Knowledge (XXG)

Strangeness and quark–gluon plasma

Source 📝

1982:
bulk of quark–gluon plasma at the time of breakup. The global description of all produced particles can be attempted based on the picture of hadronizing hot drop of quark–gluon plasma or, alternatively, on the picture of confined and equilibrated hadron matter. In both cases one describes the data within the statistical thermal production model, but considerable differences in detail differentiate the nature of the source of these particles. The experimental groups working in the field also like to develop their own data analysis models and the outside observer sees many different analysis results. There are as many as 10–15 different particles species that follow the pattern predicted for the QGP as function of reaction energy, reaction centrality, and strangeness content. At yet higher LHC energies saturation of strangeness yield and binding to heavy flavor open new experimental opportunities.
879:(sss) and especially their antiparticles is an important cornerstone of the claim that quark–gluon plasma has been formed. This abundant formation is often presented in comparison with the scaled expectation from normal proton–proton collisions; however, such a comparison is not a necessary step in view of the large absolute yields which defy conventional model expectations. The overall yield of strangeness is also larger than expected if the new form of matter has been achieved. However, considering that the light quarks are also produced in gluon fusion processes, one expects increased production of all hadrons. The study of the relative yields of strange and non strange particles provides information about the competition of these processes and thus the reaction mechanism of particle production. 646:
antimatter particles containing more than one strange quark. On the other hand, in a system involving a cascade of nucleon–nucleon collisions, multi-strange antimatter are produced less frequently considering that several relatively improbable events must occur in the same collision process. For this reason one expects that the yield of multi-strange antimatter particles produced in the presence of quark matter is enhanced compared to conventional series of reactions. Strange quarks also bind with the heavier charm and bottom quarks which also like to bind with each other. Thus, in the presence of a large number of these quarks, quite unusually abundant exotic particles can be produced; some of which have never been observed before. This should be the case in the forthcoming exploration at the new
917:. Here results obtained when two colliding systems at 100 A GeV in each beam are considered: in red the heavier gold–gold collisions and in blue the smaller copper–copper collisions. The energy at RHIC is 11 times greater in the CM frame of reference compared to the earlier CERN work. The important result is that enhancement observed by STAR also increases with the number of participating nucleons. We further note that for the most peripheral events at the smallest number of participants, copper and gold systems show, at the same number of participants, the same enhancement as expected. 579:: the gluon collisions here are occurring within the thermal matter phase and thus are different from the high energy processes that can ensue in the early stages of the collisions when the nuclei crash into each other. The heavier, charm and bottom quarks are produced there dominantly. The study in relativistic nuclear (heavy ion) collisions of charmed and soon also bottom hadronic particle production—beside strangeness—will provide complementary and important confirmation of the mechanisms of formation, evolution and hadronization of quark–gluon plasma in the laboratory. 423:
matter is made are easily produced as quark–antiquark pairs in the hot fireball because they have small masses. On the other hand, the next lightest quark flavor—strange quarks—will reach its high quark–gluon plasma thermal abundance provided that there is enough time and that the temperature is high enough. This work elaborated the kinetic theory of strangness production proposed by T. Biro and J. Zimanyi who demonstrated  that strange quarks could not be produced fast enough alone by quark-antiquark reactions. A new mechanism operational alone in QGP was proposed.
1633:
hadronization volume. ALICE results display a smooth volume dependence of total yield of all studied particles as function of volume, there is no additional "canonical" suppression. This is so since the yield of strange pairs in QGP is sufficiently high and tracks well the expected abundance increase as the volume and lifespan of QGP increases. This increase is incompatible with the hypothesis that for all reaction volumes QGP is always in chemical (yield) equilibrium of strangeness. Instead, this confirms the theoretical kinetic model proposed by Rafelski and
987: 111: 659: 5272: 588: 432: 1677: 888: 930: 1917: 1786: 1948:
yield ratio. A possible structure has been predicted, and indeed, an unexpected structure is seen in the ratio of particles comprising the positive kaon K (comprising anti s-quarks and up-quark) and positive pion particles, seen in the figure (solid symbols). The rise and fall (square symbols) of the
1896:
particle are newly produced in the reaction. The WA85 results were in agreement with theoretical predictions. In the published report, WA85 interpreted their results as QGP. NA35 had large systematic errors in its data, which were improved in the following years. Moreover, the collaboration needed to
905:
as shown in the enhancement of antibaryon figure. The gradual rise of the enhancement as a function of the variable representing the amount of nuclear matter participating in the collisions, and thus as a function of the geometric centrality of nuclear collision strongly favors the quark–gluon plasma
234:
dissolve into quarks. This means that the abundance of strange quarks is sensitive to the conditions, structure and dynamics of the deconfined matter phase, and if their number is large it can be assumed that deconfinement conditions were reached. An even stronger signature of strangeness enhancement
1972:
where in particular the STAR detector can search for the onset of production of quark–gluon plasma as a function of energy in the domain where the horn maximum is seen, in order to improve the understanding of these results, and to record the behavior of other related quark–gluon plasma observables.
920:
Another remarkable feature of these results, comparing CERN and STAR, is that the enhancement is of similar magnitude for the vastly different collision energies available in the reaction. This near energy independence of the enhancement also agrees with the quark–gluon plasma approach regarding the
422:
One cannot assume that under all conditions the yield of strange quarks is in thermal equilibrium. In general, the quark-flavor composition of the plasma varies during its ultra short lifetime as new flavors of quarks such as strangeness are cooked up inside. The up and down quarks from which normal
1321:
in his early analysis of particle production and solved by Rafelski and Danos. In that work it was shown that even if just a few new pairs of strange particles were produced the effect disappears. However, the matter was revived by Hamieh et al. who argued that is possible that small sub-volumes in
896:
The work of Koch, Muller, Rafelski predicts that in a quark–gluon plasma hadronization process the enhancement for each particle species increases with the strangeness content of the particle. The enhancements for particles carrying one, two and three strange or antistrange quarks were measured and
1943:
One of the most interesting questions is if there is a threshold in reaction energy and/or volume size which needs to be exceeded in order to form a domain in which quarks can move freely. It is natural to expect that if such a threshold exists the particle yields/ratios we have shown above should
1981:
The strangeness production and its diagnostic potential as a signature of quark–gluon plasma has been discussed for nearly 30 years. The theoretical work in this field today focuses on the interpretation of the overall particle production data and the derivation of the resulting properties of the
1316:
Collaboration at the Large Hadron Collider (LHC) allows in-depth exploration of lingering challenges, which always accompany new physics, and here in particular the questions surrounding strangeness signature. Among the most discussed challenges has been the question if the abundance of particles
1901:
which characterizes the speed of the source. The peak of emission indicates that the additionally formed antimatter particles do not originate from the colliding nuclei themselves, but from a source that moves at a speed corresponding to one-half of the rapidity of the incident nucleus that is a
891:
Enhancement of antibaryon yield increases with number of newly made quarks (s, anti-s, anti-q) and the size of the colliding system represented by the number of nucleons "damaged=wounded" in the collision of relativistic heavy ions. SPS, RHIC, and ALICE results shown as function of participating
162:
at extremely high speeds, where the energy released in the collision can raise the subatomic particles' energies to an exceedingly high level, sufficient for them to briefly form a tiny amount of quark–gluon plasma that can be studied in laboratory experiments for little more than the time light
478:
figure, shows the new gluon fusion processes: gluons are the wavy lines; strange quarks are the solid lines; time runs from left to right. The bottom section is the process where the heavier quark pair arises from the lighter pair of quarks shown as dashed lines. The gluon fusion process occurs
226:. Unlike the up and down quarks, strange quarks are not brought into the reaction by the colliding nuclei. Therefore, any strange quarks or antiquarks observed in experiments have been "freshly" made from the kinetic energy of colliding nuclei, with gluons being the catalyst. Conveniently, the 217:
The diagnosis and the study of the properties of quark–gluon plasma can be undertaken using quarks not present in matter seen around us. The experimental and theoretical work relies on the idea of strangeness enhancement. This was the first observable of quark–gluon plasma proposed in 1980 by
662:
Universality of transverse mass spectra of strange baryons and antibaryons as measured by CERN-WA97 collaboration. Collisions at 158 A GeV. These results demonstrate that all these particles are produced in explosively hadronizing fireball (of QGP) and do not undergo further interaction once
1641:
is naturally a function of both energy and collision system size. The fact that at extreme LHC energies we cross this boundary also in experiments with the smallest elementary collision systems, such as pp, confirms the unexpected strength of the processes leading to QGP formation. Onset of
645:
These newly cooked strange quarks find their way into a multitude of different final particles that emerge as the hot quark–gluon plasma fireball breaks up, see the scheme of different processes in figure. Given the ready supply of antiquarks in the "fireball", one also finds a multitude of
1632:
result is the observation of same strangeness enhancement, not only on AA (nucleus–nucleus) but also in pA (proton–nucleus) and pp (proton–proton) collisions when the particle production yields are presented as a function of the multiplicity, which, as noted, corresponds to the available
572:—the  Wroblewski ratio—is considered a measure of efficacy of strangeness production. This ratio more than doubles in heavy ion collisions, providing a model independent confirmation of a new mechanism of strangeness production operating in collisions that are producing QGP. 591:
Illustration of the two step process of strange antibaryon production, a key signature of QGP: strangeness is produced inside the fireball and later on in an independent process at hadronization several (anti)strange quarks form (anti)baryons. The production of triple strange
2315:
Anikina, M.; Gaździcki, M.; Golokhvastov, A.; Goncharova, L.; Iovchev, K.; Khorozov, S.; Kuznetzova, E.; Lukstins, J.; Okonov, E.; Ostanievich, T.; Sidorin, S. (1983). "Λ Hyperons Produced in Central Nucleus–Nucleus Interactions at 4.5 GeV/ c Momentum per Incident Nucleon".
1428:
volumes as described by the total produced particle multiplicy. The results show that this ratio assumes the expected value for a large range volumes (two orders of magnitude). At small particle volume or multiplicity, the curve shows the expected reduction: The
1999:, in 1995. The latest edition, 10–15 June 2019, of the conference was held in Bari, Italy, attracting about 300 participants. A more general venue is the Quark Matter conference, which last time took place from 3–9 September 2023 in 1990:
Scientists studying strangeness as signature of quark gluon plasma present and discuss their results at specialized meetings. Well established is the series International Conference on Strangeness in Quark Matter, first organized in
1625:) that requires two pairs minimum to be made. However, we also see an increase at very high volume—this is an effect at the level of one to two standard deviations. Similar results were already recognized before by Petran et al. 412: 4088:
Abatzis, S.; Barnes, R.P.; Benayoun, M.; Beusch, W.; Bloodworth, I.J.; Bravar, A.; Carney, J.N.; Dufey, J.P.; Evans, D.; Fini, R.; French, B.R. (1991). "Λ and anti-Λ production in S+W and p+W interactions at 200 A GeV/c".
1120: 1306: 1264: 1192: 239:. An early comprehensive review of strangeness as a signature of QGP was presented by Koch, Müller and Rafelski, which was recently updated. The abundance of produced strange anti-baryons, and in particular anti-omega 118:
create an extremely dense environment, in which quarks and gluons may interact as free particles for brief moments. The collisions happened at such extreme velocities that the nuclei are "pancaked" because of
308: 1317:
produced is enhanced or if the comparison base line is suppressed. Suppression is expected when an otherwise absent quantum number, such as strangeness, is rarely produced. This situation was recognized by
479:
almost ten times faster than the quark-based strangeness process, and allows achievement of the high thermal yield where the quark based process would fail to do so during the duration of the "micro-bang".
