Knowledge (XXG)

Wavelength

Source 📝

2626: 1131: 1409:, which can be interpreted as indicating a "local wavelength" of the solution as a function of time and space. This method treats the system locally as if it were uniform with the local properties; in particular, the local wave velocity associated with a frequency is the only thing needed to estimate the corresponding local wavenumber or wavelength. In addition, the method computes a slowly changing amplitude to satisfy other constraints of the equations or of the physical system, such as for 1139: 1674: 1466: 2045: 1123: 3887: 1529: 1422: 1357: 38: 447: 439: 1387:
medium) may propagate at a velocity that varies with position, and as a result may not be sinusoidal in space. The figure at right shows an example. As the wave slows down, the wavelength gets shorter and the amplitude increases; after a place of maximum response, the short wavelength is associated
2056:
The notion of path difference and constructive or destructive interference used above for the double-slit experiment applies as well to the display of a single slit of light intercepted on a screen. The main result of this interference is to spread out the light from the narrow slit into a broader
1433:
because the same vibration can be considered to have a variety of different wavelengths, as shown in the figure. Descriptions using more than one of these wavelengths are redundant; it is conventional to choose the longest wavelength that fits the phenomenon. The range of wavelengths sufficient to
474:), thus determining the allowed wavelengths. For example, for an electromagnetic wave, if the box has ideal conductive walls, the condition for nodes at the walls results because the conductive walls cannot support a tangential electric field, forcing the wave to have zero amplitude at the wall. 1493:
In the special case of dispersion-free and uniform media, waves other than sinusoids propagate with unchanging shape and constant velocity. In certain circumstances, waves of unchanging shape also can occur in nonlinear media; for example, the figure shows ocean waves in shallow water that have
1328:
When wavelengths of electromagnetic radiation are quoted, the wavelength in vacuum usually is intended unless the wavelength is specifically identified as the wavelength in some other medium. In acoustics, where a medium is essential for the waves to exist, the wavelength value is given for a
1992: 1694:. As shown in the figure, light is passed through two slits and shines on a screen. The path of the light to a position on the screen is different for the two slits, and depends upon the angle θ the path makes with the screen. If we suppose the screen is far enough from the slits (that is, 1473:
The concept of wavelength is most often applied to sinusoidal, or nearly sinusoidal, waves, because in a linear system the sinusoid is the unique shape that propagates with no shape change – just a phase change and potentially an amplitude change. The wavelength (or alternatively
653: 1168:
The wave velocity in one medium not only may differ from that in another, but the velocity typically varies with wavelength. As a result, the change in direction upon entering a different medium changes with the wavelength of the wave.
2211: 973: 892: 811: 477:
The stationary wave can be viewed as the sum of two traveling sinusoidal waves of oppositely directed velocities. Consequently, wavelength, period, and wave velocity are related just as for a traveling wave. For example, the
1853: 2434: 1323: 508: 1677:
Pattern of light intensity on a screen for light passing through two slits. The labels on the right refer to the difference of the path lengths from the two slits, which are idealized here as point sources.
1681:
When sinusoidal waveforms add, they may reinforce each other (constructive interference) or cancel each other (destructive interference) depending upon their relative phase. This phenomenon is used in the
1646:
for such a particle being spread over all space, de Broglie proposed using wave packets to represent particles that are localized in space. The spatial spread of the wave packet, and the spread of the
1540:. Such waves are sometimes regarded as having a wavelength even though they are not sinusoidal. As shown in the figure, wavelength is measured between consecutive corresponding points on the waveform. 1372:
wavelength that depends in part on the depth of the sea floor compared to the wave height. The analysis of the wave can be based upon comparison of the local wavelength with the local water depth.
1038:
being interpreted as scalar speed in the direction of the wave vector. The first form, using reciprocal wavelength in the phase, does not generalize as easily to a wave in an arbitrary direction.
