Knowledge (XXG)

Rocket engine nozzle

Source 📝

2340:
discharge into a bell nozzle. At higher altitudes, where the ambient pressure is lower, the central nozzle would be shut off, reducing the throat area and thereby increasing the nozzle area ratio. These designs require additional complexity, but an advantage of having two thrust chambers is that they can be configured to burn different propellants or different fuel mixture ratios. Similarly, Aerojet has also designed a nozzle called the "Thrust Augmented Nozzle", which injects propellant and oxidiser directly into the nozzle section for combustion, allowing larger area ratio nozzles to be used deeper in an atmosphere than they would without augmentation due to effects of flow separation. They would again allow multiple propellants to be used (such as RP-1), further increasing thrust.
130:
pressure, it decreases the net thrust produced by the rocket, which can be seen through a force-balance analysis. If ambient pressure is lower, while the force balance indicates that the thrust will increase, the isentropic Mach relations show that the area ratio of the nozzle could have been greater, which would result in a higher exit velocity of the propellant, increasing thrust. For rockets traveling from the Earth to orbit, a simple nozzle design is only optimal at one altitude, losing efficiency and wasting fuel at other altitudes.
2175: 212: 39: 31: 2718: 1876: 1369: 171:
provided the majority of the initial liftoff thrust. In the vacuum of space virtually all nozzles are underexpanded because to fully expand the gas's the nozzle would have to be infinitely long, as a result engineers have to choose a design which will take advantage of the extra expansion (thrust and
145:
Slight overexpansion causes a slight reduction in efficiency, but otherwise does little harm. However, if the exit pressure is less than approximately 40% that of ambient, then "flow separation" occurs. This can cause exhaust instabilities that can cause damage to the nozzle, control difficulties of
2256:
Other design aspects affect the efficiency of a rocket nozzle. The nozzle's throat should have a smooth radius. The internal angle that narrows to the throat also has an effect on the overall efficiency, but this is small. The exit angle of the nozzle needs to be as small as possible (about 12°) in
158:
design, the second stage rocket engine is primarily designed for use at high altitudes, only providing additional thrust after the first-stage engine performs the initial liftoff. In this case, designers will usually opt for an overexpanded nozzle (at sea level) design for the second stage, making
914:
system of the rocket through the application of Newton's third law of motion: "For every action there is an equal and opposite reaction". A gas or working fluid is accelerated out the rear of the rocket engine nozzle, and the rocket is accelerated in the opposite direction. The thrust of a rocket
2339:
These have either two throats or two thrust chambers (with corresponding throats). The central throat is of a standard design and is surrounded by an annular throat, which exhausts gases from the same (dual-throat) or a separate (dual-expander) thrust chamber. Both throats would, in either case,
2195:
If a nozzle is under- or overexpanded, then loss of efficiency occurs relative to an ideal nozzle. Grossly overexpanded nozzles have improved efficiency relative to an underexpanded nozzle (though are still less efficient than a nozzle with the ideal expansion ratio), however the exhaust jet is
2301:
Each of these allows the supersonic flow to adapt to the ambient pressure by expanding or contracting, thereby changing the exit ratio so that it is at (or near) optimal exit pressure for the corresponding altitude. The plug and aerospike nozzles are very similar in that they are radial in-flow
2208:
The supersonic nature of the exhaust jet means that the pressure of the exhaust can be significantly different from ambient pressure—the outside air is unable to equalize the pressure upstream due to the very high jet velocity. Therefore, for supersonic nozzles, it is actually possible for the
129:
The optimal size of a rocket engine nozzle is achieved when the exit pressure equals ambient (atmospheric) pressure, which decreases with increasing altitude. The reason for this is as follows: using a quasi-one-dimensional approximation of the flow, if ambient pressure is higher than the exit
1124: 2240:
The shape of the nozzle also modestly affects how efficiently the expansion of the exhaust gases is converted into linear motion. The simplest nozzle shape has a ~15° cone half-angle, which is about 98% efficient. Smaller angles give very slightly higher efficiency, larger angles give lower
180:
For nozzles that are used in vacuum or at very high altitude, it is impossible to match ambient pressure; rather, nozzles with larger area ratio are usually more efficient. However, a very long nozzle has significant mass, a drawback in and of itself. A length that optimises overall vehicle
2252:
There is also a theoretically optimal nozzle shape for maximal exhaust speed. However, a shorter bell shape is typically used, which gives better overall performance due to its much lower weight, shorter length, lower drag losses, and only very marginally lower exhaust speed.
181:
performance typically has to be found. Additionally, as the temperature of the gas in the nozzle decreases, some components of the exhaust gases (such as water vapour from the combustion process) may condense or even freeze. This is highly undesirable and needs to be avoided.
2248:
or parabolic shapes. These give perhaps 1% higher efficiency than the cone nozzle and can be shorter and lighter. They are widely used on launch vehicles and other rockets where weight is at a premium. They are, of course, harder to fabricate, so are typically more costly.
2074: 133:
Just past the throat, the pressure of the gas is higher than ambient pressure and needs to be lowered between the throat and the nozzle exit by expansion. If the pressure of the exhaust leaving the nozzle exit is still above ambient pressure, then a nozzle is said to be
2302:
designs but plug nozzles feature a solid centerbody (sometimes truncated) and aerospike nozzles have a "base-bleed" of gases to simulate a solid center-body. ED nozzles are radial out-flow nozzles with the flow deflected by a center pintle.
153:
performance, the pressure of the gases exiting nozzle should be at sea-level pressure when the rocket is near sea level (at takeoff). However, a nozzle designed for sea-level operation will quickly lose efficiency at higher altitudes. In a
1735: 2232:
The ratio of the area of the narrowest part of the nozzle to the exit plane area is mainly what determines how efficiently the expansion of the exhaust gases is converted into linear velocity, the exhaust velocity, and therefore the
2215:
This separation generally occurs if the exit pressure drops below roughly 30-45% of ambient, but separation may be delayed to far lower pressures if the nozzle is designed to increase the pressure at the rim, as is achieved with the
420: 1228: 2223:
In addition, as the rocket engine starts up or throttles, the chamber pressure varies, and this generates different levels of efficiency. At low chamber pressures the engine is almost inevitably going to be grossly over-expanded.
