 868: 798:of pyrolitic mantle; and 4.85 g/cm for Fe 489:In meteorites, ringwoodite occurs in the 376:This mineral was first identified in the 16:High-pressure phase of magnesium silicate 753: 835: 1868: 1805: 1740: 539:is important because of its effect on 18: 806:. It is an isotropic mineral with an 504:from about 520 to 660 km depth. 7: 845:"IMA–CNMNC approved mineral symbols" 1405:Richard A. Lovett (12 March 2014). 1337:Earth and Planetary Science Letters 14: 1651:Physics and Chemistry of Minerals 1534:"sample of the week: ringwoodite" 1960:Polymorphism (materials science) 1891:Lunar and Planetary Science XXIX 1713:ringwoodite at high pressures". 1536:. super/collider. Archived from 401:Ringwoodite was named after the 1126:Geochimica et Cosmochimica Acta 159:= 8.113 Å; Z = 8 1505:Sample, Ian (March 12, 2014). 373:from 410 to 660 km deep. 298:is a high-pressure phase of Mg 1: 1559:Andy Coghlan (Jun 21, 2014). 1392:10.1016/s0031-9201(03)00026-8 1357:10.1016/s0012-821x(03)00402-3 1841:Geophysical Research Letters 689:and 8.234 Å for pure Fe 1975:Minerals in space group 227 469:solid solution series, γ-Fe 190:Microcrystalline aggregates 1996: 1800:10.1016/j.pepi.2003.02.001 1695:, AGU Washington DC, 1–17. 512:involving olivine and its 1419:10.1038/nature.2014.14862 1134:10.1016/j.gca.2016.04.042 914:Ringwoodite on Webmineral 903:Ringwoodite on Mindat.org 26: 655:isometric crystal system 1349:2003E&PSL.214..645K 1167:10.1126/science.1063524 1039:10.1126/science.1253358 1612:10.1098/rspa.1983.0039 892:Handbook of Mineralogy 849:Mineralogical Magazine 766: 749: 485:Geological occurrences 371:mantle transition zone 67:Magnesium silicate (Mg 1980:High pressure science 1905:American Mineralogist 1294:American Mineralogist 1271:10.1007/s004100050161 943:American Mineralogist 757: 740: 452:chondritic meteorites 91:Strunz classification 1917:10.2138/am.2005.1908 1862:10.1029/2011GL046949 1735:10.1029/2004JB003094 1540:on December 28, 2014 1314:10.2138/am-2003-1001 955:10.2138/am.2012.4010 701:Chemical composition 649:Ringwoodite has the 396:perovskite structure 1853:2011GeoRL..38.8309A 1792:2004PEPI..143...33N 1727:2004JGRB..10912209K 1663:1984PCM....10..209P 1604:1983RSPSA.386..333G 1471:10.1038/nature13080 1463:2014Natur.507..221P 1384:2003PEPI..136....3X 1306:2003AmMin..88.1402S 1263:1996CoMP..123..345K 1159:2001Sci...294..354D 1031:2014Sci...344.1265S 1025:(6189): 1265–1268. 992:Scientific American 870:10.1180/mgm.2021.43 861:2021MinM...85..291W 843:Warr, L.N. (2021). 808:index of refraction 782:; 4.13 g/cm for (Mg 729:Physical properties 525:silicate perovskite 1945:Magnesium minerals 1671:10.1007/BF00309313 767: 750: 495:shock metamorphism 247:Optical properties 1598:(1791): 333–345. 1457:(7491): 221–224. 1300:(10): 1402–1407. 1206:(6846): 501–507. 1153:(5541): 354–357. 