Knowledge (XXG)

Strange matter

Source 📝

1303: 748: 25: 1809: 247:
In the general context, strange matter might occur inside neutron stars, if the pressure at their core is high enough to provide a sufficient gravitational force (i.e. above the critical pressure). At the sort of densities and high pressures we expect in the center of a neutron star, the quark matter
360:
During the merger of two neutron stars, strange matter may be ejected out into the space around the stars, which may allow for the studying of strange matter. However, the rate at which strange matter decays is unknown, and there are very few binary pairs of neutron stars nearby to the Solar System,
263:
forbids fermions such as quarks from occupying the same position and energy level. When the particle density is high enough that all energy levels below the available thermal energy are already occupied, increasing the density further requires raising some to higher, unoccupied energy levels. This
337:
A neutron star with a quark matter core is often called a hybrid star. However, it is difficult to know whether hybrid stars really exist in nature because physicists currently have little idea of the likely value of the critical pressure or density. It seems plausible that the transition to quark
373:" is true, then nuclear matter is metastable against decaying into strange matter. The lifetime for spontaneous decay is very long, so we do not see this decay process happening around us. However, under this hypothesis there should be strange matter in the universe: 314:), so the degeneracy pressure of down quarks usually dominates electrically neutral quark matter. However, when the required energy level is high enough, an alternative becomes available: half of the down quarks can be transmuted to strange quarks (charge − 334:). The higher rest mass of the strange quark costs some energy, but by opening up an additional set of energy levels, the average energy per particle can be lower, making strange matter more stable than non-strange quark matter. 238:, even when the external critical pressure is zero, and given enough time (or the right stimulus) the nuclei would decay into stable droplets of strange matter. Droplets of strange matter are also referred to as strangelets. 357:
One major area of activity in neutron star physics is the attempt to find observable signatures by which we could tell whether neutron stars have quark matter (probably strange matter) in their core.
226:
A more specific hypothesis is that quark matter is the true ground state of all matter, and thus more stable than ordinary nuclear matter. This idea is known as the "strange matter hypothesis", or the
377:
Quark stars (often called "strange stars") consist of quark matter from their core to their surface. They would be several kilometers across, and may have a very thin crust of nuclear matter.
342:
becomes much smaller than their size, so the critical density must be less than about 100 times nuclear saturation density. But a more precise estimate is not yet available, because the
223:) is compressed beyond a critical density. At this critical pressure and density, the protons and neutrons dissociate into quarks, yielding quark matter and potentially strange matter. 1553: 1202: 383:
are small pieces of strange matter, perhaps as small as nuclei. They would be produced when strange stars are formed or collide, or when a nucleus decays.
685: 1409: 405: 248:
would probably be strange matter. It could conceivably be non-strange quark matter, if the effective mass of the strange quark were too high.
1849: 478: 590: 1677: 1195: 1672: 108: 646: 952: 42: 1188: 1022: 947: 678: 89: 46: 61: 1270: 1134: 962: 1017: 762: 207:, the term 'strange matter' is used in two different contexts, one broader and the other more specific and hypothetical: 1637: 1144: 68: 163:, also referred to as atomic matter, is composed of atoms, with nearly all matter concentrated in the atomic nuclei. 1648: 1442: 35: 1839: 1642: 1432: 1342: 1275: 671: 370: 260: 75: 1509: 1349: 1169: 1068: 698: 191:. When quark matter does not contain strange quarks, it is sometimes referred to as non-strange quark matter. 1684: 1598: 1327: 1290: 1063: 153: 1742: 823: 57: 1854: 1834: 1694: 1399: 1214: 1088: 1078: 828: 1844: 1689: 1783: 1260: 1007: 767: 630: 574: 526: 346:
that governs the behavior of quarks is mathematically intractable, and numerical calculations using
1632: 1571: 1468: 1404: 1368: 982: 874: 864: 777: 732: 256: 227: 1788: 1627: 1603: 1521: 1129: 1058: 892: 562: 542: 516: 484: 456: 343: 264:
need for energy to cause compression manifests as a pressure. Neutrons consist of twice as many
1719: 1704: 1667: 1659: 1462: 1437: 1427: 1364: 1240: 1235: 1159: 1154: 1124: 1083: 972: 924: 909: 802: 772: 474: 285: 1608: 1548: 1359: 1114: 737: 638: 582: 534: 466: 200: 184: 82: 1622: 1531: 1373: 1353: 1265: 1255: 1104: 957: 694: 634: 618: 578: 530: 1317: 1302: 1230: 902: 897: 854: 782: 212: 164: 1828: 1709: 1383: 1139: 1119: 1042: 1002: 937: 869: 792: 614: 393: 234:
assumption. Under this hypothesis, the nuclei of the atoms we see around us are only
231: 149: 133: 546: 488: 1813: 1778: 1747: 1737: 1489: 1479: 1378: 1285: 1245: 1211: 1164: 1037: 1032: 1027: 992: 942: 859: 351: 204: 137: 129: 136:. In extreme environments, strange matter is hypothesized to occur in the core of 1699: 1613: 1538: 1516: 1280: 1250: 1073: 967: 879: 747: 347: 249: 180: 24: 538: 1793: 1752: 1732: 1727: 1543: 1452: 1337: 1012: 987: 914: 884: 818: 797: 423: 411: 399: 380: 265: 235: 145: 141: 1773: 1526: 1447: 1419: 1332: 642: 586: 215:
predicts that strange matter could be created when nuclear matter (made of
663: 402: – Compact exotic star which forms matter consisting mostly of quarks 361:
which could make the official discovery of strange matter very difficult.