205:(GSI) and NICA at JINR, are under construction. Strangeness as a signature of QGP was first explored in 1983. Comprehensive experimental evidence about its properties is being assembled. Recent work by the 1953:. The reason the negative kaon particles do not show this "horn" feature is that the s-quarks prefer to hadronize bound in the Lambda particle, where the counterpart structure is observed. Data point from 69:
and not necessarily chemical (abundance) equilibrium. The word plasma signals that color charged particles (quarks and/or gluons) are able to move in the volume occupied by the plasma. The abundance of
167:. This is so since practically all QGP components flow out at relativistic speed. In this way, it is possible to study conditions akin to those in the early Universe at the age of 10–40 microseconds. 2738:
Soff, S.; Bass, S.A.; Bleicher, M.; Bravina, L.; Gorenstein, M.; Zabrodin, E.; Stöcker, H.; Greiner, W. (1999). "Strangeness enhancement in heavy ion collisions – evidence for quark–gluon matter?".
1867:. The data indicates a significant enhancement of the production of this antimatter particle comprising one antistrange quark as well as antiup and antidown quarks. All three constituents of the 921:
mechanism of production of these particles and confirms that a quark–gluon plasma is created over a wide range of collision energies, very probably once a minimal energy threshold is exceeded.
1322:
QGP are of relevance. This argument can be resolved by exploring specific sensitive experimental signatures for example the ratio of double strange particles of different type, such yield of
1044: 4659: 980: 570: 1894: 1857: 1816: 639: 1222: 1150: 1557: 1505: 1398: 512: 460: 1649:. When QGP is formed, these quarks are embedded in a high density of strangeness present. This should lead to copious production of exotic heavy particles, for example 4072:
Study of strangness production in central nucleus–nucleus collisions at 200 GeV/nucleon by developing a new analysis method for the NA35 streamer chamber pictures
1779: 1752: 1732: 1705: 770: 745: 1064: 901:
in time for the CERN announcement in 2000 of a possible quark–gluon plasma formation in its experiments. These results were elaborated by the successor collaboration
877: 810: 610: 4507: 4430: 3644: 3517: 3458: 3325: 1577: 1525: 1418: 1623: 1473: 1366: 857: 834: 790: 697: 5087: 1603: 1453: 1346: 4857: 4124:
Abatzis, S.; Antinori, F.; Barnes, R.P.; Benayoun, M.; Beusch, W.; Bloodworth, I.J.; Bravar, A.; Carney, J.N.; de la Cruz, B.; Di Bari, D.; Dufey, J.P. (1991).
2573:"Strangeness and phase changes in hot hadronic matter - 1983: From: "Sixth High Energy Heavy Ion Study" held 28 June - 1 July 1983 at: LBNL, Berkeley, CA, USA" 5176: 2524:"Extreme states of nuclear matter – 1980: From: "Workshop on Future Relativistic Heavy Ion Experiments" held 7–10 October 1980 at: GSI, Darmstadt, Germany" 202: 90:
helps to produce antimatter containing multiple strange quarks, which is otherwise rarely made. Similar considerations are at present made for the heavier
5209: 3836:
Tripathy, Sushanta (2019-07-01). "An insight into strangeness with $ \phi$ (1020) production in small to large collision systems with ALICE at the LHC".
78:
processes in collisions between constituents of the plasma, creating the chemical abundance equilibrium. The dominant mechanism of production involves
3857:
Albuquerque, D.S.D. (2019). "Hadronic resonances, strange and multi-strange particle production in Xe–Xe and Pb–Pb collisions with ALICE at the LHC".
317: 1069: 198: 3556:
Heinz, Ulrich; Jacob, Maurice (2000-02-16). "Evidence for a New State of Matter: An Assessment of the Results from the CERN Lead Beam Programme".
94:
flavor, which is made at the beginning of the collision process in the first interactions and is only abundant in the high-energy environments of
1269: 1227: 1155: 310:, allowed to distinguish fully deconfined large QGP domain from transient collective quark models such as the color rope model proposed by Biró, 2262:
Gazdzicki, Marek; Gorenstein, Mark; Seyboth, Peter (2020-04-05). "Brief history of the search for critical structures in heavy-ion collisions".
5055: 3227: 3091: 2143: 675:
into lighter quarks on a timescale that is extremely long compared with the nuclear-collision times. This makes it relatively easy to detect
190: 1308:
TeV are included for comparison. Error bars show the statistical uncertainty, whereas the empty boxes show the total systematic uncertainty.
186: 4167:
Gazdzicki, Marek; Gorenstein, Mark; Seyboth, Peter (2020). "Brief history of the search for critical structures in heavy-ion collisions".
2895:
Hamieh, Salah; Redlich, Krzysztof; Tounsi, Ahmed (2000). "Canonical description of strangeness enhancement from p–A to Pb–Pb collisions".
1822:
Looking back to the beginning of the CERN heavy ion program one sees de facto announcements of quark–gluon plasma discoveries. The CERN-
1781:
and p). This figure is created from actual picture taken at the NA35 CERN experiment. More details at page 28 in Letessier and Rafelski.
242: 4850: 4531: 2447: 163:
needs to cross the QGP fireball, thus about 10 s. After this brief time the hot drop of quark plasma evaporates in a process called
2016:
Brief history of the search for critical structures in heavy-ion collisions, Marek Gazdzicki, Mark Gorenstein, Peter Seyboth, 2020.
1902:
common center of momentum frame of reference source formed when both nuclei collide, that is, the hot quark–gluon plasma fireball.
139:) is mobile and quarks and gluons move around. This is possible because at a high temperature the early universe is in a different 2435: 982:
obtained in three different collision systems at highest available energy as a function of charged hadron multiplicity produced.
5742: 5476: 914: 159: 5546: 5471: 5202: 5003: 3783:
Tripathy, Sushanta (2019). "Energy dependence of ϕ(1020) production at mid-rapidity in pp collisions with ALICE at the LHC".
182: 1818:
yield created in S–S with that in up-scaled p–p (squares) collision as a function of rapidity. Collisions at 200 A GeV.
5658: 5486: 5541: 5286: 5668: 4843: 135:
of free quarks, antiquarks and gluons. This gas is called quark–gluon plasma (QGP), since the quark-interaction charge (
5140: 3970: 2677:
Koch, Peter; Müller, Berndt; Rafelski, Johann (2017). "From strangeness enhancement to quark–gluon plasma discovery".
26: 2829:
Petráň, Michal; Rafelski, Johann (2010). "Multistrange particle production and the statistical hadronization model".
993: 3912:"Statistical thermodynamics of strong interactions at high energies – III : heavy pair(quark) production rates" 4971: 4944: 4555: 2135: 1668:. Other heavy flavor particles, some which have not even been discovered at this time, are also likely to appear. 1646: 576: 4450:"Pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement" 3339:
Kuznetsova, I.; Rafelski, J. (2007). "Heavy flavor hadrons in statistical hadronization of strangeness-rich QGP".
5737: 5195: 466:
Yield equilibration of strangeness yield in QGP is only possible due to a new process, gluon fusion, as shown by
230:
of strange quarks and antiquarks is equivalent to the temperature or energy at which protons, neutrons and other
66: 3968:
I. Kuznetsova; J. Rafelski (2007). "Heavy Flavor Hadrons in Statistical Hadronization of Strangeness-rich QGP".
2791:
Biro, T.S.; Nielsen, H.B.; Knoll, J. (1984). "Colour rope model for extreme relativistic heavy ion collisions".
936: 5732: 5693: 5592: 5222: 5077: 1965: 517: 1312:
The very high precision of (strange) particle spectra and large transverse momentum coverage reported by the
663:
produced. This key result shows therefore formation a new state of matter announced at CERN in February 2000.
5587: 4334: 209:
at CERN has opened a new path to study of QGP and strangeness production in very high energy pp collisions.
5347: 2038: 34: 5727: 5722: 5612: 5602: 5352: 5161: 5023: 3531: 2646: 1911: 1638: 679:
through the tracks left by their decay products. Consider as an example the decay of a negatively charged
4635:"Quark Matter 2023 - the XXXth International Conference on Ultra-relativistic Nucleus–Nucleus Collisions" 3933:
Rafelski, Johann; Danos, Michael (1980). "The importance of the reaction volume in hadronic collisions".
892:
nucleons scaled—this represents residual enhancement after removal of scaling with number of participant.
5717: 5166: 5135: 4998: 4919: 4501: 4424: 3638: 3511: 3452: 3319: 647: 99: 4609: 1870: 1833: 1792: 986: 615: 5531: 5291: 5125: 4949: 4909: 4748: 4473: 4396: 4377: 4353: 4286: 4229: 4186: 4098: 4025: 3989: 3942: 3876: 3802: 3741: 3683: 3664: 3610: 3591: 3578: 3491: 3473: 3416: 3358: 3299: 3207: 3146: 3071: 3003: 2964: 2914: 2848: 2800: 2757: 2696: 2638: 2584: 2535: 2477: 2387: 2325: 2281: 2225: 2172: 2091: 1827: 902: 898: 3189: 3127:
Dong, Xin; Lee, Yen-Jie; Rapp, Ralf (2019). "Open Heavy-Flavor Production in Heavy-Ion Collisions".
2651: 1637:. The production of QGP in pp collisions was not expected by all, but should not be a surprise. The 1197: 650:
at CERN of the particles that have charm and strange quarks, and even bottom quarks, as components.
82:
only present when matter has become a quark–gluon plasma. When quark–gluon plasma disassembles into
5506: 5398: 5388: 5301: 5256: 5100: 4959: 4954: 4939: 4914: 4891: 4867: 3405:"Transverse mass spectra of strange and multi–strange particles in Pb–Pb collisions at 158 A GeV/c" 3053: 1125: 772:
decays into a proton and another negative pion. In general this is the signature of the decay of a
311: 120: 5653: 5582: 5416: 5156: 5033: 5028: 4981: 4821: 4803: 4772: 4738: 4707: 4549: 4489: 4463: 4412: 4386: 4343: 4310: 4253: 4202: 4176: 4052: 4034: 4005: 3979: 3892: 3866: 3837: 3818: 3792: 3765: 3731: 3699: 3673: 3626: 3600: 3557: 3440: 3382: 3348: 3261: 3233: 3197: 3170: 3136: 3097: 3061: 2930: 2904: 2872: 2838: 2773: 2747: 2720: 2686: 2377: 2297: 2271: 1645:
Beyond strangeness the great advantage offered by LHC energy range is the abundant production of
1530: 1478: 1371: 485: 438: 127:
Free quarks probably existed in the extreme conditions of the very early universe until about 30
2216:
Jacak, Barbara; Steinberg, Peter (2010). "Creating the perfect liquid in heavy-ion collisions".
154:
in the laboratory it is necessary to exceed a minimum temperature, or its equivalent, a minimum
2424: 462:
strangeness production processes: gluon fusion, top, dominate the light quark based production.
5683: 5678: 5648: 5607: 5496: 5448: 5433: 5326: 5296: 5171: 5120: 5065: 5045: 4931: 4764: 4537: 4527: 4454: 4302: 4277: 4245: 3757: 3482: 3432: 3374: 3290: 3223: 3162: 3087: 2864: 2712: 2602: 2553: 2493: 2443: 2405: 2341: 2241: 2198: 2190: 2139: 2109: 1757: 1737: 1710: 1683: 755: 730: 668: 4023:
N. Armesto; et al. (2008). "Heavy-ion collisions at the LHC—Last call for predictions".
2468:
Rafelski, Johann; Müller, Berndt (1982). "Strangeness Production in the Quark–Gluon Plasma".
2025:
On the history of multi-particle production in high energy collisions, Marek Gazdzicki, 2012.
2022:
Four heavy-ion experiments at the CERN-SPS: A trip down memory lane, Emanuele Quercigh, 2012.
