Knowledge (XXG)

Subgame perfect equilibrium

Source đź“ť

304:
opposite options, then the culprit that defects is free and the culprit who stays quiet serves a long sentence. Ultimately, using backward induction, the last subgame in a finitely repeated Prisoner's dilemma requires players to play the unique Nash equilibrium (both players defecting). Because of this, all games prior to the last subgame will also play the Nash equilibrium to maximize their single-period payoffs. If a stage-game in a finitely repeated game has multiple Nash equilibria, subgame perfect equilibria can be constructed to play non-stage-game Nash equilibrium actions, through a "carrot and stick" structure. One player can use the one stage-game Nash equilibrium to incentivize playing the non-Nash equilibrium action, while using a stage-game Nash equilibrium with lower payoff to the other player if they choose to defect.
244: 283: 170:. One then supposes that the last actor will do these actions, and considers the second to last actions, again choosing those that maximize that actor's utility. This process continues until one reaches the first move of the game. The strategies which remain are the set of all subgame perfect equilibria for finite-horizon extensive games of perfect information. However, backward induction cannot be applied to games of 271: 374:" if one player has the option of ripping the steering wheel from their car they should always take it because it leads to a "sub game" in which their rational opponent is precluded from doing the same thing (and killing them both). The wheel-ripper will always win the game (making his opponent swerve away), and the opponent's threat to suicidally follow suit is not credible. 313: 365:
has such an optimum strategy for all players. The problem of the relationship between subgame perfection and backward induction was settled by Kaminski (2019), who proved that a generalized procedure of backward induction produces all subgame perfect equilibria in games that may have infinite length,
303:
game. The Prisoner's dilemma gets its name from a situation that contains two guilty culprits. When they are interrogated, they have the option to stay quiet or defect. If both culprits stay quiet, they both serve a short sentence. If both defect, they both serve a moderate sentence. If they choose
369:
The interesting aspect of the word "credible" in the preceding paragraph is that taken as a whole (disregarding the irreversibility of reaching sub-games) strategies exist which are superior to subgame perfect strategies, but which are not credible in the sense that a threat to carry them out will
259:
For the entire game Nash equilibria (DA, Y) and (DB, Y) are not subgame perfect equilibria because the move of Player 2 does not constitute a Nash equilibrium. The Nash equilibrium (UA, X) is subgame perfect because it incorporates the subgame Nash equilibrium (A, X) as part of its strategy.
207:
Determining the subgame perfect equilibrium by using backward induction is shown below in Figure 1. Strategies for Player 1 are given by {Up, Uq, Dp, Dq}, whereas Player 2 has the strategies among {TL, TR, BL, BR}. There are 4 subgames in this example, with 3 proper subgames.
239:
An extensive-form game with incomplete information is presented below in Figure 2. Note that the node for Player 1 with actions A and B, and all succeeding actions is a subgame. Player 2's nodes are not a subgame as they are part of the same information set.
298:
For finitely repeated games, if a stage game has only one unique Nash equilibrium, the subgame perfect equilibrium is to play without considering past actions, treating the current subgame as a one-shot game. An example of this is a finitely repeated
142:
of the original game. Informally, this means that at any point in the game, the players' behavior from that point onward should represent a Nash equilibrium of the continuation game (i.e. of the subgame), no matter what happened before. Every
255:
The second normal-form game is the normal form representation of the subgame starting from Player 1's second node with actions A and B. For the second normal-form game, the Nash equilibrium of the subgame is (A, X).
251:
The first normal-form game is the normal form representation of the whole extensive-form game. Based on the provided information, (UA, X), (DA, Y), and (DB, Y) are all Nash equilibria for the entire game.
326:
proved that any game which can be broken into "sub-games" containing a sub-set of all the available choices in the main game will have a subgame perfect Nash Equilibrium strategy (possibly as a
263:
To solve this game, first find the Nash Equilibria by mutual best response of Subgame 1. Then use backwards induction and plug in (A,X) → (3,4) so that (3,4) become the payoffs for Subgame 2.