140:, or, more speculatively, as isolated droplets that may vary in size from 1591: 1586: 1504: 1149: 977: 521: 461: 291: 220: 176: 1180: 451:
Madsen, Jes (1999). "Physics and astrophysics of strange quark matter".
1581: 1109: 997: 932: 849: 844: 470: 339: 216: 168: 252:
quarks and heavier quarks would only occur at much higher densities.
1576: 1499: 1494: 1457: 718: 172: 160: 1808: 727: 713: 417: 338:
matter will already have occurred when the separation between the
188: 1322: 1222: 1184: 667: 723: 18: 455:. Lecture Notes in Physics. Vol. 516. pp. 162–203. 507:
Weber, F. (2005). "Strange quark matter and compact stars".
152:. At high enough density, strange matter is expected to be 211:
In the broader context, our current understanding of the
420: – Elementary particle, main constituent of matter 1766: 1718: 1658: 1562: 1478: 1418: 1392: 1310: 1221: 1097: 1051: 923: 837: 811: 755: 706: 49:. Unsourced material may be challenged and removed. 243:Stability of strange matter only at high pressure 255:Strange matter comes about as a way to relieve 1196: 679: 446: 444: 442: 440: 8: 365:Stability of strange matter at zero pressure 1203: 1189: 1181: 686: 672: 664: 453:Hadrons in Dense Matter and Hadrosynthesis 396: – Physics term for multiple concepts 16:Degenerate matter made from strange quarks 520: 460: 109:Learn how and when to remove this message 609: 607: 509:Progress in Particle and Nuclear Physics 148:) to kilometers, as in the hypothetical 502: 500: 498: 436: 175:, and they are themselves composed of 1628:Inverse beta decay (electron capture) 426: – Hypothetical phases of matter 414: – Type of hypothetical particle 350:are currently blocked by the fermion 7: 47:adding citations to reliable sources 406:Strangeness and quark–gluon plasma 14: 1807: 1410:Tolman–Oppenheimer–Volkoff limit 1301: 746: 561:Bodmer, A. R. (September 1971). 23: 649:from the original on 2022-01-25 593:from the original on 2022-01-20 34:needs additional citations for 1: 1135:Macroscopic quantum phenomena 619:"Cosmic separation of phases" 1850:Unsolved problems in physics 1695:Quantum chromodynamics (QCD) 1638:Electron degeneracy pressure 1145:Order and disorder (physics) 408:– subatomic signature 1871: 539:10.1016/j.ppnp.2004.07.001 1802: 1643:Pauli exclusion principle 1343:Supernova nucleosynthesis 1299: 1276:Cataclysmic variable star 744: 371:strange matter hypothesis 261:Pauli exclusion principle 1599:Fundamental interactions 1170:Thermo-dielectric effect 1069:Enthalpy of vaporization 763:Bose–Einstein condensate 185:condensed form of matter 167:is a liquid composed of 1685:Quantum electrodynamics 1291:Super soft X-ray source 1064:Enthalpy of sublimation 643:10.1103/PhysRevD.30.272 587:10.1103/PhysRevD.4.1601 1794:Physics of shock waves 1554:Observational timeline 1400:Gravitational collapse 1079:Latent internal energy 829:Color-glass condensate 1690:Quantum hydrodynamics 889:Magnetically ordered 187:composed entirely of 154:color superconducting 1784:Nuclear astrophysics 1572:Elementary particles 768:Fermionic condensate 183:. Quark matter is a 126:strange quark matter 43:improve this article 1633:Degeneracy pressure 1563:Particles, forces, 1405:Chandrasekhar limit 983:Chemical ionization 875:Programmable matter 865:Quantum spin liquid 733:Supercritical fluid 635:1984PhRvD..30..272W 579:1971PhRvD...4.1601B 531:2005PrPNP..54..193W 257:degeneracy pressure 1789:Physical cosmology 1743:Quark–gluon plasma 1604:Strong interaction 1130:Leidenfrost effect 1059:Enthalpy of fusion 