Knowledge

Rosavin

Source 📝

410:. Chorismate mutase then converts chorismic acid to prephenate via a Claisen rearrangement (1,3-sigmatropic rearrangement). Phenolpyruvate is generated by the decarboxylation of prephenate, and the loss of a water molecule. Phenylalanine ammonia lyase (PAL) then converts phenolpyruvate to phenylalanine by using L-glutamate as an amine donor, which is used in rosavin biosynthesis. In the first step of rosavin synthesis, PAL converts phenylalanine to cinnamic acid. From cinnamic acid, cinnamyl-CoA ester is formed through hydroxycinnamate: CoA ligase (4CL). This CoA ester is reduced to cinnamaldehyde by cinnamyl-CoA reductase (CCR). The cinnamaldehyde is further reduced by cinnamyl alcohol dehydrogenase (CAD) to cinnamyl alcohol. The enzymes that take part in the formation of the glycosides of cinnamyl alcohol are not yet known. By one glucose transfer, rosin is formed, which is the simplest glycoside of 427: 229: 419: 24: 447:
extract have reported positive efficacy on fatigue, depression, mountain sickness, and cardiovascular disease. Extracts used in most clinical trials are standardized to a minimum of 3% cinnamyl alcohol glycosides and 0.8–1.0% salidroside, as the naturally occurring ratio of these compounds in the
405:
Cinnamyl alcohol glycosides are products of phenylpropanoid metabolism, derived from phenylalanine, which is produced from the shikimic-chorismic acid pathway. Shikimic acid is made from the precursor compounds erythrose-4-phosphate, and phosphoenolpyruvate. Shikimic acid is then converted to
130: 414:
Rosavin is formed by the addition of an arabinose residue to rosin, while rosarin is generated by the addition of an arabinofuranose residue to rosin. Depending on the sugar type, and the site it is attached to, various other glycosides may be formed.
452:-induced pulmonary fibrosis, and induced antidepressant-like effects in mouse models. The low content of rosavins in plants has limited further investigation of their activities, and there is great interest in producing rosavins using biotechnology. 397:
roots and rhizomes. The production of rosavins increases in plants as they get older, and the amount of the cinnamyl alcohol glycosides depends on the place of origin of the plant.
252:
InChI=1S/C20H28O10/c21-12-9-28-19(17(25)14(12)22)29-10-13-15(23)16(24)18(26)20(30-13)27-8-4-7-11-5-2-1-3-6-11/h1-7,12-26H,8-10H2/b7-4+/t12-,13+,14-,15+,16-,17+,18+,19-,20+/m0/s1
448:
plant rhizomes is approximately 3:1. Rosavins have also been reported to display immunomodulatory effects, radiation protection, anti-cancer activities, protective effects on
265: 531:
L. by Analyzing the Salidroside and Rosavin Content and the Electrophysiological Activity in Hippocampal Long-Term Potentiation, a Synaptic Model of Memory"
478:"Biosynthesis of a rosavin natural product in Escherichia coli by glycosyltransferase rational design and artificial pathway construction" 691: 661: 243: 373:
is an important medicinal plant commonly used throughout Europe, Asia, and North America, that has been recognized as a botanical
582:"Biotransformation of cinnamyl alcohol to rosavins by non-transformed wild type and hairy root cultures of Rhodiola kirilowii" 207: 336: 378: 58: 36: 426: 224: 96: 507: 667: 657: 611: 562: 499: 407: 170: 601: 593: 580:
Grech-Baran M, Sykłowska-Baranek K, Krajewska-Patan A, Wyrwał A, Pietrosiuk A (March 2014).
552: 542: 489: 418: 352: 288: 228: 106: 150: 606: 581: 557: 526: 361: 330: 685: 511: 195: 390: 494: 477: 597: 161: 671: 547: 449: 374: 356: 615: 566: 503: 651: 527:"Assessing the Quality and Potential Efficacy of Commercial Extracts of 182: 329:
Except where otherwise noted, data are given for materials in their
23: 425: 422:
Biosynthetic Pathway to Produce Rosavins (Rosin, Rosavin, Rosarin)
417: 141: 129: 119: 476:
Bi H, Qu G, Wang S, Zhuang Y, Sun Z, Liu T, Ma Y (January 2022).
439:
Rosavins are considered to be the major active components of
351:(also known as rosin, rosavin, and rosarin) are a family of 212: 653:
Glycoside production by in vitro Rhodiola rosea cultures
406:
chorismic acid through various enzymes derived from the