1672:
S–S and S–W collisions at SPS-CERN with projectile energy 200 GeV per nucleon on fixed target
1049: 925:
ALICE: Resolution of remaining questions about strangeness as signature of quark–gluon plasma
862: 795: 595: 5638: 5261: 5110: 5050: 4976: 4813: 4756: 4697: 4521: 4481: 4404: 4294: 4237: 4194: 4149: 4106: 4044: 3997: 3950: 3884: 3810: 3749: 3691: 3618: 3499: 3424: 3366: 3307: 3215: 3154: 3079: 3011: 2972: 2922: 2856: 2808: 2765: 2704: 2656: 2627:
P. Koch; B. Müller; J. Rafelski (1986). "Strangeness in relativistic heavy ion collisions".
2592: 2543: 2504: 2485: 2395: 2366:"Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions" 2333: 2289: 2233: 2180: 2099: 2058: 1634: 1629: 1421: 1313: 676: 672: 471: 206: 1897:
evaluate the pp-background. These results are presented as function of the variable called
1562: 1510: 1403: 53:
typically approach chemical equilibrium in a dynamic evolution process. QGP (also known as
5628: 5481: 5218: 5130: 5040: 4986: 4886: 4569: 4445: 4372: 3659: 3285: 2629: 1992: 1950: 1823: 1676: 1642:
deconfinement in pp and other "small" system collisions remains an active research topic.
1608: 1458: 1351: 842: 819: 775: 682: 475: 467: 219: 174: 75: 4329: 1582: 1432: 1325: 4752: 4477: 4400: 4357: 4290: 4233: 4190: 4102: 4048: 3993: 3946: 3880: 3806: 3745: 3695: 3687: 3614: 3495: 3420: 3362: 3303: 3211: 3150: 3075: 3007: 2968: 2949: 2918: 2852: 2804: 2761: 2700: 2642: 2588: 2539: 2481: 2391: 2329: 2285: 2229: 2176: 2095: 5426: 5421: 5378: 5311: 5306: 5060: 5015: 4993: 4881: 3158: 2028:
Strangeness and the quark–gluon plasma: thirty years of discovery, Berndt Müller, 2012.
1932: 155: 151: 147:(able to exist independently as separate unbound particles). In order to recreate this 115: 3503: 2926: 2769: 5711: 5663: 5643: 5566: 5526: 5461: 5393: 5316: 4825: 4776: 4711: 4493: 4416: 4408: 4257: 4206: 4153: 4110: 4056: 4001: 3954: 3896: 3822: 3769: 3630: 3622: 3444: 3370: 3311: 3174: 3015: 2976: 2876: 2812: 2724: 2660: 2301: 2048: 1954: 1425: 1318: 910: 749: 727: 223: 164: 148: 144: 71: 46: 4314: 4009: 3888: 3814: 3703: 3386: 3237: 3101: 2777: 1785: 658: 587: 431: 110: 5688: 5561: 5556: 5551: 5516: 5466: 5383: 5095: 4791: 4726: 4685: 3753: 2934: 2043: 816:
has a similar final state decay topology, it can be clearly distinguished from the
813: 140: 136: 3288:(1991). "Strangeness enhancement in central S + S collisions at 200 GeV/nucleon". 2104: 2079: 3722:
Rafelski, Johann (2020). "Discovery of Quark–Gluon Plasma: Strangeness Diaries".
3219: 2597: 2572: 2548: 2523: 5597: 5491: 5403: 5271: 4076:
The figure is a re-work of the original figure appearing on the top of page 271.
3083: 3030: 2508: 2489: 2337: 407:{\displaystyle \phi (s{\bar {s}})/{\bar {\Xi }}({\bar {q}}{\bar {s}}{\bar {s}})} 185:(BNL). Preparatory work, allowing for these discoveries, was carried out at the 128: 91: 50: 20: 4485: 4272: 2860: 1527:) as the number of produced strange pairs decreases and thus it easier to make 887: 5536: 5511: 5438: 5408: 5342: 5321: 5115: 5105: 4241: 4198: 2708: 2293: 2053: 1961: 1115:{\displaystyle \operatorname {d} \!N_{ch}/\operatorname {d} \!\eta _{<0.5}} 170: 54: 42: 4817: 4768: 4760: 4702: 4249: 3761: 3436: 3378: 3166: 2868: 2716: 2606: 2557: 2497: 2409: 2345: 2245: 2194: 2113: 1859:
formation in heavy ion reactions in May 1990 at the Quark Matter Conference,
414:
resolves questions raised by the canonical model of strangeness enhancement.
4966: 4835: 4541: 4298: 3478:"Strangeness enhancement at mid-rapidity in Pb–Pb collisions at 158 A GeV/c" 2019:
Discovery of quark–gluon plasma: strangeness diaries, Johann Rafelski, 2020.
1916: 699: 2202: 1944:
indicate that. One of the most accessible signatures would be the relative
1301:{\displaystyle {\sqrt {s_{\operatorname {N} \!\operatorname {N} \!}}}=5.02} 1259:{\displaystyle {\sqrt {s_{\operatorname {N} \!\operatorname {N} \!}}}=5.44} 1187:{\displaystyle {\sqrt {s_{\operatorname {N} \!\operatorname {N} \!}}}=5.02} 929: 33:
in relativistic heavy-ion collisions is a signature and diagnostic tool of
5187: 4306: 3428: 143:, in which normal matter cannot exist but quarks and gluons can; they are 5673: 5501: 2439: 1898: 38: 4634: 4391: 3605: 3562: 2752: 2078:
Margetis, Spyridon; Safarík, Karel; Villalobos Baillie, Orlando (2000).
5633: 5521: 5456: 5373: 5368: 4727:"On the history of multi-particle production in high energy collisions" 4348: 3984: 3353: 2909: 2000: 1996: 194: 3581:(2006). "Enhancement of hyperon production at central rapidity in 158 2400: 2365: 2237: 1680:
Illustration of self-analyzing strange hadron decay: a double strange
5242: 5070: 4686:"Four heavy-ion experiments at the CERN-SPS: A trip down memory lane" 4660:"Why hundreds of Sheldon Coopers are descending on Houston next week" 4449: 3662:(2009). "Overview of strangeness production at the STAR experiment". 3190:"Color deconfinement and charmonium production in nuclear collisions" 2185: 2160: 1936: 1864: 1860: 1424:
obtained this ratio for several collision systems in a wide range of
231: 83: 4125: 3911: 3477: 3404: 2991: 45:, from which everyday matter is made, heavier quark flavors such as 4792:"Strangeness and the quark–gluon plasma: thirty years of discovery" 4523:
Strangeness in hadronic matter : S'95, Tucson, AZ January 1995
4181: 3871: 3842: 3797: 3736: 3141: 3031:"On the strange quark suppression factor in high-energy collisions" 2691: 2382: 2276: 5251: 5237: 4808: 4743: 4468: 4039: 3678: 3266: 3202: 3066: 2843: 435:
Feynman diagrams for the lowest order in strong coupling constant
87: 79: 62: 58: 4220:
Becattini, F. (2012). "Strangeness and onset of deconfinement".
3052:
Becattini, Francesco; Fries, Rainer J. (2010), Stock, R. (ed.),
1969: 1945: 1929: 1925: 1921: 1122:, is reported for several systems and energies, including pp at 703: 303:{\displaystyle {\bar {\Omega }}({\bar {s}}{\bar {s}}{\bar {s}})} 227: 178: 95: 5191: 4839: 2161:"CERN claims first experimental creation of quark–gluon plasma" 5247: 4589: 3196:, vol. 23, Springer Berlin Heidelberg, pp. 373–423, 3060:, vol. 23, Springer Berlin Heidelberg, pp. 208–239, 2004: 132: 106:
Quark–gluon plasma in the early universe and in the laboratory
4134:
production in sulphur–tungsten interactions at 200 GeV/
236: 1928:
as a function of collision energy in collisions of two
1920:
The ratio of mean multiplicities of positively charged
86:
in a breakup process, the high availability of strange
3188:
Kluberg, Louis; Satz, Helmut (2010), Stock, R. (ed.),
2950:"Quarkochemistry in relativistic heavy-ion collisions" 1194:
TeV, and also the ALICE preliminary results for pp at
1873: 1836: 1795: 1760: 1740: 1713: 1686: 1611: 1585: 1565: 1533: 1513: 1481: 1461: 1435: 1406: 1374: 1354: 1328: 1272: 1230: 1200: 1158: 1128: 1072: 1052: 996: 939: 883:
Systematics of strange matter and antimatter creation
865: 845: 822: 798: 778: 758: 733: 685: 618: 598: 520: 488: 441: 320: 245: 4074:. Thesis number 2723. Geneva: University of Geneva. 641:
is the strongest signature to date of QGP formation.