2538: 1831: 1233: 1112: 2478: 2260: 292: 2075:
In the analysis of the single slit, the non-zero width of the slit is taken into account, and each point in the aperture is taken as the source of one contribution to the beam of light (
1757: 2079:). On the screen, the light arriving from each position within the slit has a different path length, albeit possibly a very small difference. Consequently, interference occurs. 1340:. Separation occurs when the refractive index inside the prism varies with wavelength, so different wavelengths propagate at different speeds inside the prism, causing them to 3187: 3832: 416: 2988:
To aid imagination, this bending of the wave often is compared to the analogy of a column of marching soldiers crossing from solid ground into mud. See, for example,
1482:) is a characterization of the wave in space, that is functionally related to its frequency, as constrained by the physics of the system. Sinusoids are the simplest 470:
The upper figure shows three standing waves in a box. The walls of the box are considered to require the wave to have nodes at the walls of the box (an example of
2104: 339: 315: 250: 2012:, is the single-slit result, which modulates the more rapidly varying second factor that depends upon the number of slits and their spacing. In the figure 1429:
Waves in crystalline solids are not continuous, because they are composed of vibrations of discrete particles arranged in a regular lattice. This produces
903: 822: 698: 2574:
is used to describe an object having one or more dimensions smaller than the length of the wave with which the object interacts. For example, the term
1987:{\displaystyle I_{q}=I_{1}\sin ^{2}\left({\frac {q\pi g\sin \alpha }{\lambda }}\right)/\sin ^{2}\left({\frac {\pi g\sin \alpha }{\lambda }}\right)\ ,} 1549: 3760: 1650:
of sinusoids that make up the packet, correspond to the uncertainties in the particle's position and momentum, the product of which is bounded by
442:
Sinusoidal standing waves in a box that constrains the end points to be nodes will have an integer number of half wavelengths fitting in the box.
3825: 1376: 1344:
at different angles. The mathematical relationship that describes how the speed of light within a medium varies with wavelength is known as a
3770: 3743: 3716: 3660: 3573: 3544: 3482: 3367: 3340: 3313: 3284: 3085: 3058: 3031: 3001: 2973: 2912: 2879: 1150:, which means that the same frequency will correspond to a shorter wavelength in the medium than in vacuum, as shown in the figure at right. 85:
is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same
1570:
that describes the overall amplitude of the wave; within the envelope, the distance between adjacent peaks or troughs is sometimes called a
2576: 3706: 2562:
As with other diffraction patterns, the pattern scales in proportion to wavelength, so shorter wavelengths can lead to higher resolution.
2370: 3650: 648:{\displaystyle y(x,\ t)=A\cos \left(2\pi \left({\frac {x}{\lambda }}-ft\right)\right)=A\cos \left({\frac {2\pi }{\lambda }}(x-vt)\right)} 2869: 1267: 3251: 3218: 2596: 1566:, "bursts" of wave action where each wave packet travels as a unit, find application in many fields of physics. A wave packet has an 3818: 3689: 3633: 3606: 3511: 3446: 3394: 3166: 3135: 3115: 2946: 2852: 2827: 2800: 2771: 3796: 2963: 2360:, the radius to the first null of the Airy disk, to a size proportional to the wavelength of the light used, and depending on the 1146:
The speed of a wave depends upon the medium in which it propagates. In particular, the speed of light in a medium is less than in
3357: 1651: 1668: 435:
so they can resolve targets smaller than 17 mm. Wavelengths in audible sound are much longer than those in visible light.
129: 3405:
of a dispersing wave is twice the distance between two successive zeros. ... the local wavelength and the local wave number
463:
is an undulatory motion that stays in one place. A sinusoidal standing wave includes stationary points of no motion, called
3470: 3453:(p. 61) ... the individual waves move more slowly than the packet and therefore pass back through the packet as it advances 1368:
in space. For example, in an ocean wave approaching shore, shown in the figure, the incoming wave undulates with a varying
2501: 1053:
phase when describing a wave is based on the fact that the cosine is the real part of the complex exponential in the wave
227:
media, any wave pattern can be described in terms of the independent propagation of sinusoidal components. The wavelength
3075: 3048: 146:
Wavelength depends on the medium (for example, vacuum, air, or water) that a wave travels through. Examples of waves are
2625: 1454: 3933: 1836:
Thus, if the wavelength of the light is known, the slit separation can be determined from the interference pattern or
1772: 31: 1184: 1059: 1434:
provide a description of all possible waves in a crystalline medium corresponds to the wave vectors confined to the
450:
A standing wave (black) depicted as the sum of two propagating waves traveling in opposite directions (red and blue)
143:
of the wave: waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths.
