Knowledge (XXG)

Stomiidae

Source 📝

564:, have the ability to detect and produce red bioluminescence. This is made possible by far-red emitting photophores located under the eye and rhodopsins that are sensitive to long-wave emissions. This red bioluminescence is used to illuminate prey and to detect other far-red dragonfishes, because it goes undetected by most other species. The species with far-red emitting photophores differ in morphology and behavior from most other dragonfish species. For example, the barbels of these species are more simple in structure than those of other dragonfishes. They also differ in foraging strategies. While most dragonfishes that produce shortwave blue bioluminescence undergo regular diel vertical migrations, this is not seen in those with far-red emissions. The foraging strategy they undergo involves remaining in the deep-sea and emitting far-red bioluminescence to illuminate a small area and search for prey. Although 429:
to communicate, lure prey, distract predators, and camouflage themselves. The stomiidae family has many unique adaptations to their sensory organs for the deep sea. Most deep-sea organisms have only a single visual pigment sensitive to the absorbance ranges of 470–490 nm. This type of optical system is commonly found in the stomiidae family. However, three genera of dragonfish evolved the ability to produce both long-wave and short-wave bioluminescence. In addition, deep-sea dragon fishes evolved retinas with far-red emitting photophores and rhodopsins. These far-red emitting properties produce long-wave bioluminescence greater than 650 nm. This unique evolutionary trait was first seen around 15.4 Ma and had a single evolutionary origin within the stomiidae family.
408:
resistive forces to lower jaw adduction compared to fish with shorter jaws; however, due to decreased surface area of the lower jaw, dragonfish are able to lower the mechanical advantage of adduction and increase adduction velocity through the reduction of resistive forces. Additionally, it is seen that the adductor mass of the lower jaw of deep-sea dragonfish is significantly decreased, allowing for increased ability to attain high adduction velocity. This makes the deep-sea dragonfish significantly more competitive when hunting for prey due to its ability to capture large prey quickly and efficiently.
649: 729: 416:
In some taxa the first to tenth anterior vertebrae are reduced or entirely absent. This gap is the result of notochord elongation in this specific area. Functionally, the gap allows deep-sea dragonfish to pull back their cranium and open their mouths up to 120°, which is significantly farther than other taxa that lack such a head joint. This is what allows deep-sea dragonfish to engulf such large prey, resulting in improved survival through the ability to consume more organisms in an extremely food limited environment.
697: 665: 420:
This means the refraction index of their teeth is nearly identical to that of the sea water they inhabit. The transparency is due to a nanoscale structure of hydroxyapatite and collagen, while the tips of the transparent teeth of deep-sea dragonfish were found to emit more red light in seawater which further contributes to its transparency as red light is close to invisible at the depths that the deep-sea dragonfish reside due to a lack of light penetration.
53: 713: 681: 761: 601: 530:
photophores that emit red bioluminescence are particularly helpful for finding prey, since many organisms in the deep sea can only see blue light, it appears as though this red light emission by dragonfish is not directly associated with prey choice, and it is thus hypothesized that it may be used for intraspecific communication. This raises an interesting question of to what extent the red bioluminescence determines dragonfish prey choice.
399:
blue-green light, the wavelengths of which can travel the farthest in the ocean. The deep-sea dragonfish waves its barbel back and forth and produces flashing lights on and off to attract prey and potential mates. Many of the species they prey upon also produce light themselves, which is why they have evolved to have black stomach walls to keep the lights concealed while digesting their meal in order to stay hidden from their predators.
777: 745: 633: 793: 585: 498:. It is proposed that the specificity of bioluminescent barbel structure to certain species allows for advantageous same-species recognition that promotes genetic isolation, in addition to allowing scientists to more easily identify distinct species due to anatomical barbel differences. The diversity of Stomiidae species is exceptional for their clade age thanks largely to the species-specific barbels. Further, 539:
cylindrical muscles, blood vessels and nervous fibers, and the bulb of the barbel has a single photophore. The catecholamine adrenaline is found in the connective tissue within the stem. One hypothesis regarding barbel control is that adrenaline innervation may control both the movement of the barbel and its production of bioluminescence. Data from a study performed on specimens of the
617: 507: 809: 31: 469:
vision have evolved to allow them to thrive in the deep sea. Dragonfish use far-red emitting photophores and rhodopsins to detect prey and navigate their habitats. Additionally, dragonfish use chlorophyll in their eyes to detect the weak bioluminescence of their prey, which is an unusual adaptation for a vertebrate.
455:
Egg-laying, which predominantly occurs in October, is preceded by a distinctive whirling behavior driven by the male prodding the side of the female's abdomen. Additionally, dragonfish possess a unique adaptation of being able to see using chlorophyll in their eyes, which may allow them to detect the
428:
The deep-sea dragonfishes are part of the stomiidae family, making up a clade of 28 genera and 290 species. The dragonfish possess unique adaptations to help them thrive in the deepest parts of the ocean. This family species have been discovered to use certain long-wave and short-wave bioluminescence
419:
On top of an extremely well adapted jaw, members of the Stomiidae family also have teeth that are adapted for hunting in deep sea. Their teeth are sharp, hard, stiff, and transparent when wet, making their teeth dangerous weapons as these teeth become basically invisible in the light absent deep sea.
415:
Additionally, members of this family have a unique head joint that contribute to its ability to open its 'loosejaw' so wide. Deep-sea dragonfish have a flexible connection between the base of the skull and first vertebrae called the occipito-vertebral gap where only the flexible notochord is present.