157:"equivalent to the assertion that each player is allowed by the rules of the game to remember everything he knew at previous moves and all of his choices at those moves" 166:. Here one first considers the last actions of the game and determines which actions the final mover should take in each possible circumstance to maximize his/her 612: 588: 514: 192:
The set of subgame perfect equilibria for a given game is always a subset of the set of Nash equilibria for that game. In some cases the sets can be identical.
1720: 212: 223:
Subgame for actions p and q: Player 1 will take action p with payoff (3, 3) to maximize Player 1's payoff, so the payoff for action L becomes (3,3).
658: 462: 1557: 413: 1374: 909: 707: 1193: 1012: 564: 490: 229:
Subgame for actions T and B: Player 2 will take action T to maximize Player 2's payoff, so the payoff for action U becomes (1, 4).
814: 1283: 243: 529: 824: 67: 1153: 349:" from the various ultimate outcomes of the game, eliminating branches which would involve any player making a move that is 1334: 752: 727: 179: 1684: 1110: 864: 854: 789: 186: 884: 278:
Player 1 chooses U rather than D because 3 > 2 for Player 1's payoff. The resulting equilibrium is (A, X) → (3,4).
274:
Subgame 1 is solved and (3,4) replaces all of Subgame 1 and player one will choose U -> (3,4)Solution for Subgame 1
1369: 1618: 1339: 997: 839: 834: 366:
infinite actions as each information set, and imperfect information if a condition of final support is satisfied.
1654: 1577: 1313: 869: 794: 651: 226:
Subgame for actions L and R: Player 2 will take action L for 3 > 2, so the payoff for action D becomes (3, 3).
266:
The dashed line indicates that player 2 does not know whether player 1 will play A or B in a simultaneous game.
1669: 1402: 1288: 1085: 879: 697: 1472: 1674: 1273: 1243: 899: 687: 393: 1608: 370:
harm the player making the threat and prevent that combination of strategies. For instance in the game of "
1699: 1679: 1659: 1278: 1183: 1042: 992: 987: 919: 889: 809: 737: 175: 135: 717: 388: 354: 339: 171: 1158: 1143: 300: 1492: 1477: 1364: 1359: 1263: 1248: 1213: 1178: 777: 722: 644: 331: 290:
Thus, the subgame perfect equilibrium through backwards induction is (UA, X) with the payoff (3, 4).
199:
provides an intuitive example of a game with fewer subgame perfect equilibria than Nash equilibria.
1649: 1268: 1218: 1055: 982: 962: 819: 702: 403: 350: 144: 92: 1628: 1487: 1318: 1298: 1148: 1027: 932: 859: 804: 607:
Zeitschrift fĂĽr die gesamte Staatswissenschaft/Journal of Institutional and Theoretical Economics
582: 508: 346: 163: 211: 1613: 1582: 1537: 1432: 1303: 1258: 1233: 1163: 1037: 967: 957: 849: 799: 747: 570: 560: 496: 486: 458: 605:
Selten, R. (1965). Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit.
330:
giving non-deterministic sub-game decisions). Subgame perfection is only used with games of
1694: 1689: 1623: 1587: 1567: 1527: 1497: 1452: 1407: 1392: 1349: 1203: 844: 781: 767: 732: 408: 219:
Using the backward induction, the players will take the following actions for each subgame:
127: 123: 57: 38: 162:
A common method for determining subgame perfect equilibria in the case of a finite game is
17: 1592: 1552: 1507: 1422: 1417: 1138: 1090: 977: 742: 712: 682: 624:
Java applet to find a subgame perfect Nash Equilibrium solution for an extensive form game
618:
Java applet to find a subgame perfect Nash Equilibrium solution for an extensive form game
398: 362: 323: 282: 82: 1457: 623: 617: 1532: 1522: 1512: 1447: 1437: 1427: 1412: 1208: 1188: 1173: 1168: 1128: 1095: 1080: 1075: 1065: 874: 383: 371: 335: 327: 232:
Subgame for actions U and D: Player 1 will take action D to maximize Player 1's payoff.