3928: 2442: 2298: 2273:
is the distance of the pattern (on the screen) from the slit, and λ is the wavelength of light used. The function
2216: 1261:, where the latter is measured in vacuum rather than in the medium. The corresponding wavelength in the medium is 259: 2083: 357: 175: 1718: 4228: 3841: 2495:) of the image diffracted by a circular aperture, a measure most commonly used for telescopes and cameras, is: 1687: 1499: 401: 204: 2595:
are holes smaller than the wavelength of light propagating through them. Such structures have applications in
1336:, and is also responsible for the familiar phenomenon in which light is separated into component colours by a 2064:
Two types of diffraction are distinguished, depending upon the separation between the source and the screen:
4278: 2677: 1487: 1130: 3359:
The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics
2723: 2065: 1691: 1410: 125: 100: 2587:
A subwavelength particle is a particle smaller than the wavelength of light with which it interacts (see
1525:
with certain shapes can propagate unchanged, because of properties of the nonlinear surface-wave medium.
1383:
Waves that are sinusoidal in time but propagate through a medium whose properties vary with position (an
2614: 2039: 1627: 1392: 1158: 1138: 4238: 4233: 2481: 159: 3077:
Time-frequency and time-scale methods: adaptive decompositions, uncertainty principles, and sampling
4273: 4268: 4243: 4223: 3974: 2600: 2588: 2069: 2044: 1673: 1465: 1345: 1333: 1122: 471: 350: 2788: 1585:, wave packets can be analyzed into infinite sums (or integrals) of sinusoidal waves of different 1441:
This indeterminacy in wavelength in solids is important in the analysis of wave phenomena such as
4263: 4111: 4084: 3994: 3979: 2728: 2662: 2361: 2357: 2304: 2294: 212: 2720:– dark lines in the solar spectrum, traditionally used as standard optical wavelength references 1157:, or a change in direction of waves that encounter the interface between media at an angle. For 1041:
Generalizations to sinusoids of other phases, and to complex exponentials, are also common; see
482:
can be determined from observation of standing waves in a metal box containing an ideal vacuum.
3527:
Greenfield Sluder & David E. Wolf (2007). "IV. Young's Experiment: Two-Slit Interference".
4119: 4115: 4096: 4092: 4088: 3766: 3739: 3733: 3712: 3685: 3656: 3629: 3602: 3590: 3569: 3561: 3540: 3507: 3499: 3478: 3442: 3390: 3384: 3363: 3336: 3309: 3280: 3247: 3235: 3214: 3206: 3162: 3152: 3131: 3111: 3081: 3054: 3027: 3021: 2997: 2991: 2969: 2942: 2932: 2908: 2904: 2875: 2848: 2823: 2817: 2796: 2767: 2707: 2685: 1623: 1397: 1365: 686: 346: 187: 105: 82: 3677: 3623: 3536: 3430: 3301: 3125: 4253: 4024: 3999: 3867: 3330: 3268: 2717: 2712: 2676:). It is usually encountered in quantum mechanics, where it is used in combination with the 2049: 1635: 1592: 1582: 1337: 1174: 200: 3886: 2206:{\displaystyle S(u)=\mathrm {sinc} ^{2}(u)=\left({\frac {\sin \pi u}{\pi u}}\right)^{2}\ ;} 490:
Traveling sinusoidal waves are often represented mathematically in terms of their velocity
4338: 4302: 4215: 4057: 3989: 3800: 2346: 1619: 1548: 1528: 1421: 136: 3788: 3793: 2026:
the light, so the energy contained in the light is not altered, just where it shows up.