2162: 921: 215:
Diagram of a de Laval nozzle, showing flow velocity (v) increasing in the direction of flow, with decreases in temperature (t) and pressure (p). The Mach number (M) increases from subsonic, to sonic at the throat, to
2347:
calls its design "Secondary Injection Thrust Vector Control System"; strontium perchlorate is injected through various fluid paths in the nozzle to achieve the desired control. Some ICBMs and boosters, such as the
2170:
Essentially then, for rocket nozzles, the ambient pressure acting on the engine cancels except over the exit plane of the rocket engine in a rearward direction, while the exhaust jet generates forward thrust.
926: 1970: 2212:
If the exit pressure is too low, then the jet can separate from the nozzle. This is often unstable, and the jet will generally cause large off-axis thrusts and may mechanically damage the nozzle.
1178: 590: 1727: 1962: 203:. However, there are often thermal design challenges presented by the coils themselves, particularly if superconducting coils are used to form the throat and expansion fields. 1639: 1605: 1208: 1906: 1673: 1571: 1537: 1503: 1469: 729: 695: 661: 624: 274:
velocities. As the throat constricts, the gas is forced to accelerate until at the nozzle throat, where the cross-sectional area is the least, the linear velocity becomes
1935: 1435: 544: 1871:{\displaystyle I_{\text{sp}}={\frac {F}{{\dot {m}}\,g_{\text{o}}}}={\frac {{\dot {m}}\,v_{\text{e}}}{{\dot {m}}\,g_{\text{o}}}}={\frac {v_{\text{e}}}{g_{\text{o}}}}} 2325:
These are generally very similar to bell nozzles but include an insert or mechanism by which the exit area ratio can be increased as ambient pressure is reduced.
1364:{\displaystyle I_{\text{sp}}={\frac {F}{{\dot {m}}g_{\text{o}}}}={\frac {{\dot {m}}v_{\text{eq}}}{{\dot {m}}g_{\text{o}}}}={\frac {v_{\text{eq}}}{g_{\text{o}}}},} 199:
instead of walls made of solid materials. These can be advantageous, since a magnetic field itself cannot melt, and the plasma temperatures can reach millions of
188: 1399: 763: 514: 481: 450: 291: 2703: 2495: 149:
In some cases, it is desirable for reliability and safety reasons to ignite a rocket engine on the ground that will be used all the way to orbit. For optimal
2085: 2297:(SERN), a linear expansion nozzle, where the gas pressure transfers work only on one side and which could be described as a single-sided aerospike nozzle. 1119:{\displaystyle {\begin{aligned}F&={\dot {m}}v_{\text{e}}+\left(p_{\text{e}}-p_{\text{o}}\right)A_{\text{e}}\\&={\dot {m}}\left,\end{aligned}}} 2615: 820:
As an example calculation using the above equation, assume that the propellant combustion gases are: at an absolute pressure entering the nozzle of
2801: 2671: 2566: 2592: 2603: 2643: 2581: 861:
The technical literature can be very confusing because many authors fail to explain whether they are using the universal gas law constant
2343:
Liquid injection thrust vectoring nozzles are another advanced design that allow pitch and yaw control from un-gimbaled nozzles. India's
2701:
Journal of Propulsion and Power Vol.18 No.1, "Experimental and Analytical Design Verification of the Dual-Bell Concept", Hagemann et al.
2205:
As the gas travels down the expansion part of the nozzle, the pressure and temperature decrease, while the speed of the gas increases.
2939: 85:
are injected into a combustion chamber to burn, and the combustion chamber leads into a nozzle which converts the energy contained in
2749: 2069:{\displaystyle I_{\text{sp,vac}}={\frac {1}{g_{\text{o}}}}\left(v_{\text{e}}+{\frac {p_{\text{e}}A_{\text{e}}}{\dot {m}}}\right),} 2465: 278:. From the throat the cross-sectional area then increases, the gas expands and the linear velocity becomes progressively more 259:
The gas flow is non-turbulent and axisymmetric from gas inlet to exhaust gas exit (i.e., along the nozzle's axis of symmetry).
2294: 2266: 2276: 34:
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow
2974: 2903: 2794: 2700: 2504: 159:
it more efficient at higher altitudes, where the ambient pressure is lower. This was the technique employed on the
110: 2167:
which is simply the vacuum thrust minus the force of the ambient atmospheric pressure acting over the exit plane.
167:(SSMEs), which spent most of their powered trajectory in near-vacuum, while the shuttle's two sea-level efficient 2383: 2217: 1135: 550: 2861: 1692: 226:
The analysis of gas flow through de Laval nozzles involves a number of concepts and simplifying assumptions:
2415: 89:
combustion products into kinetic energy by accelerating the gas to high velocity and near-ambient pressure.
2619: 2419: 629: 2678: 2209:
pressure of the gas exiting the nozzle to be significantly below or very greatly above ambient pressure.
2979: 2787: 2454: 911: 113:, one of the fathers of modern rocketry. It has since been used in almost all rocket engines, including 1940: 2856: 168: 2950: 2876: 2851: 2410: 1617: 1583: 1186: 1884: 1651: 1549: 1515: 1481: 1447: 707: 673: 639: 602: 2821: 101:
were developed in the 1500s. The de Laval nozzle was originally developed in the 19th century by
2744: 1911: 1411: 285:
The linear velocity of the exiting exhaust gases can be calculated using the following equation
172:
efficiency) whilst also not adding excessive weight and compromising the vehicle's performance.