354:
Brian Coad, ichthyologist from the Canada Museum of Nature once observed that there are "64 reported from Canada, 5 of which reach the Arctic". These species are most commonly found in the mesopelagic to bathypelagic regions at a depth of 1000m-4000m, and in the Arctic, most samples of these species
477:
Teleost fishes exhibit a wide range of visual signals, including color, texture, form, and motion, that are used to find mates, establish dominance, defend territory, and coordinate group behavior. Dragonfish have specialized bioluminescent organs that produce red light to communicate with potential
398:
at the tip, attached to their chin. They also have photophores attached along the sides of their body. A specific species of Stomiidae, the Chauliodus, cannot luminesce longer than 30 minutes without adrenaline. However, in presence of adrenaline, it can produce light for many hours. They produce
468:
One study focuses on the stomiid family, which includes loosejaws and dragonfishes, analyzing the genetic makeup of the visual pigments in these fish and how they have adapted to the unique light conditions of the deep-sea environment. The research helps us understand how dragonfish behavior and
446:
Dragonfish are a type of teleost fish that inhabit the deep sea and use bioluminescence to detect prey and communicate with potential mates. They possess far-red emitting photophores and rhodopsins that are sensitive to long-wave emissions greater than 650 nm, and have adapted to the unique
437:
Dragonfish females exhibit two distinct cohorts oocytes, one which is a white cream color during the first growing stage and the other which is orange-reddish in vitellogenesis. The orange-reddish ovaries are released in the current spawning season, while the other batch is in the growing stage.
407:
The jaw of members in the Stomiidae family is adapted extremely well for survival and predation in the deep sea. Although small in size, the dragonfish jaw is adapted to capture large prey that are up to 50% the body mass of themselves. The long "loosejaw" of the dragonfish exhibits increased
529:
also have a unique red light emitting photophore in the suborbital region. It is thought that the mechanism of red bioluminescence produced by the suborbital photophore is facilitated by energy transmission and is chemically similar to the blue bioluminescence of the barbel. While suborbital
538:
Species of the Stomiidae family use blue bioluminescence for communication, camouflage, and as a luring mechanism. They emit shortwave blue bioluminescence from postorbital photophores and from a long, slender appendage on the chin, called the barbel. The shaft of the barbel is composed of
323:
and have enormous jaws filled with fang-like teeth. They are also able to hinge the neurocranium and upper-jaw system, which leads to the opening of the jaw to more than 100 degrees. This ability allows them to consume extremely large prey, often 50% greater than their standard length.
456:
weak bioluminescence of their prey and navigate their dark habitats more effectively. This research sheds light on the reproductive behavior and early life stages of the naked dragonfish and contributes to our understanding of the ecology and behavior of dragonfish species.
1807: 411:
An important distinction in jaw morphology between an adult dragonfish and its larvae are the shape of the mouth. The adult fish have an elongated snout-like face with a protruding jaw, while the larvae have a rounder shaped mouth and a lower jaw that does not protrude.
365:
Species of Antarctic dragonfish are found in the Southern Ocean. There are 16 species in the Antarctic, all belonging to the suborder Notothenioidei. Two species in this region that are currently generating interest in further scientific study are sister species
459:
Dragonfish also display a parental care behavior, where they guard their nest, staying within close proximity and resting on its pelvic fins. This guarding behavior has been documented in all the major clades of Antarctic notothenoids, except Artedidraconidae.
1423:
Kenaley, Christopher P.; Devaney, Shannon C.; Fjeran, Taylor T. (April 2014). "The complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiiformes: Stomiidae)".
880:
Desvignes, T.; Postlethwait, J. H.; Konstantinidis, P. (2020). "Biogeography of the antarctic dragonfishes Acanthodraco dewitti and Psilodraco breviceps with re-description of Acanthodraco dewitti (Notothenioidei: Bathydraconidae)".
438:
Stomiids are gonochoristic, allowing them to increase their reproductive fitness by using their energy to produce gametes instead of reconfiguring the reproductive system. The female adult stomiids are also larger than the males.
502:
of bioluminescence in dragonfish contributes to even greater diversity within the species, but the greater abundance of immature specimens within research collections makes studying sexual dimorphism challenging.
572:
all have suborbital photophores that produce red bioluminescence, there are differences in the suborbital photophores between these three genera, in their shape, color, flash duration, and maximum emission.
490:
barbels, which act as lures for prey and are a species-specific structure. These barbels extend anteriorly off the bottom jaw, and prey attracted to its bioluminescence include
390:
helps produce this light. The deep-sea dragonfishes have large heads, and mouths equipped with many sharp fang-like teeth. They have a long stringlike structure known as a
1138:"Exploring feeding behaviour in deep-sea dragonfishes (Teleostei: Stomiidae): jaw biomechanics and functional significance of a loosejaw: DRAGONFISH FEEDING BIOMECHANICS" 478:
mates and prey. Understanding the visual communication and behavior of teleost fishes is essential to understanding the behavior of dragonfish in their natural habitats.
355:
have been captured along the Davis Strait. The average temperature in these waters is approximately 3–4 °C Some examples of species discovered in that region are:
1538:"Long–wave sensitivity in deep–sea stomiid dragonfish with far–red bioluminescence: evidence for a dietary origin of the chlorophyll–derived retinal photosensitizer of 1984:"The Complex Evolutionary History of Seeing Red: Molecular Phylogeny and the Evolution of an Adaptive Visual System in Deep-Sea Dragonfishes (Stomiiformes: Stomiidae)" 2366: 2405: 1742:
Douglas, R. H.; Partridge, J. C.; Dulai, K.; Hunt, D.; Mullineaux, C. W.; Tauber, A. Y.; Hynninen, P. H. (June 1998). "Dragon fish see using chlorophyll".