1134:
Refraction: upon entering a medium where its speed is lower, the wave changes direction.
4333: 4248: 4032: 3806:
The visible electromagnetic spectrum displayed in web colors with according wavelengths
2552: 2312: 1683: 1435: 1243: 1162: 479: 464: 412: 397: 365: 324: 318: 300: 235: 208: 183: 179: 167: 1375: 1360:
Various local wavelengths on a crest-to-crest basis in an ocean wave approaching shore
4327: 4258: 4195: 4176: 4080: 4014: 4009: 4004: 3529: 3183: 3104: 2897: 2733: 2646: 2581: 2095: 1643: 968:{\displaystyle \lambda ={\frac {2\pi }{k}}={\frac {2\pi v}{\omega }}={\frac {v}{f}}.} 887:{\displaystyle k={\frac {2\pi }{\lambda }}={\frac {2\pi f}{v}}={\frac {\omega }{v}},} 460: 96: 92: 87: 54: 50: 2082:
In the Fraunhofer diffraction pattern sufficiently far from a single slit, within a
4134: 3437:(Reprint of Academic Press 1981 ed.). Courier Dover Publications. pp. 59 2738: 1495: 1442: 1425:
A wave on a line of atoms can be interpreted according to a variety of wavelengths.
110: 1142:
Separation of colors by a prism (click for animation if it is not already playing)
806:{\displaystyle y(x,\ t)=A\cos \left(kx-\omega t\right)=A\cos \left(k(x-vt)\right)} 3762:
Reflecting Telescope Optics I: Basic Design Theory and Its Historical Development
4307: 3984: 3966: 3862: 3789:
Conversion: Wavelength to Frequency and vice versa – Sound waves and radio waves
2316: 2058: 2035: 1563: 1557: 1536:
If a traveling wave has a fixed shape that repeats in space or in time, it is a
1479: 1011: 186:
vary. Water waves are variations in the height of a body of water. In a crystal
66: 2629:
Relationship between wavelength, angular wavelength, and other wave properties.
1356: 376:. Thus the wavelength of a 100 MHz electromagnetic (radio) wave is about: 3956: 3951: 3882: 2555:
diameter of the imaging system, in the same units, and the angular resolution
1647: 1586: 1522: 1475: 1406: 1154: 1042: 1015: 679: 446: 428: 408: 361: 155: 147: 121: 37: 2613:
may also refer to a phenomenon involving subwavelength objects; for example,
2319:. For a circular aperture, the diffraction-limited image spot is known as an 816:
in which wavelength and wavenumber are related to velocity and frequency as:
17: 4297: 4144: 3920: 3898: 3877: 3852: 2604: 2584:
whose diameter is less than the wavelength of light propagating through it.
2492: 2320: 2308: 675: 393: 349:, the phase speed itself depends upon the frequency of the wave, making the 342: 140: 53:, such as between crests (on top), or troughs (on bottom), or corresponding 42: 3810: 1578:
of the wave packet moves at a speed different from the constituent waves.
1494:
sharper crests and flatter troughs than those of a sinusoid, typical of a
438: 419:). The wavelengths of sound frequencies audible to the human ear (20  139:
moving at a fixed wave speed, wavelength is inversely proportional to the
4312: 4129: 4107: 4102: 4072: 3872: 3805: 2743: 2592: 1631: 1596: 1450: 1430: 1034:, is still in the same relationship with wavelength as shown above, with 195: 3593:. In John W Harris; Walter Benenson; Horst Stöcker; Holger Lutz (eds.). 2356:
size of objects viewed through a microscope is limited according to the
1702:) then the paths are nearly parallel, and the path difference is simply 4181: 4167: 1446: 1341: 1019: 193:
The range of wavelengths or frequencies for wave phenomena is called a
62: 2931:
David C. Cassidy; Gerald James Holton; Floyd James Rutherford (2002).