771: 770: 645:Crystal structure 365:'s equivalent of 293: 292: 1987: 1929: 1928: 1900: 1894: 1887: 1881: 1880: 1874: 1866: 1864: 1824: 1818: 1817: 1811: 1803: 1759: 1753: 1752: 1746: 1738: 1702: 1696: 1689: 1683: 1682: 1638: 1632: 1631: 1583: 1575: 1569: 1568: 1556: 1550: 1549: 1547: 1545: 1530: 1524: 1523: 1521: 1519: 1502: 1491: 1490: 1446: 1437: 1431: 1430: 1402: 1396: 1395: 1367: 1361: 1360: 1343:(3–4): 645–654. 1332: 1326: 1325: 1289: 1283: 1282: 1238: 1232: 1231: 1212:10.1038/35087500 1193: 1187: 1186: 1142: 1136: 1128:. 184: 240-256. 1118: 1112: 1105: 1096: 1095: 1084:10.1038/221943a0 1065: 1059: 1058: 1014: 1005: 1004: 1002: 1000: 995:. March 12, 2014 983: 974: 973: 971: 965:. Archived from 940: 927: 916: 911: 905: 900: 894: 889: 883: 882: 872: 840: 733: 732: 676: 666: 651:spinel structure 636: 635: 634: 620: 619: 618: 604: 603: 602: 594: 593: 479:Thomas J. Ahrens 433:spinel structure 378:Tenham meteorite 258:Refractive index 206:Specific gravity 145: 129: 120: 117:Hexoctahedral (m 64: 63:(repeating unit) 31: 19: 1995: 1994: 1990: 1989: 1988: 1986: 1985: 1984: 1935: 1934: 1933: 1932: 1902: 1901: 1897: 1888: 1884: 1867: 1836: 1832: 1826: 1825: 1821: 1804: 1777: 1773: 1769: 1765: 1761: 1760: 1756: 1739: 1712: 1708: 1704: 1703: 1699: 1690: 1686: 1648: 1644: 1640: 1639: 1635: 1589: 1588:, according to 1581: 1576: 1572: 1558: 1557: 1553: 1543: 1541: 1532: 1531: 1527: 1517: 1515: 1504: 1503: 1494: 1444: 1439: 1438: 1434: 1404: 1403: 1399: 1369: 1368: 1364: 1334: 1333: 1329: 1291: 1290: 1286: 1248: 1244: 1240: 1239: 1235: 1195: 1194: 1190: 1144: 1143: 1139: 1119: 1115: 1106: 1099: 1067: 1066: 1062: 1016: 1015: 1008: 998: 996: 985: 984: 977: 969: 938: 935: 929: 928: 919: 912: 908: 901: 897: 890: 886: 842: 841: 837: 832: 825: 821: 805: 801: 797: 793: 789: 785: 781: 777: 765: 761: 748: 744: 731: 724: 720: 716: 712: 708: 703: 696: 692: 688: 684: 674: 664: 647: 633: 630: 629: 628: 626: 617: 614: 613: 612: 610: 601: 598: 597: 596: 592: 589: 588: 587: 585: 578: 553:An "ultradeep" 529:magnesiowüstite 502:transition zone 487: 476: 472: 437:transition zone 430: 426: 421: 419:Characteristics 406:earth scientist 305: 301: 241: 237: 233: 229: 225: 221: 217: 213: 200:Semitransparent 179: 175: 143: 127: 122: 118: 74: 70: 62: 61: 50: 34: 17: 12: 11: 5: 1993: 1991: 1983: 1982: 1977: 1972: 1970:Cubic minerals 1967: 1962: 1957: 1952: 1947: 1937: 1936: 1931: 1930: 1895: 1882: 1834: 1830: 1819: 1778:ringwoodite". 1775: 1771: 1767: 1763: 1754: 1710: 1706: 1697: 1684: 1657:(5): 209–216. 1646: 1642: 1633: 1570: 1551: 1525: 1492: 1432: 1397: 1362: 1327: 1284: 1257:(4): 345–357. 1246: 1242: 1233: 1188: 1149:. New Series. 1137: 1113: 1097: 1060: 1006: 975: 972:on 2014-06-29. 933: 917: 906: 895: 884: 855:(3): 291–320. 