1597:
Novillo, Manuel; Moreira, Eugenia; Macchi, Gustavo; Barrera-Oro, Esteban (2018-11-01). "Reproductive biology in the Antarctic bathydraconid dragonfish
340:, depending on the water's ideal feeding and breeding conditions. There is also some evidence that certain species within the family Stomiidae exhibit 2340: 2379: 1786: 979: 543:
species agree with this hypothesis because the barbels of the dragonfish produced light emissions following exposure to external adrenaline.
844:"Exploring Feeding Behavior In Deep-sea Dragonfishes (Teleostei: Stomiidae): Jaw Biomechanics and Functional Significance of a Loosejaw" 648: 1039:
Mallefet, Jérôme; Duchatelet, Laurent; Hermans, Claire; Baguet, Fernand (2019-01-01). "Luminescence control of Stomiidae photophores".
728: 2510: 1294:"New insights into the complex structure and ontogeny of the occipito-vertebral gap in barbeled dragonfishes (Stomiidae, Teleostei)" 2477: 336:
can be found in all oceans. They also exist at a wide range of depths between the surface and thousands of meters deep into the
2384: 2169: 908:
Eduardo, L. N.; Lucena-Frédou, F.; Mincarone, M. M.; Soares, A.; Le Loc'h, F.; Frédou, T.; Ménard, F.; Bertrand, A. (2020).
664: 2392: 1695:
Barrera-Oro, Esteban R.; Lagger, Cristian (2010-11-01). "Egg-guarding behaviour in the Antarctic bathydraconid dragonfish
1137: 1377:
Velasco-Hogan, Audrey; Deheyn, Dimitri D.; Koch, Marcus; Nothdurft, Birgit; Arzt, Eduard; Meyers, Marc A. (July 2019).
2301: 2288: 1469:"Localisation and origin of the bacteriochlorophyll-derived photosensitizer in the retina of the deep-sea dragon fish 910:"Trophic ecology, habitat, and migratory behaviour of the viperfish Chauliodus sloani reveal a key mesopelagic player" 712: 680: 696: 760: 600: 382:
It is one of the many species of deep-sea fish that can produce their own light through a chemical process known as
2410: 52: 1467:
Douglas, Ronald H.; Genner, Martin J.; Hudson, Alan G.; Partridge, Julian C.; Wagner, Hans-Joachim (2016-12-20).
776: 744: 671: 632: 344:. Temperature, salinity, oxygen, and fluorescence profiles of an area can affect some species' (like Sloane's 2063:"Red bioluminescence in fishes: on the suborbital photophores of Malacosteus, Pachystomias and Aristostomias" 1930:"Red bioluminescence in fishes: on the suborbital photophores of Malacosteus, Pachystomias and Aristostomias" 792: 584: 361:
richardsoni; Borostomia antarcticus; Chauliodus sloani; Malacosteus niger; Rhadinesthes decimus; Stomias boa.
2191: 2228: 719: 687: 2441: 2306: 767: 616: 607: 1536:
Douglas, R. H.; Mullineaux, C. W.; Partridge, J. C. (2000-09-29). Collin, S.P.; Marshall, N.J. (eds.).
2459: 2112: 1856:
Davis, Matthew P.; Holcroft, Nancy I.; Wiley, Edward O.; Sparks, John S.; Leo Smith, W. (2014-05-01).
2482: 2420: 2327: 2275: 2178: 2074: 2034: 1941: 1869: 1819: 1751: 1708: 1610: 1484: 1235: 1183: 783: 751: 655: 114: 39: 735: 639: 521:
In addition to a bioluminescent barbel, members of the Stomiidae family have a blue light emitting
2505: 2148: 1072: 799: 591: 47: 2446: 966:. Toronto: Toronto: University of Toronto Press. pp. Chapter 25 "Stomiidae: Dragonfishes". 2428: 2314: 2140: 2132: 2090: 2011: 2003: 1957: 1903: 1885: 1835: 1767: 1724: 1677: 1636: 1579: 1561: 1518: 1500: 1449: 1441: 1315: 1271: 1253: 1201: 1170:
Evans, Clive W.; Cziko, Paul; Cheng, Chi-Hing Christina; Devries, Arthur L. (September 2005).
1118: 1064: 1056: 1021: 975: 939: 815: 808: 703: 554: 499: 337: 2371: 2206: 2469: 2433: 2124: 2082: 1995: 1949: 1893: 1877: 1827: 1759: 1716: 1667: 1626: 1618: 1569: 1553: 1508: 1492: 1433: 1394: 1354: 1305: 1261: 1243: 1191: 1149: 1108: 1048: 1011: 967: 929: 921: 890: 855: 623: 391: 341: 308: 487: 383: 312: 198: 192: 2266: 1808:"REVIEW. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea" 2078: 1945: 1873: 1823: 1755: 1712: 1614: 1546:
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
1488: 1239: 1187: 1898: 1574: 1537: 1513: 1468: 1266: 1223: 1172:"Spawning behaviour and early development in the naked dragonfish Gymnodraco acuticeps" 934: 495: 94: 2111:
Mallefet, Jérôme; Duchatelet, Laurent; Hermans, Claire; Baguet, Fernand (2019-01-01).
1656:"Reproductive Ecology of Dragonfishes (Stomiiformes: Stomiidae) in the Gulf of Mexico" 2499: 2174: 1153: 860: 843: 548: 320: 240: 228: 180: 138: 2152: 1335:"Histological data on bone and teeth in two dragonfishes (Stomiidae; Stomiiformes): 1076: 319:. They are quite small, usually around 15 cm, up to 26 cm. These fish are 1654:
Marks, Alex D.; Kerstetter, David W.; Wyanski, David M.; Sutton, Tracey T. (2020).