824:Quark–gluon plasma 563:"Collapsed Nuclei" 471:10.1007/BFb0107314 344:strong interaction 1822: 1821: 1720:Degenerate matter 1705:Color confinement 1668:Quantum mechanics 1365:Carbon detonation 1311:Stellar processes 1178: 1177: 1160:Superheated vapor 1155:Superconductivity 1125:Equation of state 973:Flash evaporation 925:Phase transitions 910:String-net liquid 803:Photonic molecule 773:Degenerate matter 623:Physical Review D 567:Physical Review D 480:978-3-540-65209-0 119: 118: 111: 93: 1862: 1840:Phases of matter 1814:Stars portal 1812: 1811: 1609:Weak interaction 1565:and interactions 1549:Electroweak star 1443:Pair instability 1360:Electron capture 1305: 1205: 1198: 1191: 1182: 1115:Compressed fluid 750: 695:States of matter 688: 681: 674: 665: 658: 657: 655: 654: 611: 602: 601: 599: 598: 573:(6): 1601–1606. 558: 552: 550: 524: 522:astro-ph/0407155 504: 493: 492: 464: 462:astro-ph/9809032 448: 329: 327: 326: 323: 320: 309: 307: 306: 303: 300: 283: 281: 280: 277: 274: 201:particle physics 114: 107: 103: 100: 94: 92: 58:"Strange matter" 51: 27: 19: 1870: 1869: 1865: 1864: 1863: 1861: 1860: 1859: 1825: 1824: 1823: 1818: 1806: 1798: 1762: 1714: 1654: 1623:Pair production 1564: 1558: 1532:Shell collapsar 1481: 1474: 1414: 1388: 1374:Gamma-ray burst 1354:Bondi accretion 1328:Nucleosynthesis 1306: 1297: 1256:Stellar physics 1217: 1209: 1179: 1174: 1105:Baryonic matter 1093: 1047: 1018:Saturated fluid 958:Crystallization 919: 893:Antiferromagnet 833: 807: 751: 742: 702: 692: 662: 661: 652: 650: 613: 612: 605: 596: 594: 560: 559: 555: 506: 505: 496: 481: 450: 449: 438: 433: 390: 367: 324: 321: 318: 317: 315: 304: 301: 298: 297: 295: 278: 275: 272: 271: 269: 245: 197: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1868: 1866: 1858: 1857: 1852: 1847: 1842: 1837: 1827: 1826: 1820: 1819: 1817: 1816: 1803: 1800: 1799: 1797: 1796: 1791: 1786: 1781: 1776: 1770: 1768: 1767:Related topics 1764: 1763: 1761: 1760: 1758:Strange matter 1755: 1750: 1745: 1740: 1735: 1730: 1728:Neutron matter 1724: 1722: 1716: 1715: 1713: 1712: 1707: 1702: 1697: 1692: 1687: 1682: 1681: 1680: 1678:Basic concepts 1675: 1664: 1662: 1660:Quantum theory 1656: 1655: 1653: 1652: 1645: 1640: 1635: 1630: 1625: 1619: 1618: 1617: 1616: 1611: 1606: 1596: 1595: 1594: 1589: 1584: 1579: 1568: 1566: 1560: 1559: 1557: 1556: 1551: 1546: 1541: 1536: 1535: 1534: 1524: 1519: 1514: 1513: 1512: 1507: 1502: 1497: 1486: 1484: 1482:exotic objects 1476: 1475: 1473: 1472: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1433:Type Ib and Ic 1430: 1424: 1422: 1416: 1415: 1413: 1412: 1407: 1402: 1396: 1394: 1390: 1389: 1387: 1386: 1381: 1376: 1371: 1362: 1357: 1347: 1346: 1345: 1340: 1335: 1325: 1323:Surface fusion 1320: 1318:Nuclear fusion 1314: 1312: 1308: 1307: 1300: 1298: 1296: 1295: 1294: 1293: 1288: 1278: 1273: 1268: 1263: 1261:Stellar plasma 1258: 1253: 1248: 1243: 1238: 1233: 1227: 1225: 1219: 1218: 1210: 1208: 1207: 1200: 1193: 1185: 1176: 1175: 1173: 1172: 1167: 1162: 1157: 1152: 1147: 1142: 1137: 1132: 1127: 1122: 1117: 1112: 1107: 1101: 1099: 1095: 1094: 1092: 1091: 1086: 1084:Trouton's rule 1081: 1076: 1071: 1066: 1061: 1055: 1053: 1049: 1048: 1046: 1045: 1040: 1035: 1030: 1025: 1020: 1015: 1010: 1005: 1000: 995: 990: 985: 980: 975: 970: 965: 960: 955: 953:Critical point 950: 945: 940: 935: 929: 927: 921: 920: 918: 917: 912: 907: 906: 905: 900: 895: 887: 882: 877: 872: 867: 862: 857: 855:Liquid crystal 852: 847: 841: 839: 835: 834: 832: 831: 826: 821: 815: 813: 809: 808: 806: 805: 800: 795: 790: 788:Strange matter 785: 783:Rydberg matter 780: 775: 770: 765: 759: 757: 753: 752: 745: 743: 741: 740: 735: 730: 721: 716: 710: 708: 704: 703: 693: 691: 690: 683: 676: 668: 660: 659: 629:(2): 272–285. 