5621: 5575: 5447: 5361: 5335: 5279: 5230: 5149: 5086: 5014: 4930: 4902: 4874: 1066:. The evolution with multiplicity at mid-rapidity, 4330:"On the Early Stage of Nucleus–Nucleus Collisions" 3258:Strangeness and charm in quark–gluon hadronization 3054:"The QCD Confinement Transition: Hadron Formation" 2992:"Strangeness production in the quark gluon plasma" 1960:In view of these results the objective of ongoing 1906:Horn in K → π ratio and the onset of deconfinement 1888: 1851: 1810: 1773: 1754:which decays making a characteristic V-signature ( 1746: 1726: 1699: 1617: 1597: 1571: 1551: 1519: 1499: 1467: 1447: 1412: 1392: 1360: 1340: 1300: 1258: 1216: 1186: 1144: 1114: 1058: 1038: 974: 871: 851: 828: 804: 784: 764: 739: 691: 633: 604: 564: 506: 454: 406: 302: 1287: 1283: 1245: 1241: 1173: 1169: 1098: 1076: 2080:"Strangeness Production in Heavy-Ion Collisions" 1957:(red stars) in figure agree with the CERN data. 418:Equilibrium of strangeness in quark–gluon plasma 4526:. Rafelski, Johann. New York: AIP Press. 1995. 1039:{\displaystyle p,K_{s}^{0},\Lambda ,\phi ,\Xi } 5203: 4851: 3129:Annual Review of Nuclear and Particle Science 2084:Annual Review of Nuclear and Particle Science 8: 4570:"History – Strangeness in Quark Matter 2019" 3724:The European Physical Journal Special Topics 514:pairs with the normalized light quark pairs 4610:"Quark-matter mysteries on the run in Bari" 4506:: CS1 maint: numeric names: authors list ( 4429:: CS1 maint: numeric names: authors list ( 3643:: CS1 maint: numeric names: authors list ( 3516:: CS1 maint: numeric names: authors list ( 3457:: CS1 maint: numeric names: authors list ( 3324:: CS1 maint: numeric names: authors list ( 2432:Statistical mechanics of quarks and hadrons 203:GSI Helmholtz Centre for Heavy Ion Research 5210: 5196: 5188: 4858: 4844: 4836: 975:{\displaystyle ({\bar {\Xi }}+\Xi /\phi )} 909:A similar enhancement was obtained by the 836:because its decay products are different. 57:) is an interacting localized assembly of 4807: 4742: 4701: 4467: 4390: 4347: 4180: 4038: 3983: 3870: 3841: 3796: 3735: 3677: 3604: 3561: 3352: 3265: 3201: 3140: 3065: 2908: 2842: 2751: 2690: 2679:International Journal of Modern Physics A 2650: 2596: 2547: 2399: 2381: 2275: 2184: 2103: 1875: 1874: 1872: 1838: 1837: 1835: 1797: 1796: 1794: 1765: 1759: 1739: 1718: 1712: 1691: 1685: 1610: 1584: 1564: 1535: 1534: 1532: 1512: 1483: 1482: 1480: 1460: 1434: 1405: 1376: 1375: 1373: 1353: 1327: 1279: 1273: 1271: 1237: 1231: 1229: 1201: 1199: 1165: 1159: 1157: 1129: 1127: 1103: 1090: 1081: 1071: 1051: 1012: 1007: 995: 961: 944: 943: 938: 897:this effect was demonstrated by the CERN 864: 844: 821: 797: 777: 757: 732: 684: 620: 619: 617: 597: 565:{\displaystyle {\bar {u}}u+{\bar {d}}d/2} 554: 540: 539: 522: 521: 519: 490: 489: 487: 446: 440: 390: 389: 378: 377: 366: 365: 351: 350: 345: 331: 330: 319: 286: 285: 274: 273: 262: 261: 247: 246: 244: 1915: 1784: 1675: 985: 928: 886: 702:(green in figure, dss), into a negative 657: 586: 430: 109: 2070: 1968:and the proposed low energy run at BNL 990:Ratio to pion of integrated yields for 114:Collision between two highly-energetic 37:(QGP) formation and properties. Unlike 5056:Atomic, molecular, and optical physics 4547: 4499: 4422: 4328:M. Gazdzicki; M.I. Gorenstein (1999). 4271:N.K. Glendenning; J. Rafelski (1985). 3636: 3509: 3450: 3317: 2824: 2822: 1830:experimental collaborations announced 3717: 3715: 3713: 3532:"New State of Matter created at CERN" 3398: 3396: 3279: 3277: 3122: 3120: 2890: 2888: 2886: 2672: 2670: 2622: 2620: 2618: 2616: 2125: 2123: 2007:, attracting about 800 participants. 906:source over normal matter reactions. 839:Measurement of abundant formation of 583:Strangeness (and charm) hadronization 314:and Knoll. The relative abundance of 235:is the highly enhanced production of 191:Lawrence Berkeley National Laboratory 7: 2463: 2461: 2459: 2425:"From Hadron Gas to Quark Matter II" 2359: 2357: 2355: 2257: 2255: 1949:ratio has been reported by the CERN 654:Strange hadron decay and observation 187:Joint Institute for Nuclear Research 4590:"Strangeness in Quark Matter 2019" 3159:10.1146/annurev-nucl-101918-023806 2130:J. Letessier; J. Rafelski (2002). 1877: 1840: 1799: 1741: 1688: 1612: 1462: 1355: 1284: 1280: 1242: 1238: 1170: 1166: 1095: 1073: 1053: 1033: 1021: 958: 946: 866: 846: 823: 799: 779: 759: 734: 686: 622: 599: 353: 249: 131:after the Big Bang, in a very hot 14: 2423:J. Rafelski; R. Hagedorn (1981). 1889:{\displaystyle {\bar {\Lambda }}} 1852:{\displaystyle {\bar {\Lambda }}} 1811:{\displaystyle {\bar {\Lambda }}} 213:Strangeness in quark–gluon plasma 5270: 2948:Biró, T.S.; Zimányi, J. (1982). 634:{\displaystyle {\bar {\Omega }}} 158:. Scientists achieve this using 5177:Timeline of physics discoveries 3889:10.1016/j.nuclphysa.2018.08.033 3815:10.1016/j.nuclphysa.2018.09.078 3409:The European Physical Journal C 3403:The WA97 Collaboration (2000). 3341:The European Physical Journal C 2577:The European Physical Journal A 2528:The European Physical Journal A 1475:) must be smaller compared to 197:. New experimental facilities, 4273:"Kaons and quark–gluon plasma" 4002:10.1140/epjc/s10052-007-0268-9 3371:10.1140/epjc/s10052-007-0268-9 3260:(PhD). University of Arizona. 3194:Relativistic Heavy Ion Physics 3058:Relativistic Heavy Ion Physics 2132:Hadrons and Quark–Gluon Plasma 1880: 1843: 1802: 1540: 1488: 1381: 1217:{\displaystyle {\sqrt {s}}=13} 969: 949: 940: 625: 545: 527: 495: 401: 395: 383: 371: 362: 356: 342: 336: 324: 297: 291: 279: 267: 258: 252: 183:Brookhaven National Laboratory 1: 5659:Macroscopic quantum phenomena 4049:10.1088/0954-3899/35/5/054001 3696:10.1088/0954-3899/36/6/064006 3504:10.1016/S0370-2693(99)00140-9 2927:10.1016/S0370-2693(00)00762-0 2770:10.1016/S0370-2693(99)01318-0 2105:10.1146/annurev.nucl.50.1.299 1145:{\displaystyle {\sqrt {s}}=7} 667:Strange quarks are naturally 427:Gluon fusion into strangeness 5669:Order and disorder (physics) 4375:(2004). "Report from NA49". 4154:10.1016/0370-2693(91)91548-A 4111:10.1016/0375-9474(91)90361-9 3955:10.1016/0370-2693(80)90601-2 3916:Supplemento al Nuovo Cimento 3754:10.1140/epjst/e2019-900263-x 3312:10.1016/0375-9474(91)90328-4 3220:10.1007/978-3-642-01539-7_13 3016:10.1016/0375-9474(84)90551-7 2977:10.1016/0370-2693(82)90097-1 2813:10.1016/0550-3213(84)90441-3 2661:10.1016/0370-1573(86)90096-7 2364:ALICE Collaboration (2017). 482:The ratio of newly produced 5141:Quantum information science 3971:European Physical Journal C 3084:10.1007/978-3-642-01539-7_8 2509:10.1103/PhysRevLett.56.2334 2490:10.1103/PhysRevLett.48.1066 2338:10.1103/PhysRevLett.50.1971 1789:Quantitative comparison of 1552:{\displaystyle {\bar {s}}s} 1500:{\displaystyle {\bar {s}}s} 1393:{\displaystyle {\bar {s}}s} 507:{\displaystyle {\bar {s}}s} 455:{\displaystyle \alpha _{s}} 177:has been announced both at 27:high-energy nuclear physics 5759: 4972:Classical electromagnetism 4486:10.1103/PhysRevC.77.024903 4409:10.1088/0954-3899/30/8/008 3623:10.1088/0954-3899/32/4/003 2861:10.1103/PhysRevC.82.011901 2598:10.1140/epja/i2015-15116-x 2571:Rafelski, Johann (2015) . 2549:10.1140/epja/i2015-15115-y 2522:Rafelski, Johann (2015) . 2136:Cambridge University Press 1909: 18: 5268: 4242:10.1134/S106377881205002X 4199:10.5506/APhysPolB.51.1033 2990:Rafelski, Johann (1984). 2709:10.1142/S0217751X17300241 2294:10.5506/APhysPolB.51.1033 474:. The top section of the 5694:Thermo-dielectric effect 5593:Enthalpy of vaporization 5287:Bose–Einstein condensate 5078:Condensed matter physics 4818:10.5506/APhysPolB.43.761 4761:10.5506/APhysPolB.43.791 4703:10.5506/APhysPolB.43.771 4222:Physics of Atomic Nuclei 1986:Conferences and meetings 1774:{\displaystyle \pi ^{-}} 1747:{\displaystyle \Lambda } 1727:{\displaystyle \pi ^{-}} 1700:{\displaystyle \Xi ^{-}} 792:. Although the negative 765:{\displaystyle \Lambda } 740:{\displaystyle \Lambda } 577:charm and bottom flavour 5588:Enthalpy of sublimation 4796:Acta Physica Polonica B 4731:Acta Physica Polonica B 4690:Acta Physica Polonica B 4335:Acta Physica Polonica B 4299:10.1103/PhysRevC.31.823 4169:Acta Physica Polonica B 3910:Hagedorn, Rolf (1968). 3256:Petran, Michal (2013). 3029:Wroblewski, A. (1985). 2470:Physical Review Letters 2318:Physical Review Letters 2264:Acta Physica Polonica B 2159:Abbott, Alison (2000). 