2640: 876:
which only applies to a specific individual gas. The relationship between the two constants is
2667: 2562: 2449: 2394: 263: 246: 82: 51: 2418:– a single-stage-to-orbit spaceplane powered by hybrid air-breathing/internal-oxygen engine ( 2368:– when a gas velocity reaches the speed of sound in the gas as it flows through a restriction 851: = 22 kg/kmol. Using those values in the above equation yields an exhaust velocity 529: 2969: 2459: 2405: 2309: 2288: 1678: 1219: 192: 98: 67: 2898: 2826: 2759: 2707: 2647: 2371: 2318: 1215: 593: 415:{\displaystyle v_{\text{e}}={\sqrt {{\frac {TR}{M}}\,{\frac {2\gamma }{\gamma -1}}\left}}} 221: 184: 102: 55: 2689: 2174: 211: 2836: 2690:
Journal of Propulsion and Power Vol.14 No.5, "Advanced Rocket Nozzles", Hagemann et al.
2471: 2431: 1384: 788: 748: 519: 499: 466: 435: 271: 196: 910:
is the force that moves a rocket through the air or space. Thrust is generated by the
38: 2963: 2908: 2886: 2871: 2443: 2157:{\displaystyle F=I_{\text{sp,vac}}\,g_{\text{o}}{\dot {m}}-A_{\text{e}}p_{\text{o}},} 738: 160: 106: 59: 17: 2921: 2881: 2353: 800: 794: 490: 114: 2769: 2545: 858:= 2802 m/s or 2.80 km/s which is consistent with above typical values. 817:
because it based on the assumption that the exhaust gas behaves as an ideal gas.
146:
the vehicle or the engine, and in more extreme cases, destruction of the engine.
2926: 2846: 2831: 2810: 2377: 2365: 2282: 2245: 456: 275: 155: 2729: 2866: 2841: 2388: 2349: 1211: 279: 253: 238: 63: 30: 2531: 2891: 2754: 2257:
order to minimize the chances of separation problems at low exit pressures.
866: 231: 2664:
Rocket Propulsion Elements: An Introduction to the Engineering of Rockets
2559:
Rocket Propulsion Elements: An Introduction to the Engineering of Rockets
734: 86: 847:
K; with an isentropic expansion factor of γ = 1.22 and a molar mass of
242: 150: 252:
The gas flow rate is constant (i.e., steady) during the period of the
2425: 2374:– a convergent-divergent nozzle designed to produce supersonic speeds 2234: 907: 200: 78: 270:
As the combustion gas enters the rocket nozzle, it is traveling at
2730:
THRUST AUGMENTED NOZZLE (TAN) the New Paradigm for Booster Rockets
2399: 2173: 1937:, it is possible to define a constant quantity that is the vacuum 1610:
equivalent (or effective) velocity of gas at nozzle exhaust (m/s)
210: 37: 29: 2764: 2237:
of the rocket engine. The gas properties have an effect as well.
2775:
Free Design Tool for Liquid Rocket Engine Thermodynamic Analysis
2750:
NASA Space Vehicle Design Criteria, Liquid Rocket Engine Nozzles
2437: 2344: 164: 74: 2783: 2779: 2244:
More complex shapes of revolution are frequently used, such as
2265:
A number of more sophisticated designs have been proposed for
1210:
is the ratio of the thrust produced to the weight flow of the
187:
have been proposed for some types of propulsion (for example,
118: 1881:
In cases where this may not be so, since for a rocket nozzle
245:, as the result of the assumption of non-viscous fluid, and 2446:– the visible bands formed in the exhaust of rocket engines 828:
MPa and exit the rocket exhaust at an absolute pressure of
109:. It was first used in an early rocket engine developed by 2774: 793:
2.9 to 4.5 km/s (6500 to 10100 mi/h) for liquid
787:
1.7 to 2.9 km/s (3800 to 6500 mi/h) for liquid
2497:
NASA SP-125, Design of Liquid Propellant Rocket Engines
138:; if the exhaust is below ambient pressure, then it is 1681:(at sea level on Earth); approximately 9.807 m/s 1129:
the term in brackets is known as equivalent velocity,
666:
specific heat capacity, under constant volume, of gas
2088: 1973: 1943: 1914: 1887: 1738: 1695: 1654: 1620: 1586: 1552: 1518: 1484: 1450: 1414: 1387: 1231: 1189: 1138: 924: 751: 710: 676: 642: 605: 553: 532: 502: 469: 438: 294: 783:
for rocket engines burning various propellants are:
2770:"Rocket Propulsion" on Robert Braeuning's Web Site 2156: 2068: 1956: 1929: 1900: 1870: 1721: 1667: 1633: 1599: 1565: 1531: 1497: 1463: 1429: 1393: 1363: 1202: 1172: 1118: 799:2.1 to 3.2 km/s (4700 to 7200 mi/h) for 757: 723: 689: 655: 618: 584: 538: 508: 475: 444: 414: 2561:(6th ed.). Wiley-Interscience. p. 636. 117:'s implementation, which made possible Germany's 1542:external ambient, or free stream, pressure (Pa) 776:Some typical values of the exhaust gas velocity 2391:– engines propelled by jets (including rockets) 869:or whether they are using the gas law constant 700:velocity of gas at the nozzle exit plane (m/s) 2765:Richard Nakka's Experimental Rocketry Web Site 2272:Nozzles with an atmospheric boundary include: 2201:Aerostatic back-pressure and optimal expansion 189:Variable Specific Impulse Magnetoplasma Rocket 2795: 8: 2305:Controlled flow-separation nozzles include: 1689:For a perfectly expanded nozzle case, where 81:to anywhere between two and several hundred 2541: 2539: 1576:cross-sectional area of nozzle exhaust (m) 1378: 429: 2802: 2788: 2780: 1173:{\displaystyle F={\dot {m}}v_{\text{eq}}.} 585:{\displaystyle =c_{\text{p}}/c_{\text{v}}} 73:Simply: propellants pressurized by either 2657: 2655: 2145: 2135: 2117: 2116: 2110: 2105: 2099: 2087: 2046: 2039: 2029: 2022: 2013: 1996: 1987: 1978: 1972: 1948: 1942: 1916: 1915: 1913: 1892: 1886: 1860: 1850: 1844: 1832: 1827: 1816: 1815: 1807: 1802: 1791: 1790: 1787: 1775: 1770: 1759: 1758: 1752: 1743: 1737: 1722:{\displaystyle p_{\text{e}}=p_{\text{o}}} 1713: 1700: 1694: 1659: 1653: 1625: 1619: 1591: 1585: 1557: 1551: 1523: 1517: 1489: 1483: 1455: 1449: 1416: 1415: 1413: 1386: 1350: 1340: 1334: 1322: 1307: 1306: 1298: 1283: 1282: 1279: 1267: 1252: 1251: 1245: 1236: 1230: 1194: 1188: 1161: 1146: 1145: 1137: 1098: 1078: 1071: 1058: 1051: 1038: 1018: 1017: 1001: 986: 973: 955: 940: 939: 925: 923: 750: 715: 709: 681: 675: 647: 641: 610: 604: 576: 567: 561: 552: 531: 501: 468: 437: 386: 371: 365: 326: 325: 310: 308: 299: 293: 2494:Huzel, D. K. & Huang, D. H. (1971). 1474:velocity of gas at nozzle exhaust (m/s) 2527: 2525: 2483: 1508:pressure of gas at nozzle exhaust (Pa) 768:absolute pressure of gas at inlet (Pa) 230:The combustion gas is assumed to be an 2489: 2487: 2315:bell nozzles with a removable insert, 7: 2755:NASA's "Beginners' Guide to Rockets" 2666:(7th ed.). Wiley-Interscience. 2503:(2nd ed.). NASA. Archived from 2220:(SSME) (1-2 psi at 15 psi ambient). 895:is the universal gas constant, and 839:MPa; at an absolute temperature of 2940:Timeline of heat engine technology 2438:SERN, Single-expansion ramp nozzle 1404:gross thrust of rocket engine (N) 632:, under constant pressure, of gas 25: 1957:{\displaystyle I_{\text{sp,vac}}} 915:engine nozzle can be defined as: 737:of gas at the nozzle exit plane ( 2618:. March 16, 2009. Archived from 2546:Robert Braeuning's Equation 2.22 2466:Staged combustion cycle (rocket) 2434:– used to propel rocket vehicles 813:is sometimes referred to as the 191:, VASIMR), in which the flow of 2745:Exhaust gas velocity calculator 2178:Nozzles can be (top to bottom): 163:'s overexpanded (at sea level) 87:high pressure, high temperature 2641:PWR Engineering: Nozzle Design 2440:– a non-axisymmetric aerospike 899:is the molar mass of the gas. 207:de Laval nozzle in 1 dimension 1: 1634:{\displaystyle I_{\text{sp}}} 1600:{\displaystyle v_{\text{eq}}} 1440:mass flow rate of gas (kg/s) 1203:{\displaystyle I_{\text{sp}}} 2604:NASA:Rocket specific impulse 2462:– a measure of exhaust speed 2295:single-expansion ramp nozzle 1901:{\displaystyle p_{\text{e}}} 1668:{\displaystyle g_{\text{o}}} 1566:{\displaystyle A_{\text{e}}} 1532:{\displaystyle p_{\text{o}}} 1498:{\displaystyle p_{\text{e}}} 1464:{\displaystyle v_{\text{e}}} 724:{\displaystyle p_{\text{e}}} 690:{\displaystyle v_{\text{e}}} 656:{\displaystyle c_{\text{v}}} 619:{\displaystyle c_{\text{p}}} 2593:NASA: Rocket thrust summary 2532:Richard Nakka's Equation 12 2328:Dual-mode nozzles include: 2277:expansion-deflection nozzle 1964:for any given engine thus: 1648: 1614: 1580: 1546: 1512: 1478: 1444: 1408: 1381: 594:isentropic expansion factor 522:or weight of gas (kg/kmol) 2996: 2662:Sutton, George P. (2001). 2557:Sutton, George P. (1992). 