196: 152: 102: 1714: 1572: 1562: 1517: 1502: 1482: 1308: 1253: 1228: 1100: 1070: 1060: 1047: 952: 894: 829: 762: 1547: 1542: 1397: 972: 131: 452: 1664: 1467: 1462: 1442: 1238: 1223: 1032: 1002: 937: 927: 757: 692: 668: 358: 317: 111: 42: 270: 1293: 947: 138:
is a subgame perfect equilibrium if it represents a Nash equilibrium of every
574: 500: 1198: 1118: 942: 236:
Thus, the subgame perfect equilibrium is {Dp, TL} with the payoff (3, 3).
151:
has a subgame perfect equilibrium. Perfect recall is a term introduced by
1633: 1133: 630: 636: 312: 1354: 1344: 1022: 167: 139: 357:. One game in which the backward induction solution is well known is 316:
One game in which the backward induction solution is well known is
1123: 631:
Generalized Backward Induction: Justification for a Folk Algorithm
311: 281: 269: 242: 210: 640: 451:
Kuhn, Harold William; Tucker, Albert William (2 March 2016).
345:
The subgame-perfect Nash equilibrium is normally deduced by "
536:. Massachusetts Institute of Technology: MIT OpenCourseWare 613:
Example of Extensive Form Games with imperfect information
185:
A subgame perfect equilibrium necessarily satisfies the
454:
Contributions to the Theory of Games (AM-28), Volume II
1642: 1601: 1383: 1327: 1109: 1011: 918: 776: 675: 178:because this entails cutting through non-singleton 98: 88: 78: 73: 63: 53: 48: 32: 483:Strategy : an introduction to game theory 652: 431: 429: 8: 659: 645: 637: 587:: CS1 maint: location missing publisher ( 534:14.12 Economic Applications of Game Theory 513:: CS1 maint: location missing publisher ( 555:Takako, Fujiwara-Greve (27 June 2015). 425: 334:. Subgame perfection can be used with 286:Solution of Subgame Perfect Equilibrium 580: 506: 353:(because it is not optimal) from that 29: 7: 476: 474: 708:First-player and second-player win 308:Finding subgame-perfect equilibria 25: 414:Bellman's principle of optimality 1721:Game theory equilibrium concepts 815:Coalition-proof Nash equilibrium 120:subgame perfect Nash equilibrium 825:Evolutionarily stable strategy 457:. Princeton University Press. 438:An Introduction to Game Theory 68:Evolutionarily stable strategy 1: 753:Simultaneous action selection 1685:List of games in game theory 865:Quantal response equilibrium 855:Perfect Bayesian equilibrium 790:Bayes correlated equilibrium 609:, (H. 2), 301-324, 667-689. 485:(Third ed.). New York. 481:Joel., Watson (2013-05-09). 187:one-shot deviation principle 1154:Optional prisoner's dilemma 885:Self-confirming equilibrium 557:Non-cooperative game theory 116:subgame perfect equilibrium 33:Subgame Perfect Equilibrium 18:Subgame-perfect equilibrium 1737: 1619:Principal variation search 1335:Aumann's agreement theorem 998:Strategy-stealing argument 910:Trembling hand equilibrium 840:Markov perfect equilibrium 835:Mertens-stable equilibrium 440:. Oxford University Press. 1655:Combinatorial game theory 1314:Princess and monster game 870:Quasi-perfect equilibrium 795:Bayesian Nash equilibrium 37: 1670:Evolutionary game theory 1403:Antoine Augustin Cournot 1289:Guess 2/3 of the average 1086:Strictly determined game 880:Satisfaction equilibrium 698:Escalation of commitment 528:Yildiz, Muhamet (2012). 1675:Glossary of game theory 1274:Stackelberg competition 900:Strong Nash equilibrium 436:Osborne, M. J. (2004). 