1647:charm and bottom flavor 1628:Another highly praised 1059:{\displaystyle \Omega } 872:{\displaystyle \Omega } 805:{\displaystyle \Omega } 605:{\displaystyle \Omega } 5743:Quantum chromodynamics 5603:Latent internal energy 5353:Color-glass condensate 5162:Nobel Prize in Physics 5024:Relativistic mechanics 4725:Gazdzicki, M. (2012). 4554:: CS1 maint: others ( 2452:. CERN-TH-2969 (1980). 1940: 1912:Onset of deconfinement 1890: 1853: 1819: 1812: 1782: 1775: 1748: 1728: 1701: 1639:onset of deconfinement 1619: 1599: 1573: 1553: 1521: 1501: 1469: 1449: 1414: 1394: 1362: 1342: 1309: 1302: 1260: 1218: 1188: 1146: 1116: 1060: 1040: 983: 976: 933:LHC-ALICE results for 893: 873: 853: 830: 806: 786: 766: 741: 693: 664: 642: 635: 606: 566: 508: 463: 456: 408: 304: 124: 31:strangeness production 5413:Magnetically ordered 5167:Philosophy of physics 4684:Quercigh, E. (2012). 3429:10.1007/s100520000386 1939:–proton interactions. 1919: 1891: 1854: 1813: 1788: 1776: 1749: 1729: 1702: 1679: 1620: 1600: 1574: 1572:{\displaystyle \phi } 1554: 1522: 1520:{\displaystyle \phi } 1502: 1470: 1450: 1415: 1413:{\displaystyle \phi } 1395: 1363: 1343: 1303: 1261: 1219: 1189: 1147: 1117: 1061: 1041: 989: 977: 932: 890: 874: 854: 831: 807: 787: 767: 742: 694: 661: 648:Large Hadron Collider 636: 607: 590: 567: 509: 457: 434: 409: 305: 113: 100:Large Hadron Collider 5292:Fermionic condensate 5126:Mathematical physics 4664:Houston Public Media 4378:Journal of Physics G 4026:Journal of Physics G 3665:Journal of Physics G 3592:Journal of Physics G 2442:. pp. 253–272. 2430:. In H. Satz (ed.). 1871: 1834: 1793: 1758: 1738: 1711: 1684: 1618:{\displaystyle \Xi } 1609: 1583: 1563: 1531: 1511: 1479: 1468:{\displaystyle \Xi } 1459: 1433: 1404: 1372: 1361:{\displaystyle \Xi } 1352: 1326: 1270: 1228: 1198: 1156: 1126: 1070: 1050: 994: 937: 863: 852:{\displaystyle \Xi } 843: 829:{\displaystyle \Xi } 820: 796: 785:{\displaystyle \Xi } 776: 756: 752:. Subsequently, the 731: 692:{\displaystyle \Xi } 683: 616: 596: 518: 486: 439: 318: 243: 5507:Chemical ionization 5399:Programmable matter 5389:Quantum spin liquid 5257:Supercritical fluid 5101:Atmospheric physics 4940:Classical mechanics 4868:branches of physics 4790:Müller, B. (2012). 4753:2012arXiv1201.0485G 4478:2008PhRvC..77b4903A 4401:2004JPhG...30S.701G 4358:1999AcPPB..30.2705G 4291:1985PhRvC..31..823G 4234:2012PAN....75..646B 4191:2020AcPPB..51.1033G 4103:1991NuPhA.525..445A 3994:2007EPJC...51..113K 3947:1980PhLB...97..279R 3881:2019NuPhA.982..823A 3807:2019NuPhA.982..180T 3746:2020EPJST.229....1R 3688:2009JPhG...36f4006T 3615:2006JPhG...32..427N 3589:Pb+Pb collisions". 3496:1999PhLB..449..401W 3421:2000EPJC...14..633W 3363:2007EPJC...51..113K 3304:1991NuPhA.525..221S 3212:2010LanB...23..373K 3151:2019ARNPS..69..417D 3076:2010LanB...23..208B 3035:Acta Phys. Polon. B 3008:1984NuPhA.418..215R 2969:1982PhLB..113....6B 2919:2000PhLB..486...61H 2853:2010PhRvC..82a1901P 2805:1984NuPhB.245..449B 2762:1999PhLB..471...89S 2701:2017IJMPA..3230024K 2685:(31): 1730024–272. 2643:1986PhR...142..167K 2589:2015EPJA...51..116R 2540:2015EPJA...51..115R 2482:1982PhRvL..48.1066R 2392:2017NatPh..13..535A 2330:1983PhRvL..50.1971A 2286:2020AcPPB..51.1033G 2230:2010PhT....63e..39J 2177:2000Natur.403..581A 2096:2000ARNPS..50..299S 1964:experiment at CERN 1707:decays producing a 1598:{\displaystyle ssq} 1448:{\displaystyle ssq} 1341:{\displaystyle ssq} 1017: 237:strange antibaryons 207:ALICE collaboration 160:particle collisions 121:Lorentz contraction 16:Subatomic signature 5654:Leidenfrost effect 5583:Enthalpy of fusion 5348:Quark–gluon plasma 5157:History of physics 4446:NA49 Collaboration 4373:NA49 Collaboration 3660:STAR Collaboration 3579:NA57 Collaboration 3538:. 10 February 2000 3474:WA97 Collaboration 3286:NA35 Collaboration 2039:Quark–gluon plasma 1941: 1886: 1849: 1820: 1808: 1783: 1771: 1744: 1724: 1697: 1615: 1595: 1569: 1549: 1517: 1497: 1465: 1445: 1410: 1390: 1358: 1338: 1310: 1298: 1256: 1214: 1184: 1142: 1112: 1056: 1036: 1003: 984: 972: 913:experiment at the 894: 869: 849: 826: 802: 782: 762: 737: 689: 665: 643: 631: 602: 562: 504: 464: 452: 404: 300: 125: 35:quark–gluon plasma 5702: 5701: 5684:Superheated vapor 5679:Superconductivity 5649:Equation of state 5497:Flash evaporation 5449:Phase transitions 5434:String-net liquid 5327:Photonic molecule 5297:Degenerate matter 5185: 5184: 5172:Physics education 5121:Materials science 5088:Interdisciplinary 5046:Quantum mechanics 4455:Physical Review C 4278:Physical Review C 4142:Physics Letters B 4091:Nuclear Physics A 4070:Foka, P. (1994). 3935:Physics Letters B 3859:Nuclear Physics A 3785:Nuclear Physics A 3483:Physics Letters B 3291:Nuclear Physics A 3229:978-3-642-01538-0 3093:978-3-642-01538-0 2996:Nuclear Physics A 2957:Physics Letters B 2897:Physics Letters B 2831:Physical Review C 2793:Nuclear Physics B 2740:Physics Letters B 2476:(16): 1066–1069. 2401:10.1038/nphys4111 2324:(25): 1971–1974. 2238:10.1063/1.3431330 2145:978-0-521-38536-7 1883: 1846: 1805: 1543: 1491: 1384: 1290: 1266:TeV and Pb–Pb at 1248: 1206: 1176: 1134: 952: 726:d) and a neutral 677:strange particles 673:weak interactions 628: 548: 530: 498: 398: 386: 374: 359: 339: 294: 282: 270: 255: 67:thermal (kinetic) 5750: 5738:Phases of matter 5639:Compressed fluid 5274: 5219:States of matter 5212: 5205: 5198: 5189: 5111:Chemical physics 5051:Particle physics 4977:Classical optics 4860: 4853: 4846: 4837: 4830: 4829: 4811: 4787: 4781: 4780: 4746: 4722: 4716: 4715: 4705: 4681: 4675: 4674: 4672: 4671: 4656: 4650: 4649: 4647: 4646: 4631: 4625: 4624: 4622: 4621: 4606: 4600: 4599: 4597: 4596: 4586: 4580: 4579: 4577: 4576: 4566: 4560: 4559: 4553: 4545: 4518: 4512: 4511: 4505: 4497: 4471: 4441: 4435: 4434: 4428: 4420: 4394: 4385:(8): S701–S708. 4368: 4362: 4361: 4351: 4325: 4319: 4318: 4268: 4262: 4261: 4217: 4211: 4210: 4184: 4164: 4158: 4157: 4133: 4129: 4121: 4115: 4114: 4085: 4079: 4078: 4067: 4061: 4060: 4042: 4020: 4014: 4013: 3987: 3965: 3959: 3958: 3930: 3924: 3923: 3907: 3901: 3900: 3874: 3854: 3848: 3847: 3845: 3833: 3827: 3826: 3800: 3780: 3774: 3773: 3739: 3719: 3708: 3707: 3681: 3655: 3649: 3648: 3642: 3634: 3608: 3574: 3568: 3567: 3565: 3553: 3547: 3546: 3544: 3543: 3528: 3522: 3521: 3515: 3507: 3469: 3463: 3462: 3456: 3448: 3400: 3391: 3390: 3356: 3336: 3330: 3329: 3323: 3315: 3281: 3272: 3271: 3269: 3253: 3247: 3246: 3245: 3244: 3205: 3185: 3179: 3178: 3144: 3124: 3115: 3114: 3109: 3108: 3069: 3049: 3043: 3042: 3026: 3020: 3019: 2987: 2981: 2980: 2954: 2945: 2939: 2938: 2912: 2892: 2881: 2880: 2846: 2826: 2817: 2816: 2788: 2782: 2781: 2755: 2735: 2729: 2728: 2694: 2674: 2665: 2664: 2654: 2624: 2611: 2610: 2600: 2568: 2562: 2561: 2551: 2519: 2513: 2512: 2501: 2465: 2454: 2453: 2429: 2420: 2414: 2413: 2403: 2385: 2361: 2350: 2349: 2312: 2306: 2305: 2279: 2259: 2250: 2249: 2213: 2207: 2206: 2188: 2186:10.1038/35001196 2156: 2150: 2149: 2127: 2118: 2117: 2107: 2075: 2059:Strange particle 1895: 1893: 1892: 1887: 1885: 1884: 1876: 1858: 1856: 1855: 1850: 1848: 1847: 1839: 1817: 1815: 1814: 1809: 1807: 1806: 1798: 1780: 1778: 1777: 1772: 1770: 1769: 1753: 1751: 1750: 1745: 1733: 1731: 1730: 1725: 1723: 1722: 1706: 1704: 1703: 1698: 1696: 1695: 1667: 1666: 1665: 1657: 1656: 1624: 1622: 1621: 1616: 1604: 1602: 1601: 1596: 1578: 1576: 1575: 1570: 1558: 1556: 1555: 1550: 1545: 1544: 1536: 1526: 1524: 1523: 1518: 1506: 1504: 1503: 1498: 1493: 1492: 1484: 1474: 1472: 1471: 1466: 1454: 1452: 1451: 1446: 1422:ALICE experiment 1419: 1417: 1416: 1411: 1399: 1397: 1396: 1391: 1386: 1385: 1377: 1367: 1365: 1364: 1359: 1347: 1345: 1344: 1339: 1307: 1305: 1304: 1299: 1291: 1289: 1288: 1274: 1265: 1263: 1262: 1257: 1249: 1247: 1246: 1232: 1223: 1221: 1220: 1215: 1207: 1202: 1193: 1191: 1190: 1185: 1177: 1175: 1174: 1160: 1151: 1149: 1148: 1143: 1135: 1130: 1121: 1119: 1118: 1113: 1111: 1110: 1094: 1089: 1088: 1065: 1063: 1062: 1057: 1045: 1043: 1042: 1037: 1016: 1011: 981: 979: 978: 973: 965: 954: 953: 945: 878: 876: 875: 870: 858: 856: 855: 850: 835: 833: 832: 827: 811: 809: 808: 803: 791: 789: 788: 783: 771: 769: 768: 763: 746: 744: 743: 738: 725: 724: 723: 717: 714: 713: 698: 696: 695: 690: 640: 638: 637: 632: 630: 629: 621: 611: 609: 608: 603: 571: 569: 568: 563: 558: 550: 549: 541: 532: 531: 523: 513: 511: 510: 505: 500: 499: 491: 476:Feynman diagrams 461: 459: 458: 453: 451: 450: 413: 411: 410: 405: 400: 399: 391: 388: 387: 379: 376: 375: 367: 361: 360: 352: 349: 341: 340: 332: 309: 307: 306: 301: 296: 295: 287: 284: 283: 275: 272: 271: 263: 257: 256: 248: 173:of this new