1930:{\displaystyle {\dot {m}}} 1677: 1643: 1609: 1575: 1541: 1507: 1473: 1439: 1430:{\displaystyle {\dot {m}}} 1403: 815:ideal exhaust gas velocity 491:universal gas law constant 219: 2948: 2935: 2917: 2817: 2468:– a type of rocket engine 2384:Giovanni Battista Venturi 2218:Space Shuttle Main Engine 1220:English Engineering units 1214:. It is a measure of the 62:to expand and accelerate 27:Type of propelling nozzle 195:or ions are directed by 42:Density flow in a nozzle 2719:Thrust Augmented Nozzle 2416:Reaction Engines Skylon 2402:– Russian rocket engine 2356:, use similar designs. 2321:, or dual-bell nozzles. 1218:of a rocket engine. In 806:As a note of interest, 539:{\displaystyle \gamma } 2420:Reaction Engines SABRE 2197: 2158: 2070: 1958: 1931: 1902: 1872: 1729:, the formula becomes 1723: 1669: 1635: 1601: 1567: 1533: 1499: 1465: 1431: 1395: 1365: 1222:it can be obtained as 1204: 1174: 1120: 759: 725: 691: 657: 630:specific heat capacity 620: 586: 540: 510: 477: 446: 416: 266:as the fluid is a gas. 217: 43: 35: 2882:Steam (reciprocating) 2455:Spacecraft propulsion 2332:dual-expander nozzle, 2267:altitude compensation 2191:grossly overexpanded. 2177: 2159: 2071: 1959: 1932: 1903: 1873: 1724: 1670: 1644:specific impulse (s) 1636: 1602: 1568: 1534: 1500: 1466: 1432: 1396: 1366: 1205: 1183:The specific impulse 1175: 1121: 865:which applies to any 760: 726: 692: 658: 621: 587: 541: 511: 478: 447: 417: 214: 169:solid rocket boosters 41: 33: 18:Rocket engine nozzles 2760:The Aerospike Engine 2510:on 20 September 2022 2086: 1971: 1941: 1912: 1885: 1736: 1693: 1652: 1618: 1584: 1550: 1516: 1482: 1448: 1412: 1385: 1229: 1187: 1136: 922: 749: 708: 674: 640: 603: 551: 530: 500: 467: 459:of gas at inlet (K) 436: 292: 241:; i.e., at constant 48:rocket engine nozzle 2951:Thermodynamic cycle 2862:Pistonless (Rotary) 2852:Photo-Carnot engine 2582:NASA: Rocket thrust 2411:Pulsed rocket motor 2335:dual-throat nozzle. 1908:is proportional to 99:bell-shaped nozzles 2706:2011-06-16 at the 2646:2008-03-16 at the 2622:on October 2, 2011 2198: 2154: 2066: 1954: 1927: 1898: 1868: 1719: 1665: 1631: 1597: 1563: 1529: 1495: 1461: 1427: 1391: 1361: 1200: 1170: 1116: 1114: 755: 721: 687: 653: 616: 582: 536: 506: 473: 442: 412: 218: 44: 36: 2975:Rocket propulsion 2957: 2956: 2673:978-0-471-32642-7 2568:978-0-471-52938-5 2450:Solid-fuel rocket 2428:– rocket vehicles 2395:Multistage rocket 2148: 2138: 2125: 2113: 2102: 2056: 2054: 2042: 2032: 2016: 2002: 1999: 1981: 1951: 1924: 1895: 1866: 1863: 1853: 1839: 1835: 1824: 1810: 1799: 1782: 1778: 1767: 1746: 1716: 1703: 1685: 1684: 1662: 1628: 1594: 1560: 1526: 1492: 1458: 1424: 1394:{\displaystyle F} 1356: 1353: 1343: 1329: 1325: 1315: 1301: 1291: 1274: 1270: 1260: 1239: 1197: 1164: 1154: 1101: 1088: 1086: 1074: 1061: 1041: 1026: 1004: 989: 976: 958: 948: 801:solid propellants 772: 771: 758:{\displaystyle p} 735:absolute pressure 718: 684: 650: 613: 579: 564: 509:{\displaystyle M} 476:{\displaystyle R} 445:{\displaystyle T} 410: 402: 380: 374: 347: 323: 302: 77:or high pressure 66:products to high 52:propelling nozzle 16:(Redirected from 2987: 2804: 2797: 2790: 2781: 2732: 2727: 2721: 2716: 2710: 2698: 2692: 2687: 2681: 2677: 2659: 2650: 2638: 2632: 2631: 2629: 2627: 2612: 2606: 2601: 2595: 2590: 2584: 2579: 2573: 2572: 2554: 2548: 2543: 2534: 2529: 2520: 2519: 2517: 2515: 2509: 2502: 2491: 2460:Specific impulse 2406:Pulse jet engine 2310:expanding nozzle 2269:and other uses. 2261:Advanced designs 2163: 2161: 2160: 2155: 2150: 2149: 2146: 2140: 2139: 2136: 2127: 2126: 2118: 2115: 2114: 2111: 2104: 2103: 2100: 2075: 2073: 2072: 2067: 2062: 2058: 2057: 2055: 2047: 2045: 2044: 2043: 2040: 2034: 2033: 2030: 2023: 2018: 2017: 2014: 2003: 2001: 2000: 1997: 1988: 1983: 1982: 1979: 1963: 1961: 1960: 1955: 1953: 1952: 1949: 1936: 1934: 1933: 1928: 1926: 1925: 1917: 1907: 1905: 1904: 1899: 1897: 1896: 1893: 1877: 1875: 1874: 1869: 1867: 1865: 1864: 1861: 1855: 1854: 1851: 1845: 1840: 1838: 1837: 1836: 1833: 1826: 1825: 1817: 1813: 1812: 1811: 1808: 1801: 1800: 1792: 1788: 1783: 1781: 1780: 1779: 1776: 1769: 1768: 1760: 1753: 1748: 1747: 1744: 1728: 1726: 1725: 1720: 1718: 1717: 1714: 1705: 1704: 1701: 1679:standard gravity 1674: 1672: 1671: 1666: 1664: 1663: 1660: 1640: 1638: 1637: 1632: 1630: 1629: 1626: 1606: 1604: 1603: 1598: 1596: 1595: 1592: 1572: 1570: 1569: 1564: 1562: 1561: 1558: 1538: 