834: 833: 831: 828: 823: 819: 803: 799: 795: 791: 787: 783: 779: 775: 769: 768: 763: 759: 751: 746: 742: 730: 727: 722: 718: 714: 710: 706: 702: 699: 694: 690: 686: 682: 646: 643: 631: 615: 599: 590: 577: 574: 486: 483: 474: 470: 443:18 to 23  428: 424: 420: 417: 308:Earth's mantle 303: 299: 291: 290: 288: 284: 283: 280: 274: 273: 270: 264: 263: 260: 254: 253: 248: 244: 243: 239: 235: 231: 227: 223: 219: 215: 211: 208: 202: 201: 198: 192: 191: 188: 182: 181: 177: 173: 170: 166: 165: 164:Identification 161: 160: 154: 148: 147: 138: 132: 131: 115: 109: 108: 103: 101:Crystal system 97: 96: 93: 87: 86: 83: 77: 76: 72: 68: 65: 55: 54: 45: 41: 40: 36: 35: 32: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1992: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1955:Nesosilicates 1953: 1951: 1950:Iron minerals 1948: 1946: 1943: 1942: 1940: 1926: 1922: 1918: 1914: 1911:: 1209–1214. 1910: 1906: 1899: 1896: 1892: 1886: 1883: 1878: 1872: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1823: 1820: 1815: 1809: 1801: 1797: 1793: 1789: 1785: 1781: 1758: 1755: 1750: 1744: 1736: 1732: 1728: 1724: 1720: 1716: 1701: 1698: 1694: 1688: 1685: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1637: 1634: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1587: 1580: 1574: 1571: 1566: 1565:New Scientist 1562: 1555: 1552: 1539: 1535: 1529: 1526: 1514: 1513: 1508: 1501: 1499: 1497: 1493: 1488: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1451: 1443: 1436: 1433: 1428: 1424: 1420: 1416: 1412: 1408: 1401: 1398: 1393: 1389: 1385: 1381: 1377: 1373: 1366: 1363: 1358: 1354: 1350: 1346: 1342: 1338: 1331: 1328: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1285: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1237: 1234: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1200: 1192: 1189: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1141: 1138: 1135: 1131: 1127: 1123: 1117: 1114: 1110: 1104: 1102: 1098: 1093: 1089: 1085: 1081: 1077: 1073: 1072: 1064: 1061: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1013: 1011: 1007: 994: 993: 988: 982: 980: 976: 968: 964: 960: 956: 952: 948: 944: 937: 926: 924: 922: 918: 915: 910: 907: 904: 899: 896: 893: 888: 885: 880: 876: 871: 866: 862: 858: 854: 850: 846: 839: 836: 829: 827: 815: 811: 809: 756: 752: 739: 735: 734: 728: 726: 700: 698: 680: 673: 669: 663: 660: 656: 652: 644: 642: 640: 624: 608: 583: 575: 573: 570: 568: 564: 560: 556: 551: 547: 544: 542: 538: 532: 530: 526: 522: 517: 515: 511: 510:phase changes 507: 503: 498: 496: 492: 484: 482: 481:(1936–2010). 