1359: 1334: 560: 294: 270: 264: 252: 216: 204: 168: 144: 104: 2280: 2319: 2293: 2214: 2128: 1248: 1052: 2397: 2353: 2260: 491: 288: 258: 222: 210: 156: 150: 1929: 1399: 1378: 1113: 1096: 925: 894: 2086: 1982:
Kenaley, Christopher P.; DeVaney, Shannon C.; Fjeran, Taylor T. (2014-01-30).
1953: 1881: 1831: 1720: 1622: 1196: 1171: 1016: 999: 522: 395: 387: 282: 246: 234: 174: 162: 2251: 2136: 2094: 2007: 1961: 1889: 1839: 1771: 1728: 1681: 1672: 1655: 1640: 1565: 1504: 1445: 1257: 1205: 1122: 1060: 1025: 909: 2062: 1857: 345: 186: 64: 2144: 2015: 1907: 1583: 1557: 1522: 1453: 1333:
Germain, Damien; Schnell, Nalani K.; Meunier, François J. (February 2019).
1319: 1275: 1068: 943: 971: 30: 2245: 2183: 1858:"Species-specific bioluminescence facilitates speciation in the deep sea" 84: 2196: 961: 506: 1631: 1310: 1293: 276: 1999: 1496: 1437: 486:
Dragonfish of the Stomiidae family are largely characterized by their
2358: 1224:"Evolution of a Functional Head Joint in Deep-Sea Fishes (Stomiidae)" 74: 2345: 2222: 2201: 1983: 1379:"On the Nature of the Transparent Teeth of the Deep-Sea Dragonfish, 960:
Coad, B.; Reist, J. (2017). Coad, Brian W.; Reist, James D. (eds.).
2454: 1812:
Journal of the Marine Biological Association of the United Kingdom
1763: 505: 2226: 2332: 510:
A red photophore is visible in the suborbital region of this
1292:
Schnell, Nalani K.; Britz, Ralf; Johnson, G. David (2010).
1095:
Gilbert, Pupa U. P. A.; Stifler, Cayla A. (2019-07-10).
525:
in the postorbital region. Some dragonfish, such as the
351:) preferred habitat changes from day to night with DVM. 546:
The loose jaw dragonfishes, which include species from
1222:
Schnell, Nalani K.; Johnson, G. David (2017-02-01).
2235: 2113:"Luminescence control of Stomiidae photophores" 464:Evolution and adaptations of the visual system 447:light conditions of the deep-sea environment. 2061:Herring, Peter J.; Cope, Celia (2005-12-01). 1928:Herring, Peter J.; Cope, Celia (2005-09-28). 8: 2223: 1000:"It Can Bite You Even if You Can't See It" 29: 20: 1897: 1671: 1630: 1573: 1512: 1398: 1358: 1309: 1265: 1247: 1195: 1142:Biological Journal of the Linnean Society 1112: 1015: 933: 859: 848:Biological Journal of the Linnean Society 837: 835: 833: 1787:"Communication Behavior: Visual Signals" 998:Carmichael, Stephen W. (November 2019). 2106: 2104: 2056: 2054: 2029: 2027: 2025: 829: 580: 1977: 1975: 1973: 1971: 1923: 1921: 1919: 1917: 1851: 1849: 1801: 1799: 1418: 1416: 1414: 1412: 1410: 1372: 1370: 1287: 1285: 1217: 1215: 1165: 1163: 1090: 1088: 1086: 955: 953: 7: 2460:AC642D14-3A59-FFDA-34F2-FBD8DEC72E50 2421:bd7e43c5-f598-45c7-8785-e483435f887f 1136:Kenaley, Christopher P. (May 2012). 993: 991: 875: 873: 871: 14: 2192:Review of the Astronesthid Fishes 1806:Herring, Peter J. (August 2007). 473:Visual communication and behavior 1154:10.1111/j.1095-8312.2012.01854.x 861:10.1111/j.1095-8312.2012.01854.x 842:Kenaley, Christopher P. (2012). 807: 791: 775: 759: 743: 727: 711: 695: 679: 663: 647: 631: 615: 599: 583: 51: 1339:Regan & Trewavas, 1929 and 963:Marine Fishes of Arctic Canada 577:Representative species gallery 1: 386:. A special organ known as a 2129:10.1016/j.acthis.2018.10.001 1360:10.26028/cybium/2019-431-010 1249:10.1371/journal.pone.0170224 1097:"See-Through Teeth, Clearly" 1053:10.1016/j.acthis.2018.10.001 482:Bioluminescence in Stomiidae 1660:Frontiers in Marine Science 424:Evolution of sensory organs 2527: 2202:The Deep Sea ocean biology 1400:10.1016/j.matt.2019.05.010 1114:10.1016/j.matt.2019.06.015 926:10.1038/s41598-020-77222-8 895:10.1007/s00300-020-02661-y 2087:10.1007/s00227-005-0085-3 1954:10.1007/s00227-005-0085-3 1882:10.1007/s00227-014-2406-x 1832:10.1017/S0025315407056433 1721:10.1007/s00300-010-0847-3 1697:Parachaenichthys charcoti 1623:10.1007/s00300-018-2359-5 1599:Parachaenichthys charcoti 1381:Aristostomias scintillans 1197:10.1017/S0954102005002749 1017:10.1017/S1551929519001056 566:Malacosteus, Pachystomias 394:, with a light-producing 135: 130: 48:Scientific classification 46: 37: 28: 23: 2511:Ray-finned fish families 2177:; Pauly, Daniel (eds.). 