1536: 1535: 1530: 1528: 1527: 1524: 1504: 1502: 1501: 1496: 1494: 1493: 1490: 1470: 1468: 1467: 1462: 1460: 1459: 1456: 1436: 1434: 1433: 1428: 1426: 1425: 1417: 1400: 1398: 1397: 1392: 1379: 1370: 1368: 1367: 1362: 1357: 1355: 1354: 1351: 1345: 1344: 1341: 1335: 1330: 1328: 1327: 1326: 1323: 1317: 1316: 1308: 1304: 1303: 1302: 1299: 1293: 1292: 1284: 1280: 1275: 1273: 1272: 1271: 1268: 1262: 1261: 1253: 1246: 1241: 1240: 1237: 1209: 1207: 1206: 1201: 1199: 1198: 1195: 1179: 1177: 1176: 1171: 1166: 1165: 1162: 1156: 1155: 1147: 1125: 1123: 1122: 1117: 1115: 1108: 1104: 1103: 1102: 1099: 1093: 1089: 1087: 1079: 1077: 1076: 1075: 1072: 1063: 1062: 1059: 1052: 1043: 1042: 1039: 1028: 1027: 1019: 1010: 1006: 1005: 1002: 996: 992: 991: 990: 987: 978: 977: 974: 960: 959: 956: 950: 949: 941: 903:Specific impulse 846: 838: 827: 764: 762: 761: 756: 730: 728: 727: 722: 720: 719: 716: 696: 694: 693: 688: 686: 685: 682: 662: 660: 659: 654: 652: 651: 648: 625: 623: 622: 617: 615: 614: 611: 591: 589: 588: 583: 581: 580: 577: 571: 566: 565: 562: 545: 543: 542: 537: 515: 513: 512: 507: 488: 482: 480: 479: 474: 451: 449: 448: 443: 430: 421: 419: 418: 413: 411: 409: 405: 404: 403: 398: 387: 385: 381: 376: 375: 372: 366: 348: 346: 335: 327: 324: 319: 311: 309: 304: 303: 300: 237:The gas flow is 185:Magnetic nozzles 58:type) used in a 54:(usually of the 21: 2995: 2994: 2990: 2989: 2988: 2986: 2985: 2984: 2960: 2959: 2958: 2953: 2944: 2931: 2913: 2813: 2808: 2741: 2736: 2735: 2728: 2724: 2717: 2713: 2708:Wayback Machine 2699: 2695: 2688: 2684: 2674: 2661: 2660: 2653: 2648:Wayback Machine 2639: 2635: 2625: 2623: 2616:"Nozzle Design" 2614: 2613: 2609: 2602: 2598: 2591: 2587: 2580: 2576: 2569: 2556: 2555: 2551: 2544: 2537: 2530: 2523: 2513: 2511: 2507: 2500: 2493: 2492: 2485: 2480: 2372:De Laval nozzle 2362: 2319:stepped nozzles 2263: 2230: 2203: 2194: 2141: 2131: 2106: 2095: 2084: 2083: 2035: 2025: 2024: 2009: 2008: 2004: 1992: 1974: 1969: 1968: 1944: 1939: 1938: 1910: 1909: 1888: 1883: 1882: 1856: 1846: 1828: 1814: 1803: 1789: 1771: 1757: 1739: 1734: 1733: 1709: 1696: 1691: 1690: 1655: 1650: 1649: 1621: 1616: 1615: 1587: 1582: 1581: 1553: 1548: 1547: 1519: 1514: 1513: 1485: 1480: 1479: 1451: 1446: 1445: 1410: 1409: 1383: 1382: 1346: 1336: 1318: 1305: 1294: 1281: 1263: 1250: 1232: 1227: 1226: 1216:fuel efficiency 1190: 1185: 1184: 1157: 1134: 1133: 1113: 1112: 1094: 1067: 1054: 1053: 1047: 1034: 1033: 1029: 1008: 1007: 997: 982: 969: 968: 964: 951: 932: 920: 919: 905: 882: 875: 857: 844: 836: 834: 825: 812: 789:monopropellants 782: 747: 746: 711: 706: 705: 677: 672: 671: 643: 638: 637: 606: 601: 600: 572: 557: 549: 548: 528: 527: 498: 497: 486: 465: 464: 434: 433: 388: 367: 361: 360: 353: 349: 336: 328: 312: 295: 290: 289: 224: 222:De Laval nozzle 209: 197:magnetic fields 178: 127: 125:Atmospheric use 103:Gustaf de Laval 95: 28: 23: 22: 15: 12: 11: 5: 2993: 2991: 2983: 2982: 2977: 2972: 2962: 2961: 2955: 2954: 2949: 2946: 2945: 2943: 2942: 2936: 2933: 2932: 2930: 2929: 2924: 2918: 2915: 2914: 2912: 2911: 2906: 2904:Thermoacoustic 2901: 2896: 2895: 2894: 2884: 2879: 2874: 2869: 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2829: 2824: 2818: 2815: 2814: 2809: 2807: 2806: 2799: 2792: 2784: 2778: 2777: 2772: 2767: 2762: 2757: 2752: 2747: 2740: 2739:External links 2737: 2734: 2733: 2722: 2711: 2693: 2682: 2672: 2651: 2633: 2607: 2596: 2585: 2574: 2567: 2549: 2535: 2521: 2482: 2481: 2479: 2476: 2475: 2474: 2472:Venturi effect 2469: 2463: 2457: 2452: 2447: 2444:Shock diamonds 2441: 2435: 2432:Rocket engines 2429: 2423: 2413: 2408: 2403: 2397: 2392: 2386: 2381: 2375: 2369: 2361: 2358: 2337: 2336: 2333: 2323: 2322: 2316: 2313: 2299: 2298: 2292: 2286: 2280: 2262: 2259: 2229: 2226: 2202: 2199: 2193: 2192: 2189: 2186: 2183: 2179: 2165: 2164: 2153: 2144: 2134: 2130: 2124: 2121: 2109: 2098: 2094: 2091: 2077: 2076: 2065: 2061: 2053: 2050: 2038: 2028: 2021: 2012: 2007: 1995: 1991: 1986: 1977: 1947: 1923: 1920: 1891: 1879: 1878: 1859: 1849: 1843: 1831: 1823: 1820: 1806: 1798: 1795: 1786: 1774: 1766: 1763: 1756: 1751: 1742: 1712: 1708: 1699: 1687: 1686: 1683: 1682: 1676: 1658: 1646: 1645: 1642: 1624: 1612: 1611: 