615:Witten, Edward 603: 553: 515:(1): 193–288. 494: 479: 435: 434: 432: 429: 428: 427: 421: 415: 409: 403: 397: 389: 386: 385: 384: 378: 366: 363: 244: 241: 240: 239: 224: 213:laws of nature 196: 193: 165:Nuclear matter 134:strange quarks 122:Strange matter 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1867: 1856: 1855:Strange quark 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1835:Exotic matter 1833: 1832: 1830: 1815: 1810: 1805: 1804: 1801: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1771: 1769: 1765: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1725: 1723: 1721: 1717: 1711: 1710:Deconfinement 1708: 1706: 1703: 1701: 1698: 1696: 1693: 1691: 1688: 1686: 1683: 1679: 1676: 1674: 1671: 1670: 1669: 1666: 1665: 1663: 1661: 1657: 1651: 1650: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1620: 1615: 1612: 1610: 1607: 1605: 1602: 1601: 1600: 1597: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1574: 1573: 1570: 1569: 1567: 1561: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1533: 1530: 1529: 1528: 1525: 1523: 1520: 1518: 1515: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1492: 1491: 1488: 1487: 1485: 1483: 1477: 1471: 1470: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1425: 1423: 1421: 1417: 1411: 1408: 1406: 1403: 1401: 1398: 1397: 1395: 1391: 1385: 1384:Orbital decay 1382: 1380: 1377: 1375: 1372: 1370: 1366: 1363: 1361: 1358: 1355: 1351: 1348: 1344: 1341: 1339: 1336: 1334: 1331: 1330: 1329: 1326: 1324: 1321: 1319: 1316: 1315: 1313: 1309: 1304: 1292: 1289: 1287: 1284: 1283: 1282: 1279: 1277: 1274: 1272: 1271:Variable star 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1237: 1234: 1232: 1229: 1228: 1226: 1224: 1220: 1216: 1213: 1206: 1201: 1199: 1194: 1192: 1187: 1186: 1183: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1140:Mpemba effect 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1120:Cooling curve 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1102: 1100: 1096: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1056: 1054: 1050: 1044: 1043:Vitrification 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1008:Recombination 1006: 1004: 1003:Melting point 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 951: 949: 948:Critical line 946: 944: 941: 939: 938:Boiling point 936: 934: 931: 930: 928: 926: 922: 916: 913: 911: 908: 904: 901: 899: 896: 894: 891: 890: 888: 886: 883: 881: 878: 876: 873: 871: 870:Exotic matter 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 842: 840: 836: 830: 827: 825: 822: 820: 817: 816: 814: 810: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 760: 758: 754: 749: 739: 736: 734: 731: 729: 725: 722: 720: 717: 715: 712: 711: 709: 705: 700: 696: 689: 684: 682: 677: 675: 670: 669: 666: 648: 644: 640: 636: 632: 628: 624: 620: 617:(July 1984). 