394:Glossary of game theory 1700:Tragedy of the commons 1680:List of game theorists 1660:Confrontation analysis 1370:Sprague–Grundy theorem 890:Sequential equilibrium 810:Correlated equilibrium 338:games of complete but 320: 287: 275: 248: 216: 176:incomplete information 1473:Jean-François Mertens 633:. Games 2019, 10, 34. 389:Dynamic inconsistency 361:, but in theory even 340:imperfect information 315: 285: 273: 246: 214: 145:finite extensive game 1602:Search optimizations 1478:Jennifer Tour Chayes 1365:Revelation principle 1360:Purification theorem 1299:Nash bargaining game 1264:Bertrand competition 1249:El Farol Bar problem 1214:Electronic mail game 1179:Lewis signaling game 723:Hierarchy of beliefs 626:from gametheory.net. 620:from gametheory.net. 332:complete information 93:Extensive form games 1650:Bounded rationality 1269:Cournot competition 1219:Rock paper scissors 1194:Battle of the sexes 1184:Volunteer's dilemma 1056:Perfect information 983:Dominant strategies 820:Epsilon-equilibrium 703:Extensive-form game 530:"12 Repeated Games" 404:Retrograde analysis 27:Game theory concept 1629:Paranoid algorithm 1609:Alpha–beta pruning 1488:John Maynard Smith 1319:Rendezvous problem 1159:Traveler's dilemma 1149:Gift-exchange game 1144:Prisoner's dilemma 1061:Large Poisson game 1028:Bargaining problem 933:Backward induction 905:Subgame perfection 860:Proper equilibrium 347:backward induction 321: 301:Prisoner's dilemma 288: 276: 249: 217: 164:backward induction 1708: 1707: 1614:Aspiration window 1583:Suzanne Scotchmer 1538:Oskar Morgenstern 1433:Donald B. Gillies 1375:Zermelo's theorem 1304:Induction puzzles 1259:Fair cake-cutting 1234:Public goods game 1164:Coordination game 1038:Intransitive game 968:Forward induction 850:Pareto efficiency 830:Gibbs equilibrium 800:Berge equilibrium 748:Simultaneous game 464:978-1-4008-8197-0 108: 107: 16:(Redirected from 1728: 1695:Topological game 1690:No-win situation 1588:Thomas Schelling 1568:Robert B. Wilson 1528:Merrill M. Flood 1498:John von Neumann 1408:Ariel Rubinstein 1393:Albert W. Tucker 1244:War of attrition 1204:Matching pennies 845:Nash equilibrium 768:Mechanism design 733:Normal-form game 688:Cooperative game 661: 654: 647: 638: 593: 592: 586: 578: 552: 546: 545: 543: 541: 525: 519: 518: 512: 504: 478: 469: 468: 448: 442: 441: 433: 409:Solution concept 180:information sets 136:strategy profile 128:Nash equilibrium 58:Nash equilibrium 39:Solution concept 30: 21: 1736: 1735: 1731: 1730: 1729: 1727: 1726: 1725: 1711: 1710: 1709: 1704: 1638: 1624:max^n algorithm 1597: 1593:William Vickrey 1553:Reinhard Selten 1508:Kenneth Binmore 1423:David K. Levine 1418:Daniel Kahneman 1385: 1379: 1355:Negamax theorem 1345:Minimax theorem 1323: 1284:Diner's dilemma 1139:All-pay auction 1105: 1091:Stochastic game 1043:Mean-field game 1014: 1007: 978:Markov strategy 914: 780: 772: 743:Sequential game 728:Information set 713:Game complexity 683:Congestion game 671: 665: 629:Kaminski, M.M. 602: 597: 596: 579: 567: 554: 553: 549: 539: 537: 527: 526: 522: 505: 493: 480: 479: 472: 465: 450: 449: 445: 435: 434: 427: 422: 399:Minimax theorem 380: 324:Reinhard Selten 310: 296: 279: 267: 205: 83:Reinhard Selten 64:Intersects with 28: 23: 22: 15: 12: 11: 5: 1734: 1732: 1724: 1723: 1713: 1712: 1706: 1705: 1703: 1702: 1697: 1692: 1687: 1682: 1677: 1672: 1667: 1662: 1657: 1652: 1646: 1644: 1640: 1639: 1637: 1636: 1631: 1626: 1621: 1616: 1611: 1605: 1603: 1599: 1598: 1596: 1595: 1590: 1585: 1580: 1575: 1570: 