QGP 5758: 5757: 5753: 5752: 5751: 5749: 5748: 5747: 5733:Nuclear physics 5708: 5707: 5703: 5698: 5629:Baryonic matter 5617: 5571: 5542:Saturated fluid 5482:Crystallization 5443: 5417:Antiferromagnet 5357: 5331: 5275: 5266: 5226: 5216: 5186: 5181: 5145: 5131:Medical physics 5082: 5041:Nuclear physics 5010: 5004:Non-equilibrium 4926: 4898: 4870: 4864: 4834: 4833: 4789: 4788: 4784: 4724: 4723: 4719: 4683: 4682: 4678: 4669: 4667: 4658: 4657: 4653: 4644: 4642: 4633: 4632: 4628: 4619: 4617: 4608: 4607: 4603: 4594: 4592: 4588: 4587: 4583: 4574: 4572: 4568: 4567: 4563: 4546: 4534: 4520: 4519: 4515: 4498: 4443: 4442: 4438: 4421: 4392:nucl-ex/0403023 4370: 4369: 4365: 4327: 4326: 4322: 4270: 4269: 4265: 4219: 4218: 4214: 4166: 4165: 4161: 4131: 4127: 4123: 4122: 4118: 4087: 4086: 4082: 4069: 4068: 4064: 4022: 4021: 4017: 3967: 3966: 3962: 3932: 3931: 3927: 3909: 3908: 3904: 3856: 3855: 3851: 3835: 3834: 3830: 3782: 3781: 3777: 3721: 3720: 3711: 3657: 3656: 3652: 3635: 3606:nucl-ex/0601021 3576: 3575: 3571: 3563:nucl-th/0002042 3555: 3554: 3550: 3541: 3539: 3530: 3529: 3525: 3508: 3471: 3470: 3466: 3449: 3402: 3401: 3394: 3338: 3337: 3333: 3316: 3283: 3282: 3275: 3255: 3254: 3250: 3242: 3240: 3230: 3187: 3186: 3182: 3126: 3125: 3118: 3106: 3104: 3094: 3051: 3050: 3046: 3028: 3027: 3023: 2989: 2988: 2984: 2952: 2947: 2946: 2942: 2894: 2893: 2884: 2828: 2827: 2820: 2790: 2789: 2785: 2753:nucl-th/9907026 2737: 2736: 2732: 2676: 2675: 2668: 2652:10.1.1.462.8703 2630:Physics Reports 2626: 2625: 2614: 2570: 2569: 2565: 2521: 2520: 2516: 2503:(Erratum:  2502: 2467: 2466: 2457: 2450: 2427: 2422: 2421: 2417: 2363: 2362: 2353: 2314: 2313: 2309: 2261: 2260: 2253: 2215: 2214: 2210: 2158: 2157: 2153: 2146: 2129: 2128: 2121: 2077: 2076: 2072: 2067: 2035: 2013: 2011:Further reading 1988: 1979: 1914: 1908: 1869: 1868: 1832: 1831: 1791: 1790: 1761: 1756: 1755: 1736: 1735: 1714: 1709: 1708: 1687: 1682: 1681: 1674: 1664: 1661: 1660: 1659: 1655: 1653: 1652: 1651: 1650: 1607: 1606: 1581: 1580: 1561: 1560: 1529: 1528: 1509: 1508: 1477: 1476: 1457: 1456: 1431: 1430: 1402: 1401: 1370: 1369: 1350: 1349: 1324: 1323: 1275: 1268: 1267: 1233: 1226: 1225: 1196: 1195: 1161: 1154: 1153: 1124: 1123: 1099: 1077: 1068: 1067: 1048: 1047: 992: 991: 935: 934: 927: 899:WA97 experiment 885: 861: 860: 841: 840: 818: 817: 794: 793: 774: 773: 754: 753: 729: 728: 722: 720: 719: 718: 715: 712: 710: 709: 708: 707: 681: 680: 656: 614: 613: 594: 593: 585: 516: 515: 484: 483: 442: 437: 436: 429: 420: 316: 315: 241: 240: 220:Johann Rafelski 215: 175:state of matter 152:phase of matter 108: 76:pair-production 23: 17: 12: 11: 5: 5756: 5754: 5746: 5745: 5740: 5735: 5730: 5725: 5720: 5710: 5709: 5700: 5699: 5697: 5696: 5691: 5686: 5681: 5676: 5671: 5666: 5661: 5656: 5651: 5646: 5641: 5636: 5631: 5625: 5623: 5619: 5618: 5616: 5615: 5610: 5608:Trouton's rule 5605: 5600: 5595: 5590: 5585: 5579: 5577: 5573: 5572: 5570: 5569: 5564: 5559: 5554: 5549: 5544: 5539: 5534: 5529: 5524: 5519: 5514: 5509: 5504: 5499: 5494: 5489: 5484: 5479: 5477:Critical point 5474: 5469: 5464: 5459: 5453: 5451: 5445: 5444: 5442: 5441: 5436: 5431: 5430: 5429: 5424: 5419: 5411: 5406: 5401: 5396: 5391: 5386: 5381: 5379:Liquid crystal 5376: 5371: 5365: 5363: 5359: 5358: 5356: 5355: 5350: 5345: 5339: 5337: 5333: 5332: 5330: 5329: 5324: 5319: 5314: 5312:Strange matter 5309: 5307:Rydberg matter 5304: 5299: 5294: 5289: 5283: 5281: 5277: 5276: 5269: 5267: 5265: 5264: 5259: 5254: 5245: 5240: 5234: 5232: 5228: 5227: 5217: 5215: 5214: 5207: 5200: 5192: 5183: 5182: 5180: 5179: 5174: 5169: 5164: 5159: 5153: 5151: 5147: 5146: 5144: 5143: 5138: 5133: 5128: 5123: 5118: 5113: 5108: 5103: 5098: 5092: 5090: 5084: 5083: 5081: 5080: 5075: 5074: 5073: 5068: 5063: 5053: 5048: 5043: 5038: 5037: 5036: 5031: 5020: 5018: 5012: 5011: 5009: 5008: 5007: 5006: 5001: 4994:Thermodynamics 4991: 4990: 4989: 4984: 4974: 4969: 4964: 4963: 4962: 4957: 4952: 4947: 4936: 4934: 4928: 4927: 4925: 4924: 4923: 4922: 4912: 4906: 4904: 4900: 4899: 4897: 4896: 4895: 4894: 4884: 4878: 4876: 4872: 4871: 4865: 4863: 4862: 4855: 4848: 4840: 4832: 4831: 4782: 4717: 4676: 4651: 4626: 4601: 4581: 4561: 4532: 4513: 4436: 4371:M. Gazdzicki; 4363: 4349:hep-ph/9803462 4320: 4285:(3): 823–827. 4263: 4228:(5): 646–649. 4212: 4159: 4148:(1): 123–127. 4116: 4080: 4062: 4015: 3985:hep-ph/0607203 3978:(1): 113–133. 3960: 3941:(2): 279–282. 3925: 3902: 3849: 3828: 3775: 3709: 3658:A.R. Timmins; 3650: 3599:(4): 427–442. 3569: 3548: 3523: 3464: 3415:(4): 633–641. 3392: 3354:hep-ph/0607203 3347:(1): 113–133. 3331: 3273: 3248: 3228: 3180: 3135:(1): 417–445. 3116: 3092: 3044: 3021: 2982: 2940: 2910:hep-ph/0006024 2903:(1–2): 61–66. 2882: 2818: 2783: 2730: 2666: 2612: 2563: 2514: 2455: 2448: 2415: 2376:(6): 535–539. 2370:Nature Physics 2351: 2307: 2251: 2208: 2151: 2144: 2119: 2090:(1): 299–342. 2069: 2068: 2066: 2063: 2062: 2061: 2056: 2051: 2046: 2041: 2034: 2031: 2030: 2029: 2026: 2023: 2020: 2017: 2012: 2009: 1987: 1984: 1978: 1975: 1907: 1904: 1882: 1879: 1845: 1842: 1804: 1801: 1768: 1764: 1743: 1734:and invisible 1721: 1717: 1694: 1690: 1673: 1670: 1662: 1654: 1614: 1594: 1591: 1588: 1579:) compared to 1568: 1548: 1542: 1539: 1516: 1496: 1490: 1487: 1464: 1444: 1441: 1438: 1409: 1389: 1383: 1380: 1368:) compared to 1357: 1337: 1334: 1331: 1297: 1294: 1286: 1282: 1278: 1255: 1252: 1244: 1240: 1236: 1224:TeV, Xe–Xe at 1213: 1210: 1205: 1183: 1180: 1172: 1168: 1164: 1141: 1138: 1133: 1109: 1106: 1102: 1097: 1093: 1087: 1084: 1080: 1075: 1055: 1035: 1032: 1029: 1026: 1023: 1020: 1015: 1010: 1006: 1002: 999: 971: 968: 964: 960: 957: 951: 948: 942: 926: 923: 884: 881: 868: 848: 825: 801: 781: 761: 736: 721: 711: 688: 655: 652: 627: 624: 601: 584: 581: 561: 557: 553: 547: 544: 538: 535: 529: 526: 503: 497: 494: 449: 445: 428: 425: 419: 416: 403: 397: 394: 385: 382: 373: 370: 364: 358: 355: 348: 344: 338: 335: 329: 326: 323: 299: 293: 290: 281: 278: 269: 266: 260: 254: 251: 214: 211: 193:(LBNL) at the 156:energy density 107: 104: 72:strange quarks 15: 13: 10: 9: 6: 4: 3: 2: 5755: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5728:Exotic matter 5726: 5724: 5723:Strange quark 5721: 5719: 5716: 5715: 5713: 5706: 5695: 5692: 5690: 5687: 5685: 5682: 5680: 5677: 5675: 5672: 5670: 5667: 5665: 5664:Mpemba effect 5662: 5660: 5657: 5655: 5652: 5650: 5647: 5645: 5644:Cooling curve 5642: 5640: 5637: 5635: 5632: 5630: 5627: 5626: 5624: 5620: 5614: 5611: 5609: 5606: 5604: 5601: 5599: 5596: 5594: 5591: 5589: 5586: 5584: 5581: 5580: 5578: 5574: 5568: 5567:Vitrification 5565: 5563: 5560: 5558: 5555: 5553: 5550: 5548: 5545: 5543: 5540: 5538: 5535: 5533: 5532:Recombination 5530: 5528: 5527:Melting point 5525: 5523: 5520: 5518: 5515: 5513: 5510: 5508: 5505: 5503: 5500: 5498: 5495: 5493: 5490: 5488: 5485: 5483: 5480: 5478: 5475: 5473: 5472:Critical line 5470: 5468: 5465: 5463: 5462:Boiling point 5460: 5458: 5455: 5454: 5452: 5450: 5446: 5440: 5437: 5435: 5432: 5428: 5425: 5423: 5420: 5418: 5415: 5414: 5412: 5410: 5407: 5405: 5402: 5400: 5397: 5395: 5394:Exotic matter 5392: 5390: 5387: 5385: 5382: 5380: 5377: 5375: 5372: 5370: 5367: 5366: 5364: 5360: 5354: 5351: 5349: 5346: 5344: 5341: 5340: 5338: 5334: 5328: 5325: 5323: 5320: 5318: 5315: 5313: 5310: 5308: 5305: 5303: 5300: 5298: 5295: 5293: 5290: 5288: 5285: 5284: 5282: 5278: 5273: 5263: 5260: 5258: 5255: 5253: 5249: 5246: 5244: 5241: 5239: 5236: 5235: 5233: 5229: 5224: 5220: 5213: 5208: 5206: 5201: 5199: 5194: 5193: 5190: 5178: 5175: 5173: 5170: 5168: 5165: 5163: 5160: 5158: 5155: 5154: 5152: 5148: 5142: 5139: 5137: 5136:Ocean physics 5134: 5132: 5129: 5127: 5124: 5122: 5119: 5117: 5114: 5112: 5109: 5107: 5104: 5102: 5099: 5097: 5094: 5093: 5091: 5089: 5085: 5079: 5076: 5072: 5071:Modern optics 5069: 5067: 5064: 5062: 5059: 5058: 5057: 5054: 5052: 5049: 5047: 5044: 5042: 5039: 5035: 5032: 5030: 5027: 5026: 5025: 5022: 5021: 5019: 5017: 5013: 5005: 5002: 5000: 4997: 4996: 4995: 4992: 4988: 4985: 4983: 4980: 4979: 4978: 4975: 4973: 4970: 4968: 4965: 4961: 4958: 4956: 4953: 4951: 4948: 4946: 4943: 4942: 4941: 4938: 4937: 4935: 4933: 4929: 4921: 4920:Computational 4918: 4917: 4916: 4913: 4911: 4908: 4907: 4905: 4901: 4893: 4890: 4889: 4888: 4885: 4883: 4880: 4879: 4877: 4873: 4869: 4861: 4856: 4854: 4849: 4847: 4842: 4841: 4838: 4827: 4823: 4819: 4815: 4810: 4805: 4801: 4797: 4793: 4786: 4783: 4778: 4774: 4770: 4766: 4762: 4758: 4754: 4750: 4745: 4740: 4736: 4732: 4728: 4721: 4718: 4713: 4709: 4704: 4699: 4695: 4691: 4687: 4680: 4677: 4665: 4661: 4655: 4652: 4640: 4636: 4630: 4627: 4615: 4611: 4605: 4602: 4591: 4585: 4582: 4571: 4565: 4562: 4557: 4551: 4543: 4539: 4535: 4533:1-56396-489-9 4529: 4525: 4524: 4517: 4514: 4509: 4503: 4495: 4491: 4487: 4483: 4479: 4475: 4470: 4465: 4462:(2): 024903. 