480: 468: 464: 459: 457: 453: 448: 446: 440: 438: 434: 418: 416: 414: 410: 407: 404: 399: 397: 393: 389: 385: 381: 379: 374: 372: 368: 364: 359: 357: 354:and hydrogen 353: 349: 346: 341: 339: 336: 333: 329: 325: 321: 317: 313: 309: 297: 289: 285: 281: 279: 275: 271: 269: 268:Birefringence 265: 261: 259: 255: 252: 249: 245: 209: 207: 203: 199: 197: 193: 189: 187: 186:Crystal habit 183: 171: 167: 162: 158: 155: 153: 149: 142: 139: 137: 133: 125: 116: 114: 113:Crystal class 110: 107: 104: 102: 98: 94: 92: 88: 84: 82: 78: 66: 60: 56: 53: 49: 48:Nesosilicates 46: 42: 37: 30: 25: 20: 1965:Spinel group 1908: 1904: 1898: 1890: 1885: 1871:cite journal 1844: 1840: 1822: 1808:cite journal 1783: 1779: 1757: 1743:cite journal 1721:(B12): B12. 1718: 1714: 1700: 1692: 1687: 1654: 1650: 1636: 1595: 1591: 1585: 1578: 1573: 1564: 1554: 1542:. Retrieved 1538:the original 1528: 1516:. Retrieved 1512:The Guardian 1510: 1454: 1448: 1435: 1410: 1400: 1378:(1–2): 3–9. 1375: 1371: 1365: 1340: 1336: 1330: 1297: 1293: 1287: 1254: 1250: 1236: 1203: 1197: 1191: 1150: 1146: 1140: 1125: 1116: 1108: 1075: 1069: 1063: 1022: 1018: 997:. Retrieved 990: 967:the original 946: 942: 909: 898: 887: 852: 848: 838: 816: 812: 772: 704: 678: 671: 667: 661: 648: 579: 571: 552: 548: 545: 533: 518: 499: 488: 466: 460: 449: 441: 431:, and has a 422: 409:Ted Ringwood 400: 392:upper mantle 382: 375: 360: 342: 320:polymorphous 295: 294: 218:); 4.13 ((Mg 156: 140: 52:Spinel group 1544:December 6, 1518:December 6, 1078:: 943–944. 949:: 573–582. 810:n = 1.768. 659:space group 639:gigapascals 363:world ocean 296:Ringwoodite 278:Pleochroism 234:); 4.85 (Fe 196:Diaphaneity 136:Space group 22:Ringwoodite 1939:Categories 1893:, p. 1308. 1847:(8): n/a. 830:References 582:forsterite 521:wadsleyite 514:polymorphs 456:aggregates 403:Australian 388:wadsleyite 328:forsterite 287:References 124:H-M symbol 81:IMA symbol 1786:: 33–46. 1487:205237822 1427:138212710 1055:206556921 999:March 13, 879:235729616 653:, in the 576:Synthetic 563:hydroxide 537:hydroxide 467:γ-olivine 463:endmember 345:hydroxide 332:magnesium 322:with the 251:Isotropic 152:Unit cell 1925:32069655 1679:96165079 1628:96560029 1479:24622201 1322:41414643 1279:96574743 1220:11484043 1183:28563140 1175:11598296 1047:24926016 963:29350628 567:diatreme 541:rheology 491:veinlets 413:pyroxene 367:water in 338:silicate 318:. It is 316:hydrogen 210:3.90 (Mg 44:Category 1849:Bibcode 1788:Bibcode 1723:Bibcode 1659:Bibcode 1620:2397417 1600:Bibcode 1459:Bibcode 1380:Bibcode 1345:Bibcode 1302:Bibcode 1259:Bibcode 1228:4304379 1155:Bibcode 1147:Science 1092:4207095 1027:Bibcode 1019:Science 857:Bibcode 621:), and 607:brucite 555:diamond 506:Seismic 384:Olivine 324:olivine 262:n = 1.8 126:: (4/m 95:9.AC.15 59:Formula 39:General 1923:  1677:  1626:  1618:  1485:  1477:  1450:Nature 1425:  1411:Nature 1320:  1277:  1226:  1218:  1199:Nature 1181:  1173:  1090:  1071:Nature 1053:  1045:  961:  877:  623:silica 611:Mg(OH) 352:oxygen 326:phase 169:Colour 1921:S2CID 1675:S2CID 1624:S2CID 1616:JSTOR 1483:S2CID 1445:(PDF) 1423:S2CID 1318:S2CID 1275:S2CID 1224:S2CID 1179:S2CID 