1565: 1560: 1558:Robert Axelrod 1555: 1550: 1545: 1540: 1535: 1533:Olga Bondareva 1530: 1525: 1523:Melvin Dresher 1520: 1515: 1513:Leonid Hurwicz 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1448:Harold W. Kuhn 1445: 1440: 1438:Drew Fudenberg 1435: 1430: 1428:David M. Kreps 1425: 1420: 1415: 1413:Claude Shannon 1410: 1405: 1400: 1395: 1389: 1387: 1381: 1380: 1378: 1377: 1372: 1367: 1362: 1357: 1352: 1350:Nash's theorem 1347: 1342: 1337: 1331: 1329: 1325: 1324: 1322: 1321: 1316: 1311: 1306: 1301: 1296: 1291: 1286: 1281: 1276: 1271: 1266: 1261: 1256: 1251: 1246: 1241: 1236: 1231: 1226: 1221: 1216: 1211: 1209:Ultimatum game 1206: 1201: 1196: 1191: 1189:Dollar auction 1186: 1181: 1176: 1174:Centipede game 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1129:Infinite chess 1126: 1121: 1115: 1113: 1107: 1106: 1104: 1103: 1098: 1096:Symmetric game 1093: 1088: 1083: 1081:Signaling game 1078: 1076:Screening game 1073: 1068: 1066:Potential game 1063: 1058: 1053: 1045: 1040: 1035: 1030: 1025: 1019: 1017: 1009: 1008: 1006: 1005: 1000: 995: 993:Mixed strategy 990: 985: 980: 975: 970: 965: 960: 955: 950: 945: 940: 935: 930: 924: 922: 916: 915: 913: 912: 907: 902: 897: 892: 887: 882: 877: 875:Risk dominance 872: 867: 862: 857: 852: 847: 842: 837: 832: 827: 822: 817: 812: 807: 802: 797: 792: 786: 784: 774: 773: 771: 770: 765: 760: 755: 750: 745: 740: 735: 730: 725: 720: 718:Graphical game 715: 710: 705: 700: 695: 690: 685: 679: 677: 673: 672: 666: 664: 663: 656: 649: 641: 635: 634: 627: 621: 615: 610: 601: 600:External links 598: 595: 594: 565: 547: 520: 491: 470: 463: 443: 424: 423: 421: 418: 417: 416: 411: 406: 401: 396: 391: 386: 384:Centipede game 379: 376: 336:extensive form 328:mixed strategy 309: 306: 295: 294:Repeated games 292: 234: 233: 230: 227: 224: 204: 201: 197:ultimatum game 153:Harold W. Kuhn 149:perfect recall 106: 105: 103:Ultimatum game 100: 96: 95: 90: 86: 85: 80: 76: 75: 71: 70: 65: 61: 60: 55: 51: 50: 46: 45: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1733: 1722: 1719: 1718: 1716: 1701: 1698: 1696: 1693: 1691: 1688: 1686: 1683: 1681: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1661: 1658: 1656: 1653: 1651: 1648: 1647: 1645: 1643:Miscellaneous 1641: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1606: 1604: 1600: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1578:Samuel Bowles 1576: 1574: 1573:Roger Myerson 1571: 1569: 1566: 1564: 1563:Robert Aumann 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1518:Lloyd Shapley 1516: 1514: 1511: 1509: 1506: 1504: 1503:Kenneth Arrow 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1483:John Harsanyi 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1453:Herbert Simon 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1390: 1388: 1382: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1332: 1330: 1326: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1254:Fair division 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1229:Dictator game 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1116: 1114: 1112: 1108: 1102: 1101:Zero-sum game 1099: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1071:Repeated game 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1050: 1046: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1020: 1018: 1016: 1010: 1004: 1001: 999: 996: 994: 991: 989: 988:Pure strategy 