Knowledge (XXG)

Mallory reaction

Source đź“ť

343: 97:-stilbenes in the absence of a hydrogen-trapping agent. Suitably substituted stilbenes may undergo irreversible, rearomatizing elimination or -shift processes in the absence of an oxidant. Aryl enynes, heteroatomic stilbene derivatives (e.g. amides), and substrates containing a single heteroatom in place of the stilbene double bond also undergo the reaction. 114:
Regardless of the presence or absence of an oxidant, the first step of the reaction is photochemical excitation of a stilbene or similar structure, leading to formation of a dihydrophenanthrene or similar intermediate. For stilbene and other chemicals containing a double-bond linker between the two
336:
In 2015, Li and Twieg reported a novel derivative of Mallory type photocyclizations and named it as photocyclodehydrofluorination (PCDHF). In the cyclization a stilbene (or ortho-terphenyl) with a pentafluorophenyl group, the fluorine atom can be used as a facile leaving group.
252:
carbons. Which carbon reacts depends on both steric and electronic factors. Electronically, the dihydrophenanthrene intermediate exhibiting greater aromatic stabilization is preferred. For instance, in 1-naphthyl-2-phenylethylene, electronic factors favor the formation of
358:-bromosuccinimide, transformation to the phosphonium salt, and a Wittig reaction with anaromatic aldehyde, photocyclization fuses the aromatic rings. Iteration of this sequence results in helicenes. 308:
Photocyclization can also form five-membered rings. In the vinyl naphthalene series, both oxidative and non-oxidative processes are possible; although the latter requires a proton-transfer catalyst.
187:-stilbene. However, suitably substituted stilbenes cyclize irreversibly if an aromatizing elimination or hydrogen shift process can take place. Examples of these transformations are provided below. 220:-Substituted substrates generally give 1-substituted phenanthrenes, unless the substituent is a good leaving group, in which case elimination to form unsubstituted phenanthrene occurs. 166:, the cyclized intermediate can be oxidized to aromatize the rings. For example, dihydrophenanthrene becomes phenanthrene. Oxygen and iodine are the most commonly employed oxidants. 630:
Mallory, F. B.; Mallory, C. W.; Halpern, E. J. First Middle Atlantic Regional Meeting of the American Chemical Society, February 3, 1966, Philadelphia, Pa., Abstracts, p. 134.
375:
Several other methods are available to synthesize the phenanthrene ring system; however, most of these are longer or less functional group tolerant than photocyclization. The
280:
in the presence of an oxidant, such as iodine. Oxygen is unsatisfactory because ring-opening to highly stabilized terphenyl is faster than oxidation when oxygen is used.
154:
This cyclization is reversible, but several other subsequent reactions can occur instead, depending on structural details and whether certain other reagents are present.
320:
Cyclization of arylvinyl- or diarylamines provides indolines and carbazoles, respectively. In one interesting example, the use of circularly polarized light provided
236:
Substitution of the exocyclic double bond is well tolerated. Polycyclic aromatic compounds can be synthesized using substrates containing multiple aromatic rings.
354:
Photocyclization can be used as the final step of a sequence to generate a fused aromatic ring at a benzylic position. After benzylic bromization with
474: 330: 314: 302: 286: 267: 242: 230: 364: 193: 172: 183:
For most substrates, in the absence of an oxidant, the dihydrophenanthrene intermediate may reversibly open to the corresponding
393: 103: 59: 384: 816: 380: 136: 93:
to give polycyclic aromatics. Typically, the dihydrophenanthrenes themselves are relatively unstable, and revert to