1088:S2CID 1051:S2CID 970:(PDF) 959:S2CID 939:(PDF) 875:S2CID 713:to Fe 657:with 559:Juína 527:plus 356:atoms 106:Cubic 1877:link 1814:link 1768:0.09 1764:0.91 1749:link 1546:2014 1520:2014 1475:PMID 1216:PMID 1171:PMID 1109:PNAS 1043:PMID 1001:2014 788:0.09 784:0.91 670:(or 369:the 348:ions 335:iron 314:and 312:iron 282:none 272:none 224:0.09 220:0.91 130:2/m) 1913:doi 1857:doi 1833:SiO 1796:doi 1784:143 1774:SiO 1766:,Fe 1731:doi 1719:109 1709:SiO 1667:doi 1649:". 1645:SiO 1608:doi 1596:386 1467:doi 1455:507 1415:doi 1388:doi 1376:136 1353:doi 1341:214 1310:doi 1267:doi 1255:123 1249:". 1245:SiO 1208:doi 1204:412 1163:doi 1151:294 1130:doi 1080:doi 1076:221 1035:doi 1023:344 951:doi 865:doi 822:SiO 802:SiO 794:SiO 786:,Fe 778:SiO 762:SiO 745:SiO 725:O. 717:SiO 709:SiO 693:SiO 685:SiO 627:SiO 605:), 595:SiO 473:SiO 445:GPa 427:SiO 340:). 330:(a 302:SiO 238:SiO 230:SiO 222:,Fe 214:SiO 176:SiO 121:m) 85:Rgd 71:SiO 1941:: 1919:. 1909:90 1907:. 1873:}} 1869:{{ 1855:. 1845:38 1843:. 1839:. 1810:}} 1806:{{ 1794:. 1782:. 1745:}} 1741:{{ 1729:. 1717:. 1673:. 1665:. 1655:10 1653:. 1622:. 1614:. 1606:. 1594:. 1563:. 1509:. 1495:^ 1481:. 1473:. 1465:. 1453:. 1447:. 1421:. 1413:. 1409:. 1386:. 1374:. 1351:. 1339:. 1316:. 1308:. 1298:88 1296:. 1273:. 1265:. 1253:. 1222:. 1214:. 1202:. 1177:. 1169:. 1161:. 1124:. 1100:^ 1086:. 1074:. 1049:. 1041:. 1033:. 1021:. 1009:^ 989:. 978:^ 957:. 947:97 945:. 941:. 936:O" 920:^ 873:. 863:. 853:85 851:. 847:. 818:Fe 774:Mg 697:. 662:Fd 586:Mg 543:. 531:. 516:. 497:. 458:. 447:. 386:, 141:Fd 1927:. 1915:: 1879:) 1865:. 1859:: 1851:: 1835:4 1831:2 1816:) 1802:. 1798:: 1790:: 1776:4 1772:2 1770:) 1751:) 1737:. 1733:: 1725:: 1711:4 1707:2 1681:. 1669:: 1661:: 1647:4 1643:2 1630:. 1610:: 1602:: 1586:m 1584:3 1582:4 1579:F 1567:. 1548:. 1522:. 1489:. 1469:: 1461:: 1429:. 1417:: 1394:. 1390:: 1382:: 1359:. 1355:: 1347:: 1324:. 1312:: 1304:: 1281:. 1269:: 1261:: 1247:4 1243:2 1230:. 1210:: 1185:. 1165:: 1157:: 1132:: 1111:. 1094:. 1082:: 1057:. 1037:: 1029:: 1003:. 953:: 934:2 881:. 867:: 859:: 824:4 820:2 804:4 800:2 796:4 792:2 790:) 780:4 776:2 764:4 760:2 747:4 743:2 723:2 719:4 715:2 711:4 707:2 695:4 691:2 687:4 683:2 679:m 677:3 675:4 672:F 668:m 665:3 632:2 625:( 616:2 609:( 600:4 591:2 584:( 475:4 471:2 429:4 425:2 350:( 304:4 300:2 242:) 240:4 236:2 232:4 228:2 226:) 216:4 212:2 180:) 178:4 174:2 157:a 146:m 144:3 128:3 119:3 75:) 73:4 69:2

Index


Nesosilicates
Spinel group
Formula
IMA symbol
Strunz classification
Crystal system
Cubic
Crystal class
H-M symbol
Space group
Unit cell
Crystal habit
Diaphaneity
Specific gravity
Isotropic
Refractive index
Birefringence
Pleochroism
Earth's mantle
iron
hydrogen
polymorphous
olivine
forsterite
magnesium
iron
silicate
hydroxide
ions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.