Knowledge (XXG)

Robot kinematics

Source đź“ť

318: 522: 1105: 167: 1117: 20: 199:
Inverse kinematics specifies the end-effector location and computes the associated joint angles. For serial manipulators this requires solution of a set of polynomials obtained from the kinematics equations and yields multiple configurations for the chain. The case of a general 6R serial manipulator
275:
problem seeks the end-effector wrench associated with a given set of joint torques, and requires the inverse of the Jacobian matrix. As in the case of inverse velocity analysis, at singular configurations this problem cannot be solved. However, near singularities small actuator torques result in a
142:
from specified values for the joint parameters. The reverse process that computes the joint parameters that achieve a specified position of the end-effector is known as inverse kinematics. The dimensions of the robot and its kinematics equations define the volume of space reachable by the robot,
180:
Forward kinematics specifies the joint parameters and computes the configuration of the chain. For serial manipulators this is achieved by direct substitution of the joint parameters into the forward kinematics equations for the serial chain. For parallel manipulators substitution of the joint
204:) yields sixteen different inverse kinematics solutions, which are solutions of a sixteenth degree polynomial. For parallel manipulators, the specification of the end-effector location simplifies the kinematics equations, which yields formulas for the joint parameters. 224:
shows that the Jacobian also provides a relationship between joint torques and the resultant force and torque applied by the end-effector. Singular configurations of the robot are identified by studying its Jacobian.
233:
The robot Jacobian results in a set of linear equations that relate the joint rates to the six-vector formed from the angular and linear velocity of the end-effector, known as a
511: 248:. It can happen that the robot is in a configuration where the Jacobian does not have an inverse. These are termed singular configurations of the robot. 154:. Other types of systems with specialized kinematics equations are air, land, and submersible mobile robots, hyper-redundant, or snake, robots and 317: 1090: 850: 372: 771: 443: 213: 766: 44: 1042: 916: 119:
A fundamental tool in robot kinematics is the kinematics equations of the kinematic chains that form the robot. These
860: 123:
are used to map the joint parameters to the configuration of the robot system. Kinematics equations are also used in
410: 1080: 476: 1143: 1068: 298: 717: 712: 244:
problem seeks the joint rates that provide a specified end-effector twist. This is solved by inverting the
364:
Robot manipulators: mathematics, programming, and control : the computer control of robot manipulators
911: 436: 67: 1022: 876: 486: 265: 77:
studies the relationship between the dimensions and connectivity of kinematic chains and the position,
972: 896: 661: 621: 471: 331: 277: 234: 151: 1121: 1063: 926: 626: 466: 120: 400:
John J. Craig, 2004, Introduction to Robotics: Mechanics and Control (3rd Edition), Prentice-Hall.
50:
that form the structure of robotic systems. The emphasis on geometry means that the links of the
1032: 1007: 997: 962: 906: 886: 833: 806: 744: 656: 590: 491: 194: 175: 147: 139: 128: 114: 85:
of each of the links in the robotic system, in order to plan and control movement and to compute
1109: 1073: 1002: 931: 818: 604: 506: 481: 429: 368: 260:
yields a set of linear equations that relate the resultant force-torque six vector, called a
1058: 936: 921: 796: 788: 707: 666: 651: 599: 501: 341: 217: 102: 967: 952: 855: 845: 837: 702: 575: 553: 543: 289: 245: 47: 264:, that acts on the end-effector to the joint torques of the robot. If the end-effector 1085: 901: 891: 813: 756: 697: 636: 631: 616: 548: 521: 323: 201: 155: 59: 1137: 1037: 992: 676: 671: 646: 641: 170:
Forward kinematics of an over-actuated planar parallel manipulator done with MeKin2D.
801: 776: 761: 734: 724: 585: 496: 336: 261: 257: 221: 124: 82: 55: 276:
large end-effector wrench. Thus near singularity configurations robots have large
166: 362: 823: 749: 739: 729: 692: 609: 570: 101:
properties, motion, and the associated forces and torques is studied as part of
24: 313: 182: 74: 987: 881: 580: 181:
parameters into the kinematics equations requires solution of the a set of
146:
There are two broad classes of robots and associated kinematics equations:
1027: 977: 452: 86: 78: 63: 40: 32: 957: 538: 98: 237:. Specifying the joint rates yields the end-effector twist directly. 1012: 563: 558: 185:
constraints to determine the set of possible end-effector locations.
90: 19: 16:
Geometric analysis of multi-DoF kinematic chains that model a robot
982: 530: 165: 135: 51: 18: 1017: 94: 425: 268:
is known, then a direct calculation yields the joint torques.
216:
of the robot, which relates the joint rates to the linear and
421: 212:
The time derivative of the kinematics equations yields the
134:
Forward kinematics uses the kinematic equations of a
1051: 945: 869: 832: 787: 685: 529: 459: 306:, as well as the kinematic synthesis of robots. 437: 8: 444: 430: 422: 389:Introduction to Theoretical Kinematics, 367:. MIT Press, Cambridge, Massachusetts. 353: 220:of the end-effector. The principle of 851:Simultaneous localization and mapping 7: 391:MIT Press, Cambridge, Massachusetts. 14: 288:Robot kinematics also deals with 1115: 1104: 1103: 520: 316: 43:to the study of the movement of 1116: 138:to compute the position of the 409:J. M. McCarthy and G. S. Soh, 1: 412:Geometric Design of Linkages, 62:are assumed to provide pure 861:Vision-guided robot systems 415:2nd Edition, Springer 2010. 131:of articulated characters. 93:. The relationship between 1160: 1081:Technological unemployment 192: 173: 112: 1099: 1069:Workplace robotics safety 518: 200:(a serial chain with six 143:known as its workspace. 917:Human–robot interaction 45:multi-degree of freedom 387:J. M. McCarthy, 1990, 361:Paul, Richard (1981). 171: 28: 23:Inverse kinematics of 1023:Starship Technologies 294:singularity avoidance 252:Static force analysis 169: 152:parallel manipulators 113:Further information: 22: 973:Energid Technologies 332:Robotics conventions 278:mechanical advantage 127:of the skeleton and 121:non-linear equations 1064:Powered exoskeleton 304:collision avoidance 229:Velocity kinematics 148:serial manipulators 109:Kinematic equations 1033:Universal Robotics 1008:Intuitive Surgical 998:Harvest Automation 963:Barrett Technology 745:Robotic spacecraft 591:Audio-Animatronics 195:Inverse kinematics 189:Inverse kinematics 176:Forward kinematics 172: 162:Forward kinematics 129:computer animation 115:Kinematic equation 29: 27:done with MeKin2D. 1131: 1130: 1074:Robotic tech vest 1003:Honeybee Robotics 819:Electric unicycle 772:remotely-operated 374:978-0-262-16082-7 256:The principle of 1151: 1144:Robot kinematics 1119: 1118: 1107: 1106: 1091:Fictional robots 1059:Critique of work 708:Unmanned vehicle 524: 446: 439: 432: 423: 416: 407: 401: 398: 392: 385: 379: 378: 358: 342:Robot locomotion 326: 321: 320: 242:inverse velocity 218:angular velocity 48:kinematic chains 37:robot kinematics 1159: 1158: 1154: 1153: 1152: 1150: 1149: 1148: 1134: 1133: 1132: 1127: 1095: 1047: 968:Boston Dynamics 953:Amazon Robotics 941: 865: 856:Visual odometry 846:Motion planning 828: 783: 703:Continuum robot 686:Classifications 681: 544:Anthropomorphic 525: 516: 512:AI competitions 455: 450: 420: 419: 408: 404: 399: 395: 386: 382: 375: 360: 359: 355: 350: 322: 315: 312: 290:motion planning 286: 284:Fields of study 273:inverse statics 254: 246:Jacobian matrix 231: 210: 202:revolute joints 197: 191: 178: 164: 156:humanoid robots 117: 111: 54:are modeled as 17: 12: 11: 5: 1157: 1155: 1147: 1146: 1136: 1135: 1129: 1128: 1126: 1125: 1113: 1100: 1097: 1096: 1094: 1093: 1088: 1086:Terrainability 1083: 1078: 1077: 1076: 1066: 1061: 1055: 1053: 1049: 1048: 1046: 1045: 1040: 1035: 1030: 1025: 1020: 1015: 1010: 1005: 1000: 995: 990: 985: 980: 975: 970: 965: 960: 955: 949: 947: 943: 942: 940: 939: 934: 929: 924: 919: 914: 909: 904: 899: 894: 889: 884: 879: 873: 871: 867: 866: 864: 863: 858: 853: 848: 842: 840: 830: 829: 827: 826: 821: 816: 811: 810: 809: 799: 793: 791: 785: 784: 782: 781: 780: 779: 774: 764: 759: 754: 753: 752: 742: 737: 732: 727: 722: 721: 720: 715: 705: 700: 698:Cloud robotics 695: 689: 687: 683: 682: 680: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 613: 612: 602: 597: 596: 595: 594: 593: 578: 573: 568: 567: 566: 561: 556: 551: 541: 535: 533: 527: 526: 519: 517: 515: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 