616: 610: 608: 604: 592: 588: 584: 580: 576: 572: 568: 564: 557: 554: 548: 544: 540: 536: 532: 528: 523: 518: 514: 510: 503: 501: 499: 495: 490: 486: 482: 476: 472: 468: 463: 458: 454: 447: 445: 443: 441: 437: 430: 425: 422: 419: 416: 413: 410: 407: 404: 401: 398: 395: 394:Exotic matter 392: 391: 387: 382: 379: 376: 375: 374: 372: 364: 362: 358: 355: 353: 349: 345: 341: 335: 333: 313: 293: 289: 288: 267: 262: 258: 253: 251: 242: 237: 233: 229: 225: 222: 218: 214: 210: 209: 208: 206: 202: 194: 192: 190: 186: 182: 178: 174: 170: 166: 162: 157: 155: 151: 150:strange stars 147: 143: 139: 138:neutron stars 135: 131: 127: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1845:Quark matter 1779:Astrophysics 1757: 1748:Preon matter 1738:Quark matter 1673:Introduction 1647: 1490:Neutron star 1480:Compact and 1467: 1379:Helium flash 1369:deflagration 1286:X-ray binary 1212:Stellar core 1165:Superheating 1038:Vaporization 1033:Triple point 1028:Supercooling 993:Lambda point 943:Condensation 860:Time crystal 838:Other states 787: 778:Quantum Hall 651:. Retrieved 626: 622: 595:. Retrieved 570: 566: 556: 512: 508: 452: 368: 359: 356: 352:sign problem 336: 331: 311: 286: 254: 246: 205:astrophysics 198: 158: 130:quark matter 125: 121: 120: 105: 99:October 2017 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 1700:Lattice QCD 1614:Gravitation 1539:Exotic star 1517:White dwarf 1510:Radio-quiet 1281:Binary star 1251:Metallicity 1074:Latent heat 1023:Sublimation 968:Evaporation 903:Ferromagnet 898:Ferrimagnet 880:Dark matter 812:High energy 381:Strangelets 348:lattice QCD 266:down quarks 181:down quarks 146:strangelets 142:femtometers 132:containing 1829:Categories 1753:Strangelet 1733:QCD matter 1544:Quark star 1522:Black hole 1453:Quark-nova 1420:Supernovae 1338:RP-process 1266:Supergiant 1089:Volatility 1052:Quantities 1013:Regelation 988:Ionization 963:Deposition 915:Superglass 885:Antimatter 819:QCD matter 798:Supersolid 793:Superfluid 756:Low energy 653:2022-03-22 597:2022-03-22 431:References 424:QCD matter 412:Strangelet 400:Quark star 236:metastable 69:newspapers 1774:Astronomy 1527:Collapsar 1448:Hypernova 1350:Accretion 1333:R-process 1241:Structure 1236:Evolution 1231:Formation 294:(charge + 292:up quarks 268:(charge − 159:Ordinary 1592:Neutrino 1587:Electron 1505:Magnetar 1393:Collapse 1215:collapse 1150:Spinodal 1098:Concepts 978:Freezing 647:Archived 591:Archived 547:15002134 489:16566509 388:See also 369:If the " 340:nucleons 221:neutrons 169:neutrons 1649:More... 1582:Neutron 1469:More... 1463:Remnant 1438:Type II 1428:Type Ia 1110:Binodal 998:Melting 933:Boiling 850:Crystal 845:Colloid 631:Bibcode 575:Bibcode 527:Bibcode 328:⁠ 316:⁠ 308:⁠ 296:⁠ 282:⁠ 270:⁠ 259:. The 217:protons 195:Context 173:protons 83:scholar 1577:Proton 1500:Quasar 1495:Pulsar 1458:Nebula 738:Plasma 719:Liquid 545:  487:  477:  330:  310:  284:  232:Witten 228:Bodmer 189:quarks 161:matter 85:  78:  71:  64:  56:  1223:Stars 728:Vapor 714:Solid 707:State 543:S2CID 517:arXiv 485:S2CID 457:arXiv 418:Quark 290:) as 250:Charm 128:) is 90:JSTOR 76:books 1246:Core 699:list 475:ISBN 219:and 203:and 179:and 171:and 124:(or 62:news 724:Gas 639:doi 583:doi 535:doi 467:doi 354:. 199:In 45:by 1831:: 1367:/ 726:/ 645:. 637:. 627:30 625:. 621:. 606:^ 589:. 581:. 569:. 565:. 541:. 533:. 525:. 513:54 511:. 497:^ 483:. 473:. 465:. 439:^ 177:up 156:. 1356:) 1352:( 1204:e 1197:t 1190:v 701:) 697:( 687:e 680:t 673:v 656:. 641:: 633:: 600:. 585:: 577:: 571:4 551:. 549:. 537:: 529:: 519:: 491:. 469:: 459:: 332:e 325:3 322:/ 319:1 312:e 305:3 302:/ 299:2 287:e 279:3 276:/ 273:1 230:– 144:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Strange matter"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
quark matter
strange quarks
neutron stars
femtometers
strangelets
strange stars
color superconducting
matter
Nuclear matter
neutrons
protons
up
down quarks
condensed form of matter
quarks
particle physics
astrophysics
laws of nature
protons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.