2327:
in the single-slit diffraction formula is replaced by radial distance
4205: 4200: 4190: 4162: 4157: 4152: 4123: 4052: 2649:). It is equal to the ordinary wavelength reduced by a factor of 2π ( 1147: 1046: 224: 113: 2429:{\displaystyle r_{Airy}=1.22{\frac {\lambda }{2\,\mathrm {NA} }}\ ,} 1172:
For electromagnetic waves the speed in a medium is governed by its
4047: 3943: 3857: 1672: 1547: 1527: 1464: 1420: 1374: 1355: 1137: 1129: 1121: 445: 437: 424: 420: 171: 163: 151: 36: 1318:{\displaystyle \lambda ={\frac {\lambda _{0}}{n(\lambda _{0})}}.} 4042: 4037: 3269:"Chapter 1: Brief history and overview of nonlinear water waves" 2491:
size of the central bright portion (radius to first null of the
2057:
image on the screen. This distribution of wave energy is called
1483: 1050: 78: 3814: 3794:
Teaching resource for 14–16 years on sound including wavelength
2480:
for θ being the half-angle of the cone of rays accepted by the
1712:. Accordingly, the condition for constructive interference is: 4062: 1379:
A sinusoidal wave travelling in a nonuniform medium, with loss
432: 389: 2547:
is the wavelength of the waves that are focused for imaging,
388:= 3 m. The wavelength of visible light ranges from deep 95:. Wavelength is a characteristic of both traveling waves and 3885: 3240:
Nonlinear Waves and Solitons on Contours and Closed Surfaces
3207:"Figure 4.4: Transition from quasi-harmonic to cnoidal wave" 1332:
The variation in speed of light with wavelength is known as
1126:
Wavelength is decreased in a medium with slower propagation.
2660:), with SI units of meter per radian. It is the inverse of 1498:, a traveling wave so named because it is described by the 1405:). The method integrates phase through space using a local 1364:
Wavelength can be a useful concept even if the wave is not
3386:
Introduction to partial differential equations with MATLAB
3273:
Nonlinear Ocean Waves and the Inverse Scattering Transform
678:
of the wave. They are also commonly expressed in terms of
467:, and the wavelength is twice the distance between nodes. 2871:
Electromagnetic Theory for Microwaves and Optoelectronics
2795:(2nd ed.). Cambridge University Press. p. 473. 1486:
solutions, and more complex solutions can be built up by
1161:, this change in the angle of propagation is governed by 3130:(4th ed.). Cambridge University Press. p. 22. 431:, respectively. Somewhat higher frequencies are used by 3625:
Fundamentals of light microscopy and electronic imaging
3194:(9th ed.). The Henry G Allen Company. p. 422. 2048:
Diffraction pattern of a double slit has a single-slit
1595:
postulated that all particles with a specific value of
1395:
of such systems is often done approximately, using the
1257:) is the refractive index of the medium at wavelength λ 49:, can be measured between any two points with the same 120:). The term "wavelength" is also sometimes applied to 91:
on the wave, such as two adjacent crests, troughs, or
3435:
Quantum Mechanics for Applied Physics and Engineering
2822:(4th ed.). Cengage Learning. pp. 404, 440. 2504: 2445: 2373: 2219: 2107: 1856: 1775: 1721: 1574:. An example is shown in the figure. In general, the 1532:
Wavelength of a periodic but non-sinusoidal waveform.
1270: 1187: 1062: 906: 825: 701: 511: 423:–20 kHz) are thus between approximately 17  327: 303: 262: 238: 231:
of a sinusoidal waveform traveling at constant speed
3211:
Nonlinear Dynamics: Between Linear and Impact Limits
2533:{\displaystyle \delta =1.22{\frac {\lambda }{D}}\ ,} 1766:
is an integer, and for destructive interference is:
4287: 4214: 4143: 4071: 4023: 3965: 3942: 3919: 3568:(Extended 8th ed.). Wiley-India. p. 965. 2919:
wavelength lambda light sound frequency wave speed.