1673:10.3389/fmars.2020.00101 672:Grammatostomias dentatus 2187:. January 2006 version. 2035:"Splendor in the Dark" 1558:10.1098/rstb.2000.0681 1337:Borostomias panamensis 720:Melanostomias melanops 688:Idiacanthus atlanticus 518: 2442:Paleobiology Database 2207:Science and the Sea, 1298:Journal of Morphology 972:10.3138/9781442667297 768:Pachystomias microdon 608:Bathophilus vaillanti 509: 451:Reproductive behavior 433:Reproductive features 317:barbeled dragonfishes 784:Photonectes gracilis 752:Photostomias guernei 656:Eustomias trewavasae 534:Lure bioluminescence 372:Psilodraco breviceps 368:Acanthodraco dewitti 40:Photostomias guernei 2079:2005MarBi.148..383H 1946:2005MarBi.148..383H 1874:2014MarBi.161.1139D 1824:2007JMBUK..87..829H 1756:1998Natur.393..423D 1713:2010PoBio..33.1585B 1615:2018PoBio..41.2239N 1552:(1401): 1269–1272. 1489:2016NatSR...639395D 1240:2017PLoSO..1270224S 1188:2005AntSc..17..319E 736:Neonesthes capensis 640:Echiostoma barbatum 2197:Malacosteus niger 2179:"Family Stomiidae" 1477:Scientific Reports 1311:10.1002/jmor.10858 914:Scientific Reports 800:Photostomias atrox 592:Astronesthes niger 527:Malacosteus niger, 519: 342:migratory behavior 2493: 2492: 2429:Open Tree of Life 2229:Taxon identifiers 2117:Acta Histochemica 2039:Discover Magazine 2000:10.1111/evo.12322 1750:(6684): 423–424. 1707:(11): 1585–1587. 1609:(11): 2239–2248. 1540:Malacosteus niger 1497:10.1038/srep39395 1471:Malacosteus niger 1438:10.1111/evo.12322 1176:Antarctic Science 1041:Acta Histochemica 981:978-1-4426-6729-7 816:Stomias nebulosus 704:Malacosteus niger 500:sexual dimorphism 349:Chauliodus sloani 338:bathypelagic zone 302: 301: 2518: 2486: 2485: 2473: 2472: 2463: 2462: 2450: 2449: 2437: 2436: 2424: 2423: 2414: 2413: 2401: 2400: 2398:NHMSYS0000329067 2388: 2387: 2375: 2374: 2362: 2361: 2349: 2348: 2336: 2335: 2323: 2322: 2310: 2309: 2297: 2296: 2284: 2283: 2271: 2270: 2269: 2256: 2255: 2254: 2224: 2188: 2157: 2156: 2108: 2099: 2098: 2058: 2049: 2048: 2046: 2045: 2031: 2020: 2019: 1979: 1966: 1965: 1925: 1912: 1911: 1901: 1868:(5): 1139–1148. 1853: 1844: 1843: 1803: 1794: 1793: 1791: 1785:Marshall, N. J. 1782: 1776: 1775: 1739: 1733: 1732: 1692: 1686: 1685: 1675: 1651: 1645: 1644: 1634: 1594: 1588: 1587: 1577: 1533: 1527: 1526: 1516: 1464: 1458: 1457: 1420: 1405: 1404: 1402: 1374: 1365: 1364: 1362: 1343:Reinhardt, 1842" 1330: 1324: 1323: 1313: 1304:(8): 1006–1022. 1289: 1280: 1279: 1269: 1251: 1219: 1210: 1209: 1199: 1167: 1158: 1157: 1133: 1127: 1126: 1116: 1092: 1081: 1080: 1036: 1030: 1029: 1019: 1004:Microscopy Today 995: 986: 985: 957: 948: 947: 937: 905: 899: 898: 877: 866: 865: 863: 839: 811: 795: 779: 763: 747: 731: 715: 699: 683: 667: 651: 635: 624:Chauliodus danae 619: 603: 587: 315:, including the 56: 55: 33: 21: 16:Family of fishes 2526: 2525: 2521: 2520: 2519: 2517: 2516: 2515: 2496: 2495: 2494: 2489: 2481: 2476: 2468: 2466: 2458: 2453: 2445: 2440: 2432: 2427: 2419: 2417: 2409: 2404: 2396: 2391: 2383: 2378: 2370: 2365: 2357: 2352: 2344: 2339: 2331: 2326: 2318: 2313: 2305: 2300: 2292: 2287: 2279: 2274: 2265: 2264: 2259: 2250: 2249: 2244: 2231: 2173: 2166: 2161: 2160: 2110: 2109: 2102: 2060: 2059: 2052: 2043: 2041: 2033: 2032: 2023: 1994:(4): 996–1013. 1981: 1980: 1969: 1927: 1926: 1915: 1855: 1854: 1847: 1805: 1804: 1797: 1789: 1784: 1783: 1779: 1741: 1740: 1736: 1694: 1693: 1689: 1653: 1652: 1648: 1596: 1595: 1591: 1535: 1534: 1530: 1466: 1465: 1461: 1432:(4): 996–1013. 1422: 1421: 1408: 1376: 1375: 1368: 1332: 1331: 1327: 1291: 1290: 1283: 1234:(2). e0170224. 