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 953:De-escalation 951: 949: 946: 944: 941: 939: 936: 934: 931: 929: 926: 925: 923: 921: 917: 911: 908: 906: 903: 901: 898: 896: 895:Shapley value 893: 891: 888: 886: 883: 881: 878: 876: 873: 871: 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 787: 785: 783: 779: 775: 769: 766: 764: 763:Succinct game 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 680: 678: 674: 670: 662: 657: 655: 650: 648: 643: 642: 639: 632: 628: 625: 622: 619: 616: 614: 611: 608: 604: 603: 599: 590: 584: 576: 572: 568: 566:9784431556442 562: 558: 551: 548: 535: 531: 524: 521: 516: 510: 502: 498: 494: 492:9780393918380 488: 484: 477: 475: 471: 466: 460: 456: 455: 447: 444: 439: 432: 430: 426: 419: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 381: 377: 375: 373: 367: 364: 360: 356: 352: 348: 343: 341: 337: 333: 329: 325: 319: 314: 307: 305: 302: 293: 291: 284: 280: 272: 268: 264: 261: 257: 253: 245: 241: 237: 231: 228: 225: 222: 221: 220: 213: 209: 202: 200: 198: 193: 190: 188: 183: 181: 177: 173: 169: 165: 160: 158: 154: 150: 146: 141: 137: 133: 132:dynamic games 129: 125: 121: 117: 113: 104: 101: 97: 94: 91: 87: 84: 81: 77: 72: 69: 66: 62: 59: 56: 52: 47: 44: 40: 36: 31: 19: 1548:Peyton Young 1543:Paul Milgrom 1458:HervĂ© Moulin 1398:Amos Tversky 1340:Folk theorem 1051:-player game 1048: 973:Grim trigger 904: 606: 556: 550: 538:. Retrieved 533: 523: 482: 453: 446: 437: 368: 351:not credible 344: 322: 297: 289: 277: 265: 262: 258: 254: 250: 238: 235: 218: 206: 194: 191: 184: 161: 156: 155:in 1953 and 148: 119: 115: 109: 74:Significance 49:Relationship 1665:Coopetition 1468:Jean Tirole 1463:John Conway 1443:Eric Maskin 1239:Blotto game 1224:Pirate game 1033:Global game 1003:Tit for tat 938:Bid shading 928:Appeasement 778:Equilibrium 758:Solved game 693:Determinacy 676:Definitions 669:game theory 359:tic-tac-toe 318:tic-tac-toe 112:game theory 79:Proposed by 43:game theory 1309:Trust game 1294:Kuhn poker 963:Escalation 958:Deterrence 948:Cheap talk 920:Strategies 738:Preference 667:Topics of 420:References 124:refinement 1493:John Nash 1199:Stag hunt 943:Collusion 583:cite book 575:911616270 559:. Tokyo. 540:April 27, 509:cite book 501:842323069 172:imperfect 54:Subset of 1715:Category 1634:Lazy SMP 1328:Theorems 1279:Deadlock 1134:Checkers 1015:of games 782:concepts 378:See also 247:Figure 2 215:Figure 1 130:used in 89:Used for 1386:figures 1169:Chicken 1023:Auction 1013:Classes 372:chicken 203:Example 168:utility 140:subgame 122:) is a 99:Example 573:  563:  499:  489:  461:  1124:Chess 1111:Games 147:with 134:. A 126:of a 805:Core 589:link 571:OCLC 561:ISBN 542:2021 515:link 497:OCLC 487:ISBN 459:ISBN 355:node 195:The 118:(or 114:, a 1384:Key 174:or 159:. 110:In 41:in 1717:: 1119:Go 585:}} 581:{{ 569:. 532:. 511:}} 507:{{ 495:. 473:^ 428:^ 363:Go 342:. 189:. 182:. 1049:n 660:e 653:t 646:v 591:) 577:. 544:. 517:) 503:. 467:. 20:)

Index

Subgame-perfect equilibrium
Solution concept
game theory
Nash equilibrium
Evolutionarily stable strategy
Reinhard Selten
Extensive form games
Ultimatum game
game theory
refinement
Nash equilibrium
dynamic games
strategy profile
subgame
finite extensive game
Harold W. Kuhn
backward induction
utility
imperfect
incomplete information
information sets
one-shot deviation principle
ultimatum game




Prisoner's dilemma

tic-tac-toe

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