4461: 4457: 4456: 4451: 4447: 4440: 4437: 4432: 4426: 4418: 4414: 4410: 4406: 4402: 4398: 4393: 4388: 4384: 4380: 4379: 4374: 4367: 4364: 4359: 4355: 4350: 4345: 4341: 4337: 4336: 4331: 4324: 4321: 4316: 4312: 4308: 4304: 4300: 4296: 4292: 4288: 4284: 4280: 4279: 4274: 4267: 4264: 4259: 4255: 4251: 4247: 4243: 4239: 4235: 4231: 4227: 4223: 4216: 4213: 4208: 4204: 4200: 4196: 4192: 4188: 4183: 4178: 4174: 4170: 4163: 4160: 4155: 4151: 4147: 4143: 4139: 4137: 4120: 4117: 4112: 4108: 4104: 4100: 4096: 4092: 4084: 4081: 4077: 4073: 4066: 4063: 4058: 4054: 4050: 4046: 4041: 4036: 4033:(5): 054001. 4032: 4028: 4027: 4019: 4016: 4011: 4007: 4003: 3999: 3995: 3991: 3986: 3981: 3977: 3973: 3972: 3964: 3961: 3956: 3952: 3948: 3944: 3940: 3936: 3929: 3926: 3921: 3917: 3913: 3906: 3903: 3898: 3894: 3890: 3886: 3882: 3878: 3873: 3868: 3864: 3860: 3853: 3850: 3844: 3839: 3832: 3829: 3824: 3820: 3816: 3812: 3808: 3804: 3799: 3794: 3790: 3786: 3779: 3776: 3771: 3767: 3763: 3759: 3755: 3751: 3747: 3743: 3738: 3733: 3729: 3725: 3718: 3716: 3714: 3710: 3705: 3701: 3697: 3693: 3689: 3685: 3680: 3675: 3672:(6): 064006. 3671: 3667: 3666: 3661: 3654: 3651: 3646: 3640: 3632: 3628: 3624: 3620: 3616: 3612: 3607: 3602: 3598: 3594: 3593: 3588: 3584: 3580: 3577:F. Antinori; 3573: 3570: 3564: 3559: 3552: 3549: 3537: 3533: 3527: 3524: 3519: 3513: 3505: 3501: 3497: 3493: 3489: 3485: 3484: 3479: 3475: 3472:E. Andersen; 3468: 3465: 3460: 3454: 3446: 3442: 3438: 3434: 3430: 3426: 3422: 3418: 3414: 3410: 3406: 3399: 3397: 3393: 3388: 3384: 3380: 3376: 3372: 3368: 3364: 3360: 3355: 3350: 3346: 3342: 3335: 3332: 3327: 3321: 3313: 3309: 3305: 3301: 3297: 3293: 3292: 3287: 3280: 3278: 3274: 3268: 3263: 3259: 3252: 3249: 3239: 3235: 3231: 3225: 3221: 3217: 3213: 3209: 3204: 3199: 3195: 3191: 3184: 3181: 3176: 3172: 3168: 3164: 3160: 3156: 3152: 3148: 3143: 3138: 3134: 3130: 3123: 3121: 3117: 3113: 3103: 3099: 3095: 3089: 3085: 3081: 3077: 3073: 3068: 3063: 3059: 3055: 3048: 3045: 3040: 3036: 3032: 3025: 3022: 3017: 3013: 3009: 3005: 3001: 2997: 2993: 2986: 2983: 2978: 2974: 2970: 2966: 2962: 2958: 2951: 2944: 2941: 2936: 2932: 2928: 2924: 2920: 2916: 2911: 2906: 2902: 2898: 2891: 2889: 2887: 2883: 2878: 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2845: 2840: 2837:(1): 011901. 2836: 2832: 2825: 2823: 2819: 2814: 2810: 2806: 2802: 2798: 2794: 2787: 2784: 2779: 2775: 2771: 2767: 2763: 2759: 2754: 2749: 2745: 2741: 2734: 2731: 2726: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2693: 2688: 2684: 2680: 2673: 2671: 2667: 2662: 2658: 2653: 2648: 2644: 2640: 2636: 2632: 2631: 2623: 2621: 2619: 2617: 2613: 2608: 2604: 2599: 2594: 2590: 2586: 2582: 2578: 2574: 2567: 2564: 2559: 2555: 2550: 2545: 2541: 2537: 2533: 2529: 2525: 2518: 2515: 2510: 2506: 2499: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2464: 2462: 2460: 2456: 2451: 2449:0-444-86227-7 2445: 2441: 2437: 2436:North-Holland 2433: 2426: 2419: 2416: 2411: 2407: 2402: 2397: 2393: 2389: 2384: 2379: 2375: 2371: 2367: 2360: 2358: 2356: 2352: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2311: 2308: 2303: 2299: 2295: 2291: 2287: 2283: 2278: 2273: 2269: 2265: 2258: 2256: 2252: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2218:Physics Today 2212: 2209: 2204: 2200: 2196: 2192: 2187: 2182: 2178: 2174: 2171:(6770): 581. 2170: 2166: 2162: 2155: 2152: 2147: 2141: 2137: 2133: 2126: 2124: 2120: 2115: 2111: 2106: 2101: 2097: 2093: 2089: 2085: 2081: 2074: 2071: 2064: 2060: 2057: 2055: 2052: 2050: 2049:Hadronization 2047: 2045: 2042: 2040: 2037: 2036: 2032: 2027: 2024: 2021: 2018: 2015: 2014: 2010: 2008: 2006: 2002: 1998: 1994: 1985: 1983: 1976: 1974: 1971: 1967: 1963: 1958: 1956: 1955:BNL–RHIC–STAR 1952: 1947: 1938: 1934: 1931: 1927: 1923: 1918: 1913: 1905: 1903: 1900: 1866: 1862: 1829: 1825: 1787: 1766: 1762: 1719: 1715: 1692: 1678: 1671: 1669: 1648: 1643: 1640: 1636: 1631: 1626: 1592: 1589: 1586: 1566: 1546: 1537: 1514: 1494: 1485: 1442: 1439: 1436: 1427: 1426:hadronization 1423: 1407: 1387: 1378: 1335: 1332: 1329: 1320: 1315: 1295: 1292: 1276: 1253: 1250: 1234: 1211: 1208: 1203: 1181: 1178: 1162: 1152:TeV, p-Pb at 1139: 1136: 1131: 1107: 1104: 1100: 1091: 1085: 1082: 1078: 1030: 1027: 1024: 1018: 1013: 1008: 1004: 1000: 997: 988: 966: 962: 955: 931: 924: 922: 918: 916: 912: 907: 904: 900: 889: 882: 880: 837: 815: 751: 747: 705: 701: 678: 674: 671:and decay by 670: 660: 653: 651: 649: 589: 582: 580: 578: 573: 559: 555: 551: 542: 536: 533: 524: 501: 492: 480: 477: 473: 469: 447: 443: 433: 426: 424: 417: 415: 392: 380: 368: 346: 333: 327: 321: 313: 288: 276: 264: 238: 233: 229: 225: 224:Rolf Hagedorn 221: 212: 210: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 166: 165:hadronization 161: 157: 153: 150: 146: 142: 138: 134: 130: 122: 117: 112: 105: 103: 101: 97: 93: 89: 85: 81: 77: 74:is formed in 73: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 28: 22: 5718:Quark matter 5704: 5689:Superheating 5562:Vaporization 5557:Triple point 5552:Supercooling 5517:Lambda point 5467:Condensation 5384:Time crystal 5362:Other states 5302:Quantum Hall 5096:Astrophysics 4910:Experimental 4799: 4795: 4785: 4734: 4730: 4720: 4693: 4689: 4679: 4668:. Retrieved 4666:. 2023-09-01 4663: 4654: 4643:. Retrieved 4638: 4629: 4618:. Retrieved 4616:. 2019-09-11 4614:CERN Courier 4613: 4604: 4593:. Retrieved 4584: 4573:. Retrieved 4564: 4522: 4516: 4502:cite journal 4459: 4453: 4439: 4425:cite journal 4382: 4376: 4366: 4339: 4333: 4323: 4282: 4276: 4266: 4225: 4221: 4215: 4172: 4168: 4162: 4145: 4141: 4138:per nucleon" 4135: 4119: 4094: 4090: 4083: 4075: 4071: 4065: 4030: 4024: 4018: 3975: 3969: 3963: 3938: 3934: 3928: 3919: 3915: 3905: 3862: 3858: 3852: 3831: 3788: 3784: 3778: 3730:(1): 1–140. 3727: 3723: 3669: 3663: 3653: 3639:cite journal 3596: 3590: 3586: 3582: 3572: 3551: 3540:. Retrieved 3535: 3526: 3512:cite journal 3490:(3–4): 401. 3487: 3481: 3467: 3453:cite journal 3412: 3408: 3344: 3340: 3334: 3320:cite journal 3295: 3289: 3257: 3251: 3241:, retrieved 3193: 3183: 3132: 3128: 3111: 3105:, retrieved 3057: 3047: 3038: 3034: 3024: 2999: 2995: 2985: 2960: 2956: 2943: 2900: 2896: 2834: 2830: 2796: 2792: 2786: 2746:(1): 89–96. 2743: 2739: 2733: 2682: 2678: 2634: 2628: 2580: 2576: 2566: 2531: 2527: 2517: 2473: 2469: 2431: 2418: 2373: 2369: 2321: 2317: 2310: 2267: 2263: 2224:(5): 39–43. 2221: 2217: 2211: 2168: 2164: 2154: 2131: 2087: 2083: 2073: 2044:Quark matter 1989: 1980: 1959: 1942: 1821: 1644: 1627: 1311: 919: 908: 895: 838: 666: 644: 574: 481: 465: 421: 216: 169: 141:vacuum state 137:color charge 129:microseconds 126: 55:quark matter 30: 24: 5598:Latent heat 5547:Sublimation 5492:Evaporation 5427:Ferromagnet 5422:Ferrimagnet 5404:Dark matter 5336:High energy 4999:Statistical 4915:Theoretical 4892:Engineering 4342:(9): 2705. 4175:(5): 1033. 4097:: 445–448. 3865:: 823–826. 3791:: 180–182. 3298:: 221–226. 3002:: 215–235. 2963:(1): 6–10. 2799:: 449–468. 2270:(5): 1033. 859:(uss/dss), 669:radioactive 189:(JINR) and 43:down quarks 21:Strangeness 5712:Categories 5613:Volatility 5576:Quantities 5537:Regelation 5512:Ionization 5487:Deposition 5439:Superglass 5409:Antimatter 5343:QCD matter 5322:Supersolid 5317:Superfluid 5280:Low energy 5116:Geophysics 5106:Biophysics 4950:Analytical 4903:Approaches 4802:(4): 761. 4737:(4): 791. 4696:(4): 771. 4670:2023-12-14 4645:2023-12-14 4620:2020-05-05 4595:2020-05-05 4575:2020-05-01 4182:2004.02255 3922:: 311–354. 3872:1807.08727 3843:1907.00842 3798:1807.11186 3737:1911.00831 3542:2020-04-24 3284:R. Stock; 3243:2020-04-20 3142:1903.07709 3107:2020-04-20 3041:: 379–392. 2692:1708.08115 2637:(4): 167. 2583:(9): 116. 2534:(9): 115. 