Knowledge (XXG)

String girdling Earth

Source 📝

170: 158: 48: 20: 374: 38:
Alternatively, 1 metre (3 ft 3 in) of string is spliced into the original string, and the extended string rearranged so that it is at a uniform height above the equator. The question that is then posed is whether the gap between string and Earth will allow the passage of a car, a cat or a
188: 62:
In the second phrasing, considering that 1 metre (3 ft 3 in) is almost negligible compared with the 40,000 km (25,000 mi) circumference, the first response may be that the new position of the string will be no different from the original surface-hugging position. The answer is
34:
solution. In a version of this puzzle, string is tightly wrapped around the equator of a perfectly spherical Earth. If the string should be raised 1 metre (3 ft 3 in) off the ground, all the way along the equator, how much longer would the string be?
369:{\displaystyle {\begin{aligned}c+\varDelta c&=2\pi (r+\varDelta r)\\2\pi r+\varDelta c&=2\pi r+2\pi \varDelta r\\\varDelta c&=2\pi \varDelta r\\\therefore \;\varDelta r&={\frac {\varDelta c}{2\pi }}\end{aligned}}} 157: 193: 116:
This diagram gives a visual analogue using a square: regardless of the size of the square, the added perimeter is the sum of the four blue arcs, a circle with the same radius as the offset.
55:
As the string must be raised all along the entire 40,000 km (25,000 mi) circumference, one might expect several kilometres of additional string. Surprisingly, the answer is 2
177: 85:
Even more surprising is that the size of the sphere or circle around which the string is spanned is irrelevant, and may be anything from the size of an atom to the
23:
Visualisation showing that the length added to the circumference (blue) is dependent only on the additional radius (red) and not the original circumference (grey)
390:
times the width of the lane, whether the circumference of the inside lane is the standard 400 m (1,300 ft) or the size of a galaxy.
445: 476: 386:
This observation also means that an athletics track has the same offset between starting lines on each lane, equal to 2
169: 403: 90: 413: 453: 402:, an intuitive way to solve this type of problem, originally applied to finding the area of an 441: 407: 31: 471: 399: 102: 110: 98: 47: 19: 465: 435: 416:, another problem where the radius of a sphere is counter-intuitively irrelevant 89:— the result depends only on the amount it is raised. Moreover, as in the 86: 180:
Photograph showing the offset between starting lines of an athletics track
63:
that a cat will easily pass through the gap, the size of which will be
46: 101:
or closed curve which does not intersect itself. If the shape is
93:, the shape the string girdles need not be a circle: 2 191: 368: 109:times the offset, times the absolute value of its 8: 440:. Courier Dover Publications. p. 2436. 328: 168: 82:metres or about 16 cm (6.3 in). 342: 192: 190: 97:times the offset is added when it is any 18: 426: 123:  be the Earth's circumference, 59:m or around 6.3 metres (21 ft). 7: 131:  the added string length and 437:The world of mathematics, Volume 4 14: 156: 30:is a mathematical puzzle with a 236: 221: 51:Visual analogue using a square 1: 379:regardless of the value of 493: 434:Newman, James Roy (2000). 135:  the added radius. 143:has a circumference of 2 477:Mathematical paradoxes 370: 137:As a circle of radius 52: 24: 371: 50: 28:String girdling Earth 22: 189: 127:  its radius, 91:coin-rolling problem 414:Napkin ring problem 119:More formally, let 16:Mathematical puzzle 366: 364: 164:{{{annotations}}} 53: 39:thin knife blade. 25: 406:, given only its 360: 484: 456: 451: 431: 389: 375: 373: 372: 367: 365: 361: 359: 351: 343: 172: 160: 146: 142: 108: 96: 81: 79: 78: 77: 72: 69: 58: 32:counterintuitive 492: 491: 487: 486: 485: 483: 482: 481: 462: 461: 460: 459: 448: 433: 432: 428: 423: 400:Visual calculus 396: 387: 363: 362: 352: 344: 335: 322: 321: 302: 293: 292: 261: 240: 239: 208: 187: 186: 183: 182: 181: 179: 174: 173: 166: 161: 144: 136: 113:must be added. 106: 94: 75: 73: 70: 67: 66: 64: 56: 45: 17: 12: 11: 5: 490: 488: 480: 479: 474: 464: 463: 458: 457: 446: 425: 424: 422: 419: 418: 417: 411: 395: 392: 377: 376: 358: 355: 350: 347: 341: 338: 336: 334: 331: 327: 324: 323: 320: 317: 314: 311: 308: 305: 303: 301: 298: 295: 294: 291: 288: 285: 282: 279: 276: 273: 270: 267: 264: 262: 260: 257: 254: 251: 248: 245: 242: 241: 238: 235: 232: 229: 226: 223: 220: 217: 214: 211: 209: 207: 204: 201: 198: 195: 194: 176: 175: 167: 162: 155: 154: 153: 152: 111:turning number 99:simple polygon 44: 41: 15: 13: 10: 9: 6: 4: 3: 2: 489: 478: 475: 473: 470: 469: 467: 455: 449: 447:0-486-41152-4 443: 439: 438: 430: 427: 420: 415: 412: 409: 405: 401: 398: 397: 393: 391: 384: 382: 356: 353: 348: 345: 339: 337: 332: 329: 325: 318: 315: 312: 309: 306: 304: 299: 296: 289: 286: 283: 280: 277: 274: 271: 268: 265: 263: 258: 255: 252: 249: 246: 243: 233: 230: 227: 224: 218: 215: 212: 210: 205: 202: 199: 196: 185: 184: 178: 171: 165: 159: 151: 149: 140: 134: 130: 126: 122: 117: 114: 112: 104: 100: 92: 88: 83: 60: 49: 42: 40: 36: 33: 29: 21: 436: 429: 385: 380: 378: 163: 147: 138: 132: 128: 124: 120: 118: 115: 84: 61: 54: 37: 27: 26: 466:Categories 421:References 383: . 357:π 346:Δ 330:Δ 326:∴ 316:Δ 313:π 297:Δ 287:Δ 284:π 272:π 256:Δ 247:π 231:Δ 219:π 203:Δ 150: , 87:Milky Way 394:See also 43:Solution 454:p. 2436 404:annulus 141:  133:Δr 129:Δc 103:complex 80:⁠ 65:⁠ 472:Length 444:  410:length 408:chord 442:ISBN 105:, 2 468:: 452:, 450:. 388:π 381:c 354:2 349:c 340:= 333:r 319:r 310:2 307:= 300:c 290:r 281:2 278:+ 275:r 269:2 266:= 259:c 253:+ 250:r 244:2 237:) 234:r 228:+ 225:r 222:( 216:2 213:= 206:c 200:+ 197:c 148:R 145:π 139:R 125:r 121:c 107:π 95:π 76:π 74:2 71:/ 68:1 57:π

Index


counterintuitive

Milky Way
coin-rolling problem
simple polygon
complex
turning number



Visual calculus
annulus
chord
Napkin ring problem
The world of mathematics, Volume 4
ISBN
0-486-41152-4
p. 2436
Categories
Length
Mathematical paradoxes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.