525:Dimpfel W, Schombert L, Panossian AG (2018-05-24). 273:C1((((O1)OC2((((O2)OC/C=C/C3=CC=CC=C3)O)O)O)O)O)O 194: 105: 645: 643: 641: 639: 637: 635: 633: 631: 629: 627: 625: 8: 393:of these glycosides occurs spontaneously in 227: 169: 83:)-2-{oxy}-6-({oxy}methyl)oxane-3,4,5-triol 15: 605: 556: 546: 493: 471: 469: 467: 465: 461: 270: 248: 223: 149: 7: 381:. Rosavin production is specific to 185: 14: 22: 430:Biosynthesis of L-Phenylalanine 408:shikimic-chorismic acid pathway 333:(at 25 °C , 100 kPa). 1: 656:. Oulu: University of Oulu. 359:that are key ingredients of 495:10.1016/j.ymben.2021.10.010 44:)-3-Phenylprop-2-en-1-yl α- 708: 692:Phenylpropanoid glycosides 48:-arabinopyranosyl-(1→6)-α- 598:10.1007/s10529-013-1401-5 535:Frontiers in Pharmacology 379:European Medicines Agency 327: 281: 261: 239: 89: 57: 35: 30: 21: 548:10.3389/fphar.2018.00425 443:and clinical trials of 431: 423: 586:Biotechnology Letters 482:Metabolic Engineering 429: 421: 59:Systematic IUPAC name 18: 432: 424: 337:Infobox references 16: 650:György Z (2006). 345:Chemical compound 343: 342: 208:CompTox Dashboard 131:Interactive image 51: 47: 699: 676: 675: 647: 620: 619: 609: 577: 571: 570: 560: 550: 522: 516: 515: 497: 473: 322: 321: 320: 312: 311: 303: 302: 289:Chemical formula 232: 231: 216: 214: 198: 187: 173: 153: 133: 109: 52:-glucopyranoside 49: 45: 26: 19: 707: 706: 702: 701: 700: 698: 697: 696: 682: 681: 680: 679: 664: 649: 648: 623: 579: 578: 574: 524: 523: 519: 475: 474: 463: 458: 437: 403: 387:R. sachalinenis 346: 339: 334: 319: 316: 315: 314: 310: 307: 306: 305: 301: 298: 297: 296: 294: 291: 277: 274: 269: 268: 257: 254: 253: 247: 246: 235: 225:DTXSID101027577 217: 210: 201: 188: 176: 156: 136: 123: 112: 99: 85: 84: 53: 12: 11: 5: 705: 703: 695: 694: 684: 683: 678: 677: 662: 621: 592:(3): 649–656. 572: 529:Rhodiola rosea 517: 460: 459: 457: 454: 436: 433: 402: 399: 362:Rhodiola rosea 344: 341: 340: 335: 331:standard state 328: 325: 324: 317: 308: 299: 292: 287: 284: 283: 279: 278: 276: 275: 272: 264: 263: 262: 259: 258: 256: 255: 251: 250: 242: 241: 240: 237: 236: 234: 233: 220: 218: 206: 203: 202: 200: 199: 191: 189: 181: 178: 177: 175: 174: 166: 164: 158: 157: 155: 154: 146: 144: 138: 137: 135: 134: 126: 124: 117: 114: 113: 111: 110: 102: 100: 95: 92: 91: 87: 86: 62: 61: 55: 54: 39: 33: 32: 28: 27: 13: 10: 9: 6: 4: 3: 2: 704: 693: 690: 689: 687: 673: 669: 665: 663:951-42-8079-2 659: 655: 654: 646: 644: 642: 640: 638: 636: 634: 632: 630: 628: 626: 622: 617: 613: 608: 603: 599: 595: 591: 587: 583: 576: 573: 568: 564: 559: 554: 549: 544: 540: 536: 532: 530: 521: 518: 513: 509: 505: 501: 496: 491: 487: 483: 479: 472: 470: 468: 466: 462: 455: 453: 451: 446: 442: 434: 428: 420: 416: 413: 409: 400: 398: 396: 392: 388: 384: 380: 376: 372: 368: 364: 363: 358: 354: 350: 338: 332: 326: 293: 290: 286: 285: 280: 271: 267: 260: 249: 245: 238: 230: 226: 222: 221: 219: 209: 205: 204: 197: 193: 192: 190: 184: 180: 179: 172: 168: 167: 165: 163: 160: 159: 152: 148: 147: 145: 143: 140: 139: 132: 128: 127: 125: 121: 116: 115: 108: 104: 103: 101: 98: 94: 93: 88: 82: 78: 74: 70: 66: 60: 56: 43: 38: 34: 29: 25: 20: 652: 589: 585: 575: 538: 534: 528: 520: 485: 481: 444: 440: 438: 435:Applications 411: 404: 401:Biosynthesis 394: 391:biosynthesis 386: 382: 370: 366: 360: 355:mono- and di 348: 347: 151:CHEBI:139523 90:Identifiers 80: 76: 72: 68: 64: 41: 282:Properties 456:References 389:, and the 357:glycosides 162:ChemSpider 118:3D model ( 107:84954-92-7 97:CAS Number 37:IUPAC name 672:141381688 512:240229184 488:: 15–25. 450:bleomycin 441:R. rosea, 412:R. rosea. 375:adaptogen 686:Category 616:24190481 567:29881348 504:34715353 445:R. rosea 395:Rhodiola 383:R. rosea 371:R. rosea 367:R. rosea 353:cinnamyl 17:Rosavin 607:3964300 558:5976749 541:: 425. 377:by the 349:Rosavin 323: 196:9823887 183:PubChem 171:4945006 670:  660:  614:  604:  565:  555:  510:  502:  266:SMILES 31:Names 508:S2CID 365:L., ( 244:InChI 142:ChEBI 120:JSmol 668:OCLC 658:ISBN 612:PMID 563:PMID 500:PMID 385:and 369:). 602:PMC 594:doi 553:PMC 543:doi 490:doi 213:EPA 186:CID 688:: 666:. 624:^ 610:. 600:. 590:36 588:. 584:. 561:. 551:. 537:. 533:. 506:. 498:. 486:69 484:. 480:. 464:^ 318:10 309:28 300:20 79:,6 75:,5 71:,4 67:,3 63:(2 40:(2 674:. 618:. 596:: 569:. 545:: 539:9 514:. 492:: 313:O 304:H 295:C 215:) 211:( 122:) 81:R 77:S 73:S 69:R 65:S 50:D 46:L 42:E

Index


IUPAC name
Systematic IUPAC name
CAS Number
84954-92-7
JSmol
Interactive image
ChEBI
CHEBI:139523
ChemSpider
4945006
PubChem
9823887
CompTox Dashboard
DTXSID101027577
Edit this at Wikidata
InChI
SMILES
Chemical formula
standard state
Infobox references
cinnamyl
glycosides
Rhodiola rosea
adaptogen
European Medicines Agency
biosynthesis
shikimic-chorismic acid pathway

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.