2383:1606.07424 2277:2004.02255 2065:References 2054:Strangelet 1962:NA61/SHINE 1910:See also: 575:Regarding 149:deconfined 145:deconfined 88:antiquarks 19:See also: 5066:Molecular 4967:Acoustics 4960:Continuum 4955:Celestial 4945:Newtonian 4932:Classical 4875:Divisions 4826:119280137 4809:1112.5382 4777:118418649 4769:0587-4254 4744:1201.0485 4712:126317771 4550:cite book 4494:118390736 4469:0710.0118 4417:119197566 4258:120504052 4250:1063-7788 4207:214802159 4057:118529585 4040:0711.0974 3897:119404602 3823:119223653 3770:207869782 3762:1951-6355 3679:0812.4080 3631:119102482 3445:195312472 3437:1434-6044 3379:1434-6044 3267:1311.6154 3203:0901.3831 3175:119328093 3167:0163-8998 3067:0907.1031 2877:119179477 2869:0556-2813 2844:0912.1689 2725:119421190 2717:0217-751X 2647:CiteSeerX 2607:1434-6001 2558:1434-6001 2498:0031-9007 2410:1745-2473 2346:0031-9007 2302:214802159 2246:0031-9228 2195:0028-0836 2114:0163-8998 1881:¯ 1878:Λ 1844:¯ 1841:Λ 1828:CERN-WA85 1803:¯ 1800:Λ 1767:− 1763:π 1742:Λ 1720:− 1716:π 1693:− 1689:Ξ 1613:Ξ 1567:ϕ 1541:¯ 1515:ϕ 1489:¯ 1463:Ξ 1408:ϕ 1382:¯ 1356:Ξ 1101:η 1054:Ω 1034:Ξ 1028:ϕ 1022:Λ 967:ϕ 959:Ξ 950:¯ 947:Ξ 867:Ω 847:Ξ 824:Ξ 800:Ω 780:Ξ 760:Λ 735:Λ 687:Ξ 626:¯ 623:Ω 600:Ω 546:¯ 528:¯ 496:¯ 444:α 396:¯ 384:¯ 372:¯ 357:¯ 354:Ξ 337:¯ 322:ϕ 292:¯ 280:¯ 268:¯ 253:¯ 250:Ω 171:Discovery 5674:Spinodal 5622:Concepts 5502:Freezing 4542:32993061 4448:(2008). 4444:C. Alt; 4315:26838236 4130:, Λ and 4010:18266326 3704:12853074 3476:(1999). 3387:18266326 3238:13953895 3102:14306761 2778:16805966 2440:Elsevier 2203:10688162 2033:See also 1899:rapidity 1319:Hagedorn 468:Rafelski 5634:Binodal 5522:Melting 5457:Boiling 5374:Crystal 5369:Colloid 5150:Related 5034:General 5029:Special 4887:Applied 4749:Bibcode 4474:Bibcode 4397:Bibcode 4354:Bibcode 4307:9952591 4287:Bibcode 4230:Bibcode 4187:Bibcode 4099:Bibcode 3990:Bibcode 3943:Bibcode 3877:Bibcode 3803:Bibcode 3742:Bibcode 3684:Bibcode 3611:Bibcode 3492:Bibcode 3417:Bibcode 3359:Bibcode 3300:Bibcode 3208:Bibcode 3147:Bibcode 3112:Fig. 10 3072:Bibcode 3004:Bibcode 2965:Bibcode 2935:8566125 2915:Bibcode 2849:Bibcode 2801:Bibcode 2758:Bibcode 2697:Bibcode 2639:Bibcode 2585:Bibcode 2536:Bibcode 2478:Bibcode 2388:Bibcode 2326:Bibcode 2282:Bibcode 2226:Bibcode 2173:Bibcode 2092:Bibcode 2001:Houston 1997:Arizona 1977:Outlook 1420:). The 312:Nielsen 232:hadrons 201:at the 195:Bevalac 181:and at 84:hadrons 47:strange 5705:{{|}} 5262:Plasma 5243:Liquid 5061:Atomic 5016:Modern 4866:Major 4824:  4775:  4767:  4710:  4639:Indico 4540:  4530:  4492:  4415:  4313:  4305:  4256:  4248:  4205:  4055:  4008:  3895:  3821:  3768:  3760:  3702:  3629:  3443:  3435:  3385:  3377:  3236:  3226:  3173:  3165:  3100:  3090:  2933:  2875:  2867:  2776:  2723:  2715:  2649:  2605:  2556:  2496:  2446:  2408:  2344:  2300:  2244:  2201:  2193:  2165:Nature 2142:  2112:  1993:Tucson 1937:proton 1933:nuclei 1865:France 1861:Menton 1635:Müller 814:baryon 812:(sss) 750:baryon 748:(uds) 700:baryon 472:Müller 116:nuclei 80:gluons 63:gluons 59:quarks 5252:Vapor 5238:Solid 5231:State 4822:S2CID 4804:arXiv 4773:S2CID 4739:arXiv 4708:S2CID 4641:. n.d 4490:S2CID 4464:arXiv 4413:S2CID 4387:arXiv 4344:arXiv 4311:S2CID 4254:S2CID 4203:S2CID 4177:arXiv 4053:S2CID 4035:arXiv 4006:S2CID 3980:arXiv 3893:S2CID 3867:arXiv 3838:arXiv 3819:S2CID 3793:arXiv 3766:S2CID 3732:arXiv 3700:S2CID 3674:arXiv 3627:S2CID 3601:arXiv 3558:arXiv 3441:S2CID 3383:S2CID 3349:arXiv 3262:arXiv 3234:S2CID 3198:arXiv 3171:S2CID 3137:arXiv 3098:S2CID 3062:arXiv 2953:(PDF) 2931:S2CID 2905:arXiv 2873:S2CID 2839:arXiv 2774:S2CID 2748:arXiv 2721:S2CID 2687:arXiv 2428:(PDF) 2378:arXiv 2298:S2CID 2272:arXiv 1926:pions 1922:kaons 1630:ALICE 1314:ALICE 92:charm 51:charm 5223:list 4987:Wave 4882:Pure 4765:ISSN 4556:link 4538:OCLC 4528:ISBN 4508:link 4431:link 4303:PMID 4246:ISSN 4126:"Ξ, 3758:ISSN 3645:link 3585:GeV/ 3536:CERN 3518:link 3459:link 3433:ISSN 3375:ISSN 3326:link 3224:ISBN 3163:ISSN 3088:ISBN 2865:ISSN 2713:ISSN 2603:ISSN 2554:ISSN 2494:ISSN 2444:ISBN 2438:and 2406:ISSN 2342:ISSN 2242:ISSN 2199:PMID 2191:ISSN 2140:ISBN 2110:ISSN 1970:RHIC 1951:NA49 1946:Kaon 1935:and 1930:lead 1924:and 1826:and 1824:NA35 1296:5.02 1254:5.44 1182:5.02 1105:< 1046:and 915:RHIC 911:STAR 903:NA57 704:pion 612:and 470:and 228:mass 222:and 199:FAIR 179:CERN 96:CERN 61:and 49:and 41:and 5248:Gas 4982:Ray 4814:doi 4757:doi 4698:doi 4482:doi 4405:doi 4295:doi 4238:doi 4195:doi 4150:doi 4146:270 4107:doi 4095:525 4045:doi 3998:doi 3951:doi 3885:doi 3863:982 3811:doi 3789:982 3750:doi 3728:229 3692:doi 3619:doi 3500:doi 3488:449 3425:doi 3367:doi 3308:doi 3296:525 3216:doi 3155:doi 3080:doi 3012:doi 3000:418 2973:doi 2961:113 2923:doi 2901:486 2857:doi 2809:doi 2797:245 2766:doi 2744:471 2705:doi 2657:doi 2635:142 2593:doi 2544:doi 2505:doi 2486:doi 2396:doi 2334:doi 2290:doi 2234:doi 2181:doi 2169:403 2100:doi 2005:USA 1966:SPS 1108:0.5 133:gas 98:'s 65:at 25:In 5714:: 5250:/ 4820:. 4812:. 4800:43 4798:. 4794:. 4771:. 4763:. 4755:. 4747:. 4735:43 4733:. 4729:. 4706:. 4694:43 4692:. 4688:. 4662:. 4637:. 4612:. 4552:}} 4548:{{ 4536:. 4504:}} 4500:{{ 4488:. 4480:. 4472:. 4460:77 4458:. 4452:. 4427:}} 4423:{{ 4411:. 4403:. 4395:. 4383:30 4381:. 4352:. 4340:30 4338:. 4332:. 4309:. 4301:. 4293:. 4283:31 4281:. 4275:. 4252:. 4244:. 4236:. 4226:75 4224:. 4201:. 4193:. 4185:. 4173:51 4171:. 4144:. 4140:. 4105:. 4093:. 4051:. 4043:. 4031:35 4029:. 4004:. 3996:. 3988:. 3976:51 3974:. 3949:. 3939:97 3937:. 3918:. 3914:. 3891:. 3883:. 3875:. 3861:. 3817:. 3809:. 3801:. 3787:. 3764:. 3756:. 3748:. 3740:. 3726:. 3712:^ 3698:. 3690:. 3682:. 3670:36 3668:. 3641:}} 3637:{{ 3625:. 3617:. 3609:. 3597:32 3595:. 3534:. 3514:}} 3510:{{ 3498:. 3486:. 3480:. 3455:}} 3451:{{ 3439:. 3431:. 3423:. 3413:14 3411:. 3407:. 3395:^ 3381:. 3373:. 3365:. 3357:. 3345:51 3343:. 3322:}} 3318:{{ 3306:. 3294:. 3276:^ 3232:, 3222:, 3214:, 3206:, 3192:, 3169:. 3161:. 3153:. 3145:. 3133:69 3131:. 3119:^ 3110:, 3096:, 3086:, 3078:, 3070:, 3056:, 3039:16 3037:. 3033:. 3010:. 2998:. 2994:. 2971:. 2959:. 2955:. 2929:. 2921:. 2913:. 2899:. 2885:^ 2871:. 2863:. 2855:. 2847:. 2835:82 2833:. 2821:^ 2807:. 2795:. 2772:. 2764:. 2756:. 2742:. 2719:. 2711:. 2703:. 2695:. 2683:32 2681:. 2669:^ 2655:. 2645:. 2633:. 2615:^ 2601:. 2591:. 2581:51 2579:. 2575:. 2552:. 2542:. 2532:51 2530:. 2526:. 2492:. 2484:. 2474:48 2472:. 2458:^ 2434:. 2404:. 2394:. 2386:. 2374:13 2372:. 2368:. 2354:^ 2340:. 2332:. 2322:50 2320:. 2296:. 2288:. 2280:. 2268:51 2266:. 2254:^ 2240:. 2232:. 2222:63 2220:. 2197:. 2189:. 2179:. 2167:. 2163:. 2138:. 2134:. 2122:^ 2108:. 2098:. 2088:50 2086:. 2082:. 2003:, 1995:, 1863:, 1212:13 102:. 39:up 29:, 5225:) 5221:( 5211:e 5204:t 5197:v 4859:e 4852:t 4845:v 4828:. 4816:: 4806:: 4779:. 4759:: 4751:: 4741:: 4714:. 4700:: 4673:. 4648:. 4623:. 4598:. 4578:. 4558:) 4544:. 4510:) 4496:. 4484:: 4476:: 4466:: 4433:) 4419:. 4407:: 4399:: 4389:: 4360:. 4356:: 4346:: 4317:. 4297:: 4289:: 4260:. 4240:: 4232:: 4209:. 4197:: 4189:: 4179:: 4156:. 4152:: 4136:c 4132:Λ 4128:Ξ 4113:. 4109:: 4101:: 4059:. 4047:: 4037:: 4012:. 4000:: 3992:: 3982:: 3957:. 3953:: 3945:: 3920:6 3899:. 3887:: 3879:: 3869:: 3846:. 3840:: 3825:. 3813:: 3805:: 3795:: 3772:. 3752:: 3744:: 3734:: 3706:. 3694:: 3686:: 3676:: 3647:) 3633:. 3621:: 3613:: 3603:: 3587:c 3583:A 3566:. 3560:: 3545:. 3520:) 3506:. 3502:: 3494:: 3461:) 3447:. 3427:: 3419:: 3389:. 3369:: 3361:: 3351:: 3328:) 3314:. 3310:: 3302:: 3270:. 3264:: 3218:: 3210:: 3200:: 3177:. 3157:: 3149:: 3139:: 3082:: 3074:: 3064:: 3018:. 3014:: 3006:: 2979:. 2975:: 2967:: 2937:. 2925:: 2917:: 2907:: 2879:. 2859:: 2851:: 2841:: 2815:. 2811:: 2803:: 2780:. 2768:: 2760:: 2750:: 2727:. 2707:: 2699:: 2689:: 2663:. 2659:: 2641:: 2609:. 2595:: 2587:: 2560:. 2546:: 2538:: 2511:) 2507:: 2500:. 2488:: 2480:: 2412:. 2398:: 2390:: 2380:: 2348:. 2336:: 2328:: 2304:. 2292:: 2284:: 2274:: 2248:. 2236:: 2228:: 2205:. 2183:: 2175:: 2148:. 2116:. 2102:: 2094:: 1663:s 1658:D 1605:( 1593:q 1590:s 1587:s 1559:( 1547:s 1538:s 1507:( 1495:s 1486:s 1455:( 1443:q 1440:s 1437:s 1400:( 1388:s 1379:s 1348:( 1336:q 1333:s 1330:s 1293:= 1285:N 1281:N 1277:s 1251:= 1243:N 1239:N 1235:s 1209:= 1204:s 1179:= 1171:N 1167:N 1163:s 1140:7 1137:= 1132:s 1096:d 1092:/ 1086:h 1083:c 1079:N 1074:d 1031:, 1025:, 1019:, 1014:0 1009:s 1005:K 1001:, 998:p 970:) 963:/ 956:+ 941:( 716:u 706:( 560:2 556:/ 552:d 543:d 537:+ 534:u 525:u 502:s 493:s 448:s 402:) 393:s 381:s 369:q 363:( 347:/ 343:) 334:s 328:s 325:( 298:) 289:s 277:s 265:s 259:( 123:.

Index

Strangeness
high-energy nuclear physics
quark–gluon plasma
up
down quarks
strange
charm
quark matter
quarks
gluons
thermal (kinetic)
strange quarks
pair-production
gluons
hadrons
antiquarks
charm
CERN
Large Hadron Collider

nuclei
Lorentz contraction
microseconds
gas
color charge
vacuum state
deconfined
deconfined
phase of matter
energy density

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.