1221: 1220: 1213: 1169: 1168: 1161: 1135: 1134: 1130: 1094: 1093: 1084: 1038: 1037: 1033: 997: 996: 989: 982: 959: 958: 951: 907: 906: 902: 879: 878: 869: 841: 840: 831: 826: 819: 812: 803: 796: 787: 780: 771: 764: 755: 748: 739: 732: 723: 716: 707: 700: 691: 684: 675: 668: 659: 652: 643: 636: 627: 620: 611: 604: 595: 588: 579: 536: 484: 475: 466: 453: 444: 435: 426: 405: 384:bioluminescence 380: 330: 313:ray-finned fish 292: 286: 280: 274: 268: 262: 256: 250: 244: 238: 232: 226: 220: 214: 208: 202: 199:Grammatostomias 196: 193:Flagellostomias 190: 184: 178: 172: 166: 160: 154: 148: 142: 115:Phosichthyoidei 50: 17: 12: 11: 5: 2524: 2522: 2514: 2513: 2508: 2498: 2497: 2491: 2490: 2488: 2487: 2474: 2464: 2451: 2438: 2425: 2415: 2402: 2389: 2376: 2363: 2350: 2337: 2324: 2311: 2298: 2285: 2272: 2257: 2241: 2239: 2233: 2232: 2227: 2221: 2220: 2212: 2204: 2199: 2194: 2189: 2175:Froese, Rainer 2171: 2165: 2164:External links 2162: 2159: 2158: 2100: 2073:(2): 383–394. 2067:Marine Biology 2050: 2021: 1967: 1940:(2): 383–394. 1934:Marine Biology 1913: 1862:Marine Biology 1845: 1818:(4): 829–842. 1795: 1777: 1734: 1687: 1646: 1589: 1528: 1459: 1406: 1393:(1): 235–249. 1366: 1353:(1): 103–107. 1325: 1281: 1211: 1182:(3): 319–327. 1159: 1148:(1): 224–240. 1128: 1082: 1031: 987: 980: 949: 900: 889:(5): 565–572. 867: 854:(1): 224–240. 828: 827: 825: 822: 821: 820: 813: 806: 804: 797: 790: 788: 781: 774: 772: 765: 758: 756: 749: 742: 740: 733: 726: 724: 717: 710: 708: 701: 694: 692: 685: 678: 676: 669: 662: 660: 653: 646: 644: 637: 630: 628: 621: 614: 612: 605: 598: 596: 589: 582: 578: 575: 535: 532: 488:bioluminescent 483: 480: 474: 471: 465: 462: 452: 449: 443: 440: 434: 431: 425: 422: 404: 403:Jaw morphology 401: 379: 376: 329: 326: 321:apex predators 300: 299: 133: 132: 128: 127: 122: 118: 117: 112: 108: 107: 102: 98: 97: 95:Actinopterygii 92: 88: 87: 82: 78: 77: 72: 68: 67: 62: 58: 57: 44: 43: 35: 34: 26: 25: 15: 13: 10: 9: 6: 4: 3: 2: 2523: 2512: 2509: 2507: 2504: 2503: 2501: 2484: 2479: 2475: 2471: 2465: 2461: 2456: 2452: 2448: 2443: 2439: 2435: 2430: 2426: 2422: 2416: 2412: 2407: 2403: 2399: 2394: 2390: 2386: 2381: 2377: 2373: 2368: 2364: 2360: 2355: 2351: 2347: 2342: 2338: 2334: 2329: 2325: 2321: 2316: 2312: 2308: 2303: 2299: 2295: 2290: 2286: 2282: 2277: 2273: 2268: 2262: 2258: 2253: 2247: 2243: 2242: 2240: 2238: 2234: 2230: 2225: 2219: 2218: 2213: 2211: 2210: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2186: 2185: 2180: 2176: 2172: 2170: 2168: 2167: 2163: 2154: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2107: 2105: 2101: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2057: 2055: 2051: 2040: 2036: 2030: 2028: 2026: 2022: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1978: 1976: 1974: 1972: 1968: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1922: 1920: 1918: 1914: 1909: 1905: 1900: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1852: 1850: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1802: 1800: 1796: 1788: 1781: 1778: 1773: 1769: 1765: 1764:10.1038/30871 1761: 1757: 1753: 1749: 1745: 1738: 1735: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1701:Polar Biology 1698: 1691: 1688: 1683: 1679: 1674: 1669: 1665: 1661: 1657: 1650: 1647: 1642: 1638: 1633: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1603:Polar Biology 1600: 1593: 1590: 1585: 1581: 1576: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1541: 1532: 1529: 1524: 1520: 1515: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1472: 1463: 1460: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1419: 1417: 1415: 1413: 1411: 1407: 1401: 1396: 1392: 1388: 1384: 1382: 1373: 1371: 1367: 1361: 1356: 1352: 1348: 1344: 1342: 1338: 1329: 1326: 1321: 1317: 1312: 1307: 1303: 1299: 1295: 1288: 1286: 1282: 1277: 1273: 1268: 1263: 1259: 1255: 1250: 1245: 1241: 1237: 1233: 1229: 1225: 1218: 1216: 1212: 1207: 1203: 1198: 1193: 1189: 