1608: 1590: 1578: 1577: 1574: 1556: 1544: 1543: 1540: 1522: 1510: 1509: 1506: 1488: 1476: 1475: 1472: 1454: 1442: 1441: 1438: 1423: 1420: 1406: 1405: 1402: 1390: 1372: 1371: 1360: 1349: 1339: 1333: 1321: 1314: 1311: 1297: 1290: 1287: 1278: 1266: 1259: 1256: 1249: 1244: 1235: 1193: 1181: 1180: 1169: 1160: 1153: 1150: 1144: 1141: 1127: 1126: 1111: 1107: 1097: 1092: 1085: 1082: 1070: 1066: 1057: 1050: 1046: 1037: 1032: 1025: 1022: 1016: 1013: 1011: 1009: 1000: 995: 985: 981: 972: 967: 963: 954: 947: 944: 938: 935: 933: 931: 928: 927: 904: 901: 880: 873: 855: 832: 810: 804: 803: 797: 791: 780: 774: 773: 770: 769: 766: 754: 743: 742: 732: 714: 702: 701: 698: 680: 668: 667: 664: 646: 634: 633: 627: 609: 597: 596: 575: 570: 560: 556: 546: 535: 524: 523: 520:molecular mass 517: 505: 494: 493: 483: 472: 461: 460: 453: 441: 423: 422: 408: 401: 397: 394: 391: 384: 379: 370: 364: 359: 356: 352: 345: 342: 339: 334: 331: 322: 318: 315: 307: 298: 268: 267: 260: 257: 250: 235: 220:Main article: 208: 205: 177: 174: 126: 123: 111:Robert Goddard 107:steam turbines 94: 91: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2992: 2981: 2978: 2976: 2973: 2971: 2968: 2967: 2965: 2952: 2947: 2941: 2938: 2937: 2934: 2928: 2925: 2923: 2920: 2919: 2916: 2910: 2909:Manson engine 2907: 2905: 2902: 2900: 2897: 2893: 2890: 2889: 2888: 2887:Steam turbine 2885: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2822:Carnot engine 2820: 2819: 2816: 2812: 2805: 2800: 2798: 2793: 2791: 2786: 2785: 2782: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2742: 2738: 2731: 2726: 2723: 2720: 2715: 2712: 2709: 2705: 2702: 2697: 2694: 2691: 2686: 2683: 2680: 2675: 2669: 2665: 2658: 2656: 2652: 2649: 2645: 2642: 2637: 2634: 2621: 2617: 2611: 2608: 2605: 2600: 2597: 2594: 2589: 2586: 2583: 2578: 2575: 2570: 2564: 2560: 2553: 2550: 2547: 2542: 2540: 2536: 2533: 2528: 2526: 2522: 2506: 2499: 2498: 2490: 2488: 2484: 2477: 2473: 2470: 2467: 2464: 2461: 2458: 2456: 2453: 2451: 2448: 2445: 2442: 2439: 2436: 2433: 2430: 2427: 2424: 2421: 2417: 2414: 2412: 2409: 2407: 2404: 2401: 2398: 2396: 2393: 2390: 2387: 2385: 2382: 2380:rocket motors 2379: 2376: 2373: 2370: 2367: 2364: 2363: 2359: 2357: 2355: 2351: 2346: 2341: 2334: 2331: 2330: 2329: 2326: 2320: 2317: 2314: 2311: 2308: 2307: 2306: 2303: 2296: 2293: 2290: 2287: 2284: 2281: 2278: 2275: 2274: 2273: 2270: 2268: 2260: 2258: 2254: 2250: 2247: 2242: 2238: 2236: 2228:Optimal shape 2227: 2225: 2221: 2219: 2213: 2210: 2206: 2200: 2190: 2187: 2184: 2182:underexpanded 2181: 2180: 2176: 2172: 2168: 2151: 2142: 2132: 2128: 2122: 2119: 2107: 2096: 2092: 2089: 2082: 2081: 2080: 2063: 2059: 2051: 2048: 2036: 2026: 2019: 2010: 2005: 1993: 1989: 1984: 1975: 1967: 1966: 1965: 1945: 1921: 1918: 1889: 1857: 1847: 1841: 1829: 1821: 1818: 1804: 1796: 1793: 1784: 1772: 1764: 1761: 1754: 1749: 1740: 1732: 1731: 1730: 1710: 1706: 1697: 1680: 1656: 1647: 1622: 1613: 1588: 1579: 1554: 1545: 1520: 1511: 1486: 1477: 1452: 1443: 1421: 1418: 1407: 1388: 1380: 1377: 1376: 1375: 1358: 1347: 1337: 1331: 1319: 1312: 1309: 1295: 1288: 1285: 1276: 1264: 1257: 1254: 1247: 1242: 1233: 1225: 1224: 1223: 1221: 1217: 1213: 1191: 1167: 1158: 1151: 1148: 1142: 1139: 1132: 1131: 1130: 1109: 1105: 1095: 1090: 1083: 1080: 1068: 1064: 1055: 1048: 1044: 1035: 1030: 1023: 1020: 1014: 1012: 998: 993: 983: 979: 970: 965: 961: 952: 945: 942: 936: 934: 929: 918: 917: 916: 913: 909: 902: 900: 898: 894: 890: 886: 879: 872: 868: 864: 859: 854: 850: 842: 831: 823: 818: 816: 809: 802: 798: 796: 795:bipropellants 792: 790: 786: 785: 784: 779: 767: 752: 745: 744: 740: 736: 733: 712: 704: 703: 699: 678: 670: 669: 665: 644: 636: 635: 631: 628: 607: 599: 598: 595: 573: 568: 558: 554: 547: 533: 526: 525: 521: 518: 503: 496: 495: 492: 484: 470: 463: 462: 458: 454: 439: 432: 431: 428: 427: 426: 406: 399: 395: 392: 389: 382: 377: 368: 362: 357: 354: 350: 343: 340: 337: 332: 329: 320: 316: 313: 305: 296: 288: 287: 286: 283: 281: 277: 273: 265: 261: 258: 255: 251: 248: 244: 240: 236: 233: 229: 228: 227: 223: 213: 206: 204: 202: 198: 194: 190: 186: 182: 175: 173: 170: 166: 162: 161:Space Shuttle 157: 152: 147: 143: 141: 137: 136:underexpanded 131: 124: 122: 120: 116: 112: 108: 104: 100: 92: 90: 88: 84: 80: 76: 71: 69: 65: 61: 60:rocket engine 57: 53: 49: 40: 32: 19: 2980:Pyrotechnics 2922:Beale number 2877:Split-single 2811:Heat engines 2725: 2714: 2696: 2685: 2663: 2636: 2626:November 23, 2624:. Retrieved 2620:the original 2610: 2599: 2588: 2577: 2558: 2552: 2514:17 September 2512:. Retrieved 2505:the original 2496: 2354:Minuteman II 2342: 2338: 2327: 2324: 2304: 2300: 2271: 2264: 2255: 2251: 2246:bell nozzles 2243: 2241:efficiency. 