67: 718: 826: 821: 470: 39: 248:
Stilbene derivatives containing fused aromatic systems may cyclize using either of two nonequivalent
43: 82: 746: 738: 140: 31: 795: 730: 455: 423: 376: 163: 17: 143:
symmetry analysis of the photochemical reaction of the six-electron system explains the
475:
Remembering the Distinguished Career of Long-Time Professor of Chemistry Frank Mallory
810: 63: 277: 55: 296:
conformation about the C-O single bond, do not undergo this process efficiently.
459: 443: 148: 78: 742: 427: 90: 750: 734: 342: 292:
Amides may cyclize to form lactams. Esters, which exist primarily in the
224:- Substituted substrates give mixtures of 2- and 4-substituted products. 74: 51: 799: 329: 313: 301: 285: 266: 241: 229: 86: 363: 192: 171: 392: 102: 47: 115:
aromatic rings, the excited structure can undergo reversible
763:
Laarhoven, W. H.; Cuppen, Th. J. H. M.; Nivard, R. J. F.
503:
Thyagarajan, B. S.; Kharasch, N.; Lewis, H. B.; Wolf, W.
127:
structures can undergo the cyclization step themselves,
147:
relative configuration at the newly bound centers by a
276:-Terphenyl substrates cyclize to the corresponding 676:Lapouyade, R.; Koussini, R.; Bouas-Laurent, H. 70:, who discovered it while a graduate student. 8: 77:and its derivatives undergo intramolecular 596:Lapouyade, R.; Koussini, R.; Rayez, J.-C. 592: 590: 204:Photocyclization can be carried out with 717:Li, Zhe; Twieg, Robert J. (2015-09-11). 783:Floyd, A. J.; Dyke, S. F.; Ward, S. E. 404: 486:Tinnemans, A. H. A.; Laarhoven, W. H. 135:and then cyclize. In keeping with the 659:Ninomiya, I.; Naito, T.; Kiguchi, T. 613:Cava, M. P.; Stern, P.; Wakisaka, K. 7: 572: 570: 437: 435: 536:Cuppen, J. H. M.; Laarhoven, W. H. 216:-substituted stilbene substrates. 25: 639:Sato, T.; Shimada, S.; Hata, K. 556:Giles, R. G. F.; Sargent, M. V. 391: 362: 341: 328: 312: 300: 284: 265: 240: 228: 191: 170: 101: 60:polycyclic aromatic hydrocarbons 719:"Photocyclodehydrofluorination" 576:Sargent, M. V.; Timmons, C. J. 441:Mallory, F. B.; Mallory, C. W. 324:in slight enantiomeric excess. 723:Chemistry - A European Journal 661:J. Chem. Soc., Perkin Trans. 1 558:J. Chem. Soc., Perkin Trans. 1 488:J. Chem. Soc., Perkin Trans. 1 1: 123:isomerization. Although only 110:Mechanism and stereochemistry 696:Nicoud, J. F.; Kagan, H. B. 598:J. Chem. Soc., Chem. Commun. 520:Zeller, K.-P.; Petersen, H. 460:10.1002/0471264180.or030.01 387:are two such alternatives. 89:, the dihydrophenanthrenes 843: 62:and heteroaromatics. This 58:and other polycyclic form 131:structures can isomerize 27:Organic chemical reaction 18:Stilbene photocyclization 261:in a ratio of 98.5:1.5. 179:Non-oxidative conditions 85:. In the presence of an 473:. (November 16, 2017) " 428:10.1021/acs.joc.0c00924 137:Woodward–Hoffmann rules 735:10.1002/chem.201502473 578:J. Chem. Soc. Suppl. 1 350:Synthetic applications 162:In the presence of an 73:Under UV irradiation, 641:Bull. Chem. Soc. Jpn. 200:Scope and limitations 817:Pericyclic reactions 158:Oxidative conditions 83:dihydrophenanthrenes 800:10.1021/cr60303a001 729:(44): 15534–15539. 54:structures to form 678:J. Am. Chem. Soc. 538:J. Am. Chem. Soc. 141:molecular orbital 32:organic chemistry 16:(Redirected from 834: 802: 781: 775: 761: 755: 754: 714: 708: 694: 688: 674: 668: 657: 651: 637: 631: 628: 622: 611: 605: 594: 585: 574: 565: 554: 548: 534: 528: 518: 512: 501: 495: 484: 478: 468: 462: 439: 430: 409: 395: 377:Haworth reaction 366: 345: 332: 316: 304: 288: 269: 244: 232: 195: 174: 105: 36:Mallory reaction 21: 842: 841: 837: 836: 835: 833: 832: 831: 807: 806: 805: 782: 778: 762: 758: 716: 715: 711: 695: 691: 675: 671: 658: 654: 638: 634: 629: 625: 612: 608: 595: 588: 575: 568: 555: 551: 535: 531: 519: 515: 502: 498: 485: 481: 469: 465: 440: 433: 410: 406: 402: 381:Wagner-Meerwein 373: 352: 202: 181: 164:oxidizing agent 160: 112: 28: 23: 22: 15: 12: 11: 5: 840: 838: 830: 829: 827:Name reactions 824: 822:Photochemistry 819: 809: 808: 804: 803: 776: 756: 709: 689: 669: 652: 632: 623: 621:, 2245 (1973). 