1185: 1181: 1177: 1173: 1166: 1164: 1160: 1155: 1151: 1147: 1143: 1139: 1132: 1129: 1124: 1120: 1115: 1110: 1106: 1102: 1098: 1091: 1089: 1087: 1083: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1035: 1032: 1027: 1023: 1018: 1013: 1009: 1005: 1001: 994: 992: 988: 983: 977: 973: 969: 965: 964: 956: 954: 950: 945: 941: 936: 931: 927: 923: 919: 915: 911: 904: 901: 896: 892: 888: 884: 883:Polar Biology 876: 874: 872: 868: 862: 857: 853: 849: 845: 838: 836: 834: 830: 823: 818: 817: 810: 805: 802: 801: 794: 789: 786: 785: 778: 773: 770: 769: 762: 757: 754: 753: 746: 741: 738: 737: 730: 725: 722: 721: 714: 709: 706: 705: 698: 693: 690: 689: 682: 677: 674: 673: 666: 661: 658: 657: 650: 645: 642: 641: 634: 629: 626: 625: 618: 613: 610: 609: 602: 597: 594: 593: 586: 581: 576: 574: 571: 570:Aristostomias 567: 563: 562: 557: 556: 551: 550: 549:Aristostomias 544: 542: 533: 531: 528: 524: 517: 513: 508: 504: 501: 497: 496:bristlemouths 493: 489: 481: 479: 472: 470: 463: 461: 457: 450: 448: 441: 439: 432: 430: 423: 421: 417: 413: 409: 402: 400: 397: 393: 389: 385: 377: 375: 373: 369: 363: 362: 358: 352: 350: 347: 343: 339: 335: 327: 325: 322: 318: 314: 310: 306: 298: 297: 296: 291: 290: 285: 284: 279: 278: 273: 272: 267: 266: 261: 260: 255: 254: 249: 248: 243: 242: 241:Odontostomias 237: 236: 231: 230: 229:Melanostomias 225: 224: 219: 218: 213: 212: 207: 206: 201: 200: 195: 194: 189: 188: 183: 182: 181:Eupogonesthes 177: 176: 171: 170: 165: 164: 159: 158: 153: 152: 147: 146: 141: 140: 139:Aristostomias 134: 129: 126: 123: 120: 119: 116: 113: 110: 109: 106: 103: 100: 99: 96: 93: 90: 89: 86: 83: 80: 79: 76: 73: 70: 69: 66: 63: 60: 59: 54: 49: 45: 42: 41: 36: 32: 27: 22: 19: 2236: 2216: 2208: 2182: 2120: 2116: 2070: 2066: 2042:. Retrieved 2038: 1991: 1987: 1937: 1933: 1865: 1861: 1815: 1811: 1780: 1747: 1743: 1737: 1704: 1700: 1696: 1690: 1663: 1659: 1649: 1606: 1602: 1598: 1592: 1549: 1545: 1539: 1531: 1483:(1): 39395. 1480: 1476: 1470: 1462: 1429: 1425: 1390: 1386: 1380: 1350: 1346: 1340: 1336: 1328: 1301: 1297: 1231: 1227: 1179: 1175: 1145: 1141: 1131: 1107:(1): 27–29. 1104: 1100: 1044: 1040: 1034: 1007: 1003: 962: 920:(1): 20996. 917: 913: 903: 886: 882: 851: 847: 814: 798: 782: 766: 750: 734: 718: 702: 686: 670: 654: 638: 622: 606: 590: 569: 565: 561:Pachystomias 559: 553: 547: 545: 540: 537: 526: 520: 515: 511: 485: 476: 467: 458: 454: 445: 436: 427: 418: 414: 410: 406: 381: 371: 367: 364: 360: 357:Astronesthes 356: 353: 348: 333: 331: 316: 311:of deep-sea 304: 303: 295:Trigonolampa 293: 287: 281: 275: 271:Rhadinesthes 269: 265:Photostomias 263: 257: 253:Pachystomias 251: 245: 239: 233: 227: 221: 217:Leptostomias 215: 209: 205:Heterophotus 203: 197: 191: 185: 179: 173: 169:Chirostomias 167: 161: 155: 149: 145:Astronesthes 143: 137: 136: 124: 105:Stomiiformes 38: 18: 2354:iNaturalist 2261:Wikispecies 2123:(1): 7–15. 1632:11336/85287 1341:Stomias boa 1047:(1): 7–15. 1010:(6): 8–10. 555:Malacosteus 541:Stomias boa 512:Malacosteus 492:lanternfish 332:The family 289:Thysanactis 259:Photonectes 223:Malacosteus 211:Idiacanthus 157:Borostomias 151:Bathophilus 2500:Categories 2217:dragonfish 2209:Dragonfish 2044:2023-04-12 824:References 523:photophore 396:photophore 388:photophore 283:Tactostoma 247:Opostomias 235:Neonesthes 175:Echiostoma 163:Chauliodus 111:Suborder: 24:Stomiidae 2506:Stomiidae 2294:Stomiidae 2281:Stomiidae 2267:Stomiidae 2237:Stomiidae 2137:0065-1281 2095:1432-1793 2008:0014-3820 1988:Evolution 1962:0025-3162 1890:1432-1793 1840:1469-7769 1772:1476-4687 1729:1432-2056 1682:2296-7745 1641:1432-2056 1566:0962-8436 1505:2045-2322 1446:1558-5646 1426:Evolution 1258:1932-6203 1206:1365-2079 1123:2590-2385 1061:0065-1281 1026:1551-9295 514:rendering 346:viperfish 334:Stomiidae 305:Stomiidae 187:Eustomias 125:Stomiidae 71:Kingdom: 65:Eukaryota 2246:Wikidata 2215:Seasky, 