2239: 2231: 2222: 2214: 2211: 2207: 2204: 2188:overexpanded 2169: 2166: 2078: 1880: 1688: 1373: 1182: 1128: 906: 896: 892: 888: 884: 877: 870: 862: 860: 852: 848: 840: 829: 821: 819: 814: 807: 805: 777: 775: 424: 284: 269: 264:compressible 262:The flow is 225: 183: 179: 165:main engines 148: 144: 140:overexpanded 139: 135: 132: 128: 115:Walter Thiel 96: 72: 70:velocities. 47: 45: 2927:West number 2847:Minto wheel 2832:Gas turbine 2378:Dual-thrust 2366:Choked flow 2283:plug nozzle 2079:and hence: 1212:propellants 824: = 7.0 457:temperature 216:supersonic. 156:multi-stage 105:for use in 83:atmospheres 2964:Categories 2867:Rijke tube 2478:References 2389:Jet engine 2350:Titan IIIC 2196:unstable. 912:propulsion 489:J/kmol·K, 280:supersonic 254:propellant 239:isentropic 176:Vacuum use 79:ullage gas 68:supersonic 64:combustion 2892:Aeolipile 2289:aerospike 2129:− 2123:˙ 2052:˙ 1922:˙ 1822:˙ 1797:˙ 1765:˙ 1422:˙ 1313:˙ 1289:˙ 1258:˙ 1152:˙ 1084:˙ 1065:− 1024:˙ 980:− 946:˙ 867:ideal gas 534:γ 455:absolute 400:γ 393:− 390:γ 358:− 341:− 338:γ 333:γ 247:adiabatic 232:ideal gas 2899:Stirling 2827:Fluidyne 2704:Archived 2644:Archived 2360:See also 891:, where 485:≈ 8314.5 272:subsonic 249:process. 121:rocket. 56:de Laval 2970:Nozzles 2837:Hot air 2185:ambient 1374:where: 425:where: 243:entropy 201:kelvins 151:liftoff 97:Simple 93:History 2872:Rocket 2857:Piston 2670:  2565:  2426:Rocket 2235:thrust 2101:sp,vac 1980:sp,vac 1950:sp,vac 908:Thrust 845:  843:= 3500 837:  826:  487:  193:plasma 2679:p. 84 2508:(PDF) 2501:(PDF) 2400:NK-33 835:= 0.1 276:sonic 256:burn. 75:pumps 50:is a 2668:ISBN 2628:2011 2563:ISBN 2516:2022 2352:and 2345:PSLV 2842:Jet 119:V-2 2966:: 2654:^ 2538:^ 2524:^ 2486:^ 1745:sp 1675:, 1641:, 1627:sp 1607:, 1593:eq 1573:, 1539:, 1505:, 1471:, 1437:, 1401:, 1342:eq 1300:eq 1238:sp 1196:sp 1163:eq 883:= 765:, 741:) 739:Pa 731:, 697:, 663:, 626:, 592:, 516:, 452:, 282:. 142:. 46:A 2803:e 2796:t 2789:v 2676:. 2630:. 2571:. 2518:. 2422:) 2312:, 2291:, 2285:, 2279:, 2152:, 2147:o 2143:p 2137:e 2133:A 2120:m 2112:o 2108:g 2097:I 2093:= 2090:F 2064:, 2060:) 2049:m 2041:e 2037:A 2031:e 2027:p 2020:+ 2015:e 2011:v 2006:( 1998:o 1994:g 1990:1 1985:= 1976:I 1946:I 1919:m 1894:e 1890:p 1862:o 1858:g 1852:e 1848:v 1842:= 1834:o 1830:g 1819:m 1809:e 1805:v 1794:m 1785:= 1777:o 1773:g 1762:m 1755:F 1750:= 1741:I 1715:o 1711:p 1707:= 1702:e 1698:p 1661:o 1657:g 1623:I 1589:v 1559:e 1555:A 1525:o 1521:p 1491:e 1487:p 1457:e 1453:v 1419:m 1389:F 1359:, 1352:o 1348:g 1338:v 1332:= 1324:o 1320:g 1310:m 1296:v 1286:m 1277:= 1269:o 1265:g 1255:m 1248:F 1243:= 1234:I 1192:I 1168:. 1159:v 1149:m 1143:= 1140:F 1110:, 1106:] 1100:e 1096:A 1091:) 1081:m 1073:o 1069:p 1060:e 1056:p 1049:( 1045:+ 1040:e 1036:v 1031:[ 1021:m 1015:= 1003:e 999:A 994:) 988:o 984:p 975:e 971:p 966:( 962:+ 957:e 953:v 943:m 937:= 930:F 897:M 893:R 889:M 887:/ 885:R 881:s 878:R 874:s 871:R 863:R 856:e 853:v 849:M 841:T 833:e 830:p 822:p 811:e 808:v 781:e 778:v 753:p 717:e 713:p 683:e 679:v 649:v 645:c 612:p 608:c 578:v 574:c 569:/ 563:p 559:c 555:= 504:M 471:R 440:T 407:] 396:1 383:) 378:p 373:e 369:p 363:( 355:1 351:[ 344:1 330:2 321:M 317:R 314:T 306:= 301:e 297:v 234:. 20:)

Index

Rocket engine nozzles


propelling nozzle
de Laval
rocket engine
combustion
supersonic
pumps
ullage gas
atmospheres
high pressure, high temperature
bell-shaped nozzles
Gustaf de Laval
steam turbines
Robert Goddard
Walter Thiel
V-2
liftoff
multi-stage
Space Shuttle
main engines
solid rocket boosters
Magnetic nozzles
Variable Specific Impulse Magnetoplasma Rocket
plasma
magnetic fields
kelvins

De Laval nozzle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.