463: 461: 457: 456: 451: 449: 448: 441: 434: 426: 418: 417: 402: 393: 380: 373: 352: 351: 349: 346: 345: 344: 339: 334: 328: 327: 324:Physics portal 311: 308: 285: 282: 253: 250: 230: 227: 209: 208:Robot Jacobian 206: 193:Main article: 190: 187: 174:Main article: 163: 160: 110: 107: 103:robot dynamics 15: 13: 10: 9: 6: 4: 3: 2: 1156: 1145: 1142: 1141: 1139: 1124: 1123: 1114: 1112: 1111: 1102: 1101: 1098: 1092: 1089: 1087: 1084: 1082: 1079: 1075: 1072: 1071: 1070: 1067: 1065: 1062: 1060: 1057: 1056: 1054: 1050: 1044: 1041: 1039: 1038:Wolf Robotics 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 993:Foster-Miller 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 951: 950: 948: 944: 938: 935: 933: 930: 928: 925: 923: 920: 918: 915: 913: 912:Developmental 910: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 874: 872: 868: 862: 859: 857: 854: 852: 849: 847: 844: 843: 841: 839: 835: 831: 825: 822: 820: 817: 815: 812: 808: 805: 804: 803: 800: 798: 795: 794: 792: 790: 786: 778: 775: 773: 770: 769: 768: 765: 763: 760: 758: 755: 751: 748: 747: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 719: 716: 714: 711: 710: 709: 706: 704: 701: 699: 696: 694: 691: 690: 688: 684: 678: 677:Soft robotics 675: 673: 672:BEAM robotics 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 627:Entertainment 625: 623: 620: 618: 615: 611: 608: 607: 606: 603: 601: 598: 592: 589: 588: 587: 584: 583: 582: 579: 577: 574: 572: 569: 565: 562: 560: 557: 555: 552: 550: 547: 546: 545: 542: 540: 537: 536: 534: 532: 528: 523: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 464: 462: 460:Main articles 458: 454: 447: 442: 440: 435: 433: 428: 427: 424: 414: 413: 406: 403: 397: 394: 390: 384: 381: 376: 370: 366: 365: 357: 354: 347: 343: 340: 338: 335: 333: 330: 329: 325: 319: 314: 309: 307: 305: 301: 300: 295: 291: 283: 281: 279: 274: 269: 267: 263: 259: 251: 249: 247: 243: 238: 236: 228: 226: 223: 219: 215: 207: 205: 203: 196: 188: 186: 184: 177: 168: 161: 159: 157: 153: 149: 144: 141: 137: 132: 130: 126: 122: 116: 108: 106: 104: 100: 96: 92: 88: 84: 80: 76: 71: 69: 65: 61: 57: 53: 49: 46: 42: 38: 34: 26: 21: 1120: 1108: 877:Evolutionary 824:Robotic fins 777:Robotic fish 762:Telerobotics 735:Nanorobotics 725:Mobile robot 662:Food service 657:Agricultural 507:Competitions 492:Hall of Fame 411: 405: 396: 388: 383: 363: 356: 337:Mobile robot 303: 297: 293: 287: 272: 270: 258:virtual work 255: 241: 239: 232: 222:virtual work 211: 198: 179: 145: 140:end-effector 133: 125:biomechanics 118: 83:acceleration 72: 56:rigid bodies 36: 30: 897:Open-source 750:Space probe 740:Necrobotics 730:Microbotics 693:Biorobotics 622:Educational 605:Articulated 586:Animatronic 571:Claytronics 89:forces and 68:translation 25:SCARA robot 937:Ubiquitous 927:Perceptual 834:Navigation 789:Locomotion 767:Underwater 652:Disability 600:Industrial 348:References 299:redundancy 183:polynomial 75:kinematics 988:Figure AI 946:Companies 922:Paradigms 907:Adaptable 887:Simulator 581:Automaton 576:Companion 487:Geography 1138:Category 1110:Category 1028:Symbotic 978:FarmWise 932:Situated 902:Software 870:Research 814:Climbing 637:Military 632:Juggling 617:Domestic 549:Humanoid 472:Glossary 453:Robotics 310:See also 214:Jacobian 87:actuator 79:velocity 64:rotation 58:and its 41:geometry 39:applies 33:robotics 1122:Outline 1052:Related 1043:Yaskawa 958:Anybots 838:mapping 807:Hexapod 802:Walking 647:Service 642:Medical 554:Android 539:Aerobot 482:History 467:Outline 99:inertia 91:torques 1013:IRobot 797:Tracks 718:ground 713:aerial 667:Retail 564:Gynoid 559:Cyborg 497:Ethics 371:  266:wrench 262:wrench 73:Robot 60:joints 983:FANUC 892:Suite 757:Swarm 531:Types 477:Index 235:twist 136:robot 52:robot 1018:KUKA 882:Kits 836:and 502:Laws 369:ISBN 271:The 240:The 150:and 105:. 97:and 95:mass 81:and 610:arm 66:or 31:In 1140:: 302:, 296:, 292:, 280:. 158:. 70:. 35:, 445:e 438:t 431:v 377:.

Index


SCARA robot
robotics
geometry
multi-degree of freedom
kinematic chains
robot
rigid bodies
joints
rotation
translation
kinematics
velocity
acceleration
actuator
torques
mass
inertia
robot dynamics
Kinematic equation
non-linear equations
biomechanics
computer animation
robot
end-effector
serial manipulators
parallel manipulators
humanoid robots

Forward kinematics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