2184:FishBase 2153:53505749 2145:30322809 2016:24274363 1908:24771948 1584:11079412 1523:27996027 1454:24274363 1320:20623652 1276:28146571 1228:PLOS ONE 1077:53505749 1069:30322809 944:33268805 442:Behavior 378:Features 121:Family: 85:Chordata 81:Phylum: 75:Animalia 61:Domain: 2252:Q283200 2075:Bibcode 1942:Bibcode 1899:3996283 1870:Bibcode 1820:Bibcode 1752:Bibcode 1709:Bibcode 1611:Bibcode 1575:1692851 1514:5171636 1485:Bibcode 1267:5287460 1236:Bibcode 1184:Bibcode 935:7710699 328:Habitat 277:Stomias 131:Genera 101:Order: 91:Class: 2483:125604 2470:114392 2467:uBio: 2447:265829 2434:734459 2418:NZOR: 2411:123351 2385:162282 2372:114910 2151:  2143:  2135:  2093:  2014:  2006:  1960:  1906:  1896:  1888:  1838:  1770:  1744:Nature 1727:  1680:  1639:  1582:  1572:  1564:  1521:  1511:  1503:  1452:  1444:  1387:Matter 1347:Cybium 1318:  1274:  1264:  1256:  1204:  1121:  1101:Matter 1075:  1067:  1059:  1024:  978:  942:  932:  568:, and 558:, and 392:barbel 309:family 2478:WoRMS 2455:Plazi 2367:IRMNG 2359:86082 2307:33952 2149:S2CID 1790:(PDF) 1073:S2CID 307:is a 2406:NCBI 2380:ITIS 2346:2225 2341:GBIF 2333:5074 2302:BOLD 2141:PMID 2133:ISSN 2091:ISSN 2012:PMID 2004:ISSN 1958:ISSN 1904:PMID 1886:ISSN 1836:ISSN 1768:ISSN 1725:ISSN 1678:ISSN 1637:ISSN 1580:PMID 1562:ISSN 1519:PMID 1501:ISSN 1450:PMID 1442:ISSN 1316:PMID 1272:PMID 1254:ISSN 1202:ISSN 1119:ISSN 1065:PMID 1057:ISSN 1022:ISSN 976:ISBN 940:PMID 494:and 370:and 359:cf. 2393:NBN 2328:EoL 2320:GQ8 2315:CoL 2289:AFD 2276:ADW 2125:doi 2121:121 2083:doi 2071:148 1996:doi 1950:doi 1938:148 1894:PMC 1878:doi 1866:161 1828:doi 1760:doi 1748:393 1717:doi 1699:". 1668:doi 1627:hdl 1619:doi 1601:". 1570:PMC 1554:doi 1550:355 1509:PMC 1493:doi 1434:doi 1395:doi 1355:doi 1306:doi 1302:271 1262:PMC 1244:doi 1192:doi 1150:doi 1146:106 1109:doi 1049:doi 1045:121 1012:doi 968:doi 930:PMC 922:doi 891:doi 856:doi 852:106 2502:: 2480:: 2457:: 2444:: 2431:: 2408:: 2395:: 2382:: 2369:: 2356:: 2343:: 2330:: 2317:: 2304:: 2291:: 2278:: 2263:: 2248:: 2181:. 2147:. 2139:. 2131:. 2119:. 2115:. 2103:^ 2089:. 2081:. 2069:. 2065:. 2053:^ 2037:. 2024:^ 2010:. 2002:. 1992:68 1990:. 1986:. 1970:^ 1956:. 1948:. 1936:. 1932:. 1916:^ 1902:. 1892:. 1884:. 1876:. 1864:. 1860:. 1848:^ 1834:. 1826:. 1816:87 1814:. 1810:. 1798:^ 1766:. 1758:. 1746:. 1723:. 1715:. 1705:33 1703:. 1676:. 1666:. 1662:. 1658:. 1635:. 1625:. 1617:. 1607:41 1605:. 1578:. 1568:. 1560:. 1548:. 1544:. 1517:. 1507:. 1499:. 1491:. 1479:. 1475:. 1448:. 1440:. 1430:68 1428:. 1409:^ 1389:. 1385:. 1369:^ 1351:43 1349:. 1345:. 1314:. 1300:. 1296:. 1284:^ 1270:. 1260:. 1252:. 1242:. 1232:12 1230:. 1226:. 1214:^ 1200:. 1190:. 1180:17 1178:. 1174:. 1162:^ 1144:. 1140:. 1117:. 1103:. 1099:. 1085:^ 1071:. 1063:. 1055:. 1043:. 1020:. 1008:27 1006:. 1002:. 990:^ 974:. 952:^ 938:. 928:. 918:10 916:. 912:. 887:43 885:. 870:^ 850:. 846:. 832:^ 552:, 374:. 2155:. 2127:: 2097:. 2085:: 2077:: 2047:. 2018:. 1998:: 1964:. 1952:: 1944:: 1910:. 1880:: 1872:: 1842:. 1830:: 1822:: 1792:. 1774:. 1762:: 1754:: 1731:. 1719:: 1711:: 1684:. 1670:: 1664:7 1643:. 1629:: 1621:: 1613:: 1586:. 1556:: 1542:" 1525:. 1495:: 1487:: 1481:6 1473:" 1456:. 1436:: 1403:. 1397:: 1391:1 1383:" 1363:. 1357:: 1322:. 1308:: 1278:. 1246:: 1238:: 1208:. 1194:: 1186:: 1156:. 1152:: 1125:. 1111:: 1105:1 1079:. 1051:: 1028:. 1014:: 984:. 970:: 946:. 924:: 897:. 893:: 864:. 858:: 516:.

Index


Photostomias guernei
Scientific classification
Edit this classification
Eukaryota
Animalia
Chordata
Actinopterygii
Stomiiformes
Phosichthyoidei
Stomiidae
Aristostomias
Astronesthes
Bathophilus
Borostomias
Chauliodus
Chirostomias
Echiostoma
Eupogonesthes
Eustomias
Flagellostomias
Grammatostomias
Heterophotus
Idiacanthus
Leptostomias
Malacosteus
Melanostomias
Neonesthes
Odontostomias
Opostomias

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.