606: 586: 566: 549: 529: 513: 496: 479: 463: 431: 403: 401: 398: 397: 396: 385:ring-expansion 372: 369: 368: 367: 351: 348: 347: 346: 334: 333: 318: 317: 306: 305: 290: 289: 271: 270: 246: 245: 234: 233: 201: 198: 197: 196: 180: 177: 176: 175: 159: 156: 111: 108: 107: 106: 46:reaction of di 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 839: 828: 825: 823: 820: 818: 815: 814: 812: 801: 797: 793: 789: 786: 780: 777: 773: 769: 766: 760: 757: 752: 748: 744: 740: 736: 732: 728: 724: 720: 713: 710: 706: 702: 699: 698:Isr. J. Chem. 693: 690: 686: 682: 679: 673: 670: 666: 662: 656: 653: 649: 645: 642: 636: 633: 627: 624: 620: 616: 610: 607: 603: 599: 593: 591: 587: 583: 579: 573: 571: 567: 563: 559: 553: 550: 546: 542: 539: 533: 530: 526: 523: 517: 514: 510: 506: 505:Chem. Commun. 500: 497: 493: 489: 483: 480: 476: 472: 467: 464: 461: 457: 453: 449: 446: 445: 438: 436: 432: 429: 425: 422:, 8749–8759. 421: 417: 414: 413:J. Org. Chem. 408: 405: 399: 394: 390: 389: 388: 386: 382: 378: 370: 365: 361: 360: 359: 357: 349: 344: 340: 339: 338: 331: 327: 326: 325: 323: 315: 311: 310: 309: 303: 299: 298: 297: 295: 287: 283: 282: 281: 279: 278:triphenylenes 275: 268: 264: 263: 262: 260: 256: 251: 243: 239: 238: 237: 231: 227: 226: 225: 223: 219: 215: 211: 207: 199: 194: 190: 189: 188: 186: 178: 173: 169: 168: 167: 165: 157: 155: 152: 150: 146: 142: 138: 134: 130: 126: 122: 118: 109: 104: 100: 99: 98: 96: 92: 88: 84: 80: 76: 71: 69: 68:Frank Mallory 66:is named for 65: 64:name reaction 61: 57: 56:phenanthrenes 53: 49: 45: 42:-cyclization– 41: 40:photochemical 37: 33: 19: 791: 787: 784: 779: 771: 767: 764: 759: 726: 722: 712: 704: 700: 697: 692: 684: 680: 677: 672: 664: 660: 655: 647: 643: 640: 635: 626: 618: 614: 609: 601: 597: 581: 577: 561: 557: 552: 544: 540: 537: 532: 524: 521: 516: 508: 504: 499: 491: 487: 482: 471:Cassidy, Kim 466: 451: 447: 442: 419: 415: 412: 411:Lvov, A. G. 407: 374: 355: 353: 335: 321: 319: 307: 293: 291: 273: 272: 258: 254: 249: 247: 235: 221: 217: 213: 209: 205: 203: 184: 182: 161: 153: 144: 132: 128: 124: 120: 116: 113: 94: 72: 35: 29: 765:Tetrahedron 615:Tetrahedron 444:Org. React. 149:conrotatory 79:cyclization 44:elimination 811:Categories 785:Chem. Rev. 400:References 743:0947-6539 522:Synthesis 151:process. 91:aromatize 751:26360126 379:and the 371:See also 81:to form 75:stilbene 52:ethylene 794:, 509. 774:, 3343. 687:, 7374. 667:, 2257. 650:, 2484. 584:, 5544. 564:, 2447. 547:, 5914. 494:, 1115. 212:-, and 133:in situ 87:oxidant 749:  741:  604:, 676. 527:, 532. 511:, 614. 383:-type 34:, the 707:, 78. 454:, 1. 294:trans 274:ortho 257:over 250:ortho 218:ortho 206:ortho 145:trans 129:trans 121:trans 38:is a 788:1976 768:1974 747:PMID 739:ISSN 701:1977 681:1977 665:1973 644:1971 602:1975 582:1964 562:1974 541:1972 525:1975 509:1967 492:1976 448:1984 416:2020 222:meta 214:para 210:meta 48:aryl 796:doi 731:doi 456:doi 424:doi 208:-, 185:cis 125:cis 117:cis 95:cis 30:In 813:: 792:76 790:, 772:30 770:, 745:. 737:. 727:21 725:. 721:. 705:15 703:, 685:99 683:, 663:, 648:44 646:, 619:29 617:, 600:, 589:^ 580:, 569:^ 560:, 545:94 543:, 507:, 490:, 452:30 450:, 434:^ 420:85 418:, 139:, 798:: 753:. 733:: 477:" 458:: 426:: 356:N 322:3 259:2 255:1 119:- 50:- 20:)

Index

Stilbene photocyclization
organic chemistry
photochemical
elimination
aryl
ethylene
phenanthrenes
polycyclic aromatic hydrocarbons
name reaction
Frank Mallory
stilbene
cyclization
dihydrophenanthrenes
oxidant
aromatize

Woodward–Hoffmann rules
molecular orbital
conrotatory
oxidizing agent





triphenylenes



Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