2019:has been set to unity, a very rough approximation. 1153:This change in speed upon entering a medium causes 3528: 3103: 2896: 2532: 2472: 2428: 2254: 2205: 2068:or far-field diffraction at large separations and 1986: 1825: 1751: 1317: 1227: 1106: 967: 886: 805: 647: 333: 309: 286: 244: 2303:Diffraction is the fundamental limitation on the 2285:values at a separation proportion to wavelength. 1014:that specifies the direction and wavenumber of a 3711:. Courier Dover Publications. pp. 117–120. 2766:(2nd ed.). Addison Wesley. pp. 15–16. 2072:or near-field diffraction at close separations. 1826:{\displaystyle d\sin \theta =(m+1/2)\lambda \ .} 3074:Jeffrey A. Hogan & Joseph D. Lakey (2005). 1228:{\displaystyle v={\frac {c}{n(\lambda _{0})}},} 1107:{\displaystyle Ae^{i\left(kx-\omega t\right)}.} 400:, roughly 400 nm (for other examples, see 3306:Introduction to Macromolecular Crystallography 3026:. Jones & Bartlett Learning. p. 242. 1638:display have a De Broglie wavelength of about 99:, as well as other spatial wave patterns. The 3826: 3506:. Vol. 53. Academic Press. p. 271. 2473:{\displaystyle \mathrm {NA} =n\sin \theta \;} 351:relationship between wavelength and frequency 8: 3652:Optical scattering: measurement and analysis 3504:Advances in Electronics and Electron Physics 2633:A quantity related to the wavelength is the 2255:{\displaystyle u={\frac {xL}{\lambda R}}\ ,} 685:(2π times the reciprocal of wavelength) and 317:is called the phase speed (magnitude of the 287:{\displaystyle \lambda ={\frac {v}{f}}\,\,,} 3362:. Cambridge University Press. p. 160. 2996:. Cambridge University Press. p. 327. 2903:. Jones & Bartlett Publishers. p.  2793:An introduction to numerical methods in C++ 2439:where the numerical aperture is defined as 2005:is the grating constant. The first factor, 1686:. A simple example is an experiment due to 109:. Wavelength is commonly designated by the 3902:        3833: 3819: 3811: 3735:Handbook of biological confocal microscopy 3463: 3461: 3110:. Cambridge University Press. p. 97. 2816:Raymond A. Serway; John W. Jewett (2006). 2469: 1752:{\displaystyle d\sin \theta =m\lambda \ ,} 1626:. Nowadays, this wavelength is called the 978:In the second form given above, the phase 27:Distance over which a wave's shape repeats 3157:(2nd ed.). Birkhäuser. pp. 165 3015: 3013: 2895:Theo Koupelis & Karl F. Kuhn (2007). 2514: 2503: 2446: 2444: 2409: 2408: 2399: 2378: 2372: 2226: 2218: 2191: 2161: 2138: 2124: 2106: 1950: 1937: 1928: 1897: 1884: 1874: 1861: 1855: 1803: 1774: 1720: 1698:is large compared to the slit separation 1449:. It is mathematically equivalent to the 1300: 1283: 1277: 1269: 1210: 1194: 1186: 1070: 1061: 952: 931: 913: 905: 871: 850: 832: 824: 700: 662:is the value of the wave at any position 607: 561: 510: 417:room temperature and atmospheric pressure 326: 302: 280: 279: 269: 261: 237: 3655:(2nd ed.). SPIE Press. p. 64. 3535:(3rd ed.). Academic Press. p.  2624: 2043: 1388:with a high loss and the wave dies out. 3738:(2nd ed.). Springer. p. 112. 3562:"§35-4 Young's interference experiment" 3242:(2nd ed.). Springer. pp. 469 3154:Fundamentals of solid state engineering 2754: 3502:. In L. Marton; Claire Marton (eds.). 3053:. New Age International. p. 454. 2845:The surface physics of liquid crystals 1622:. This hypothesis was at the basis of 1469:Near-periodic waves over shallow water 1045:. The typical convention of using the 128:of modulated waves or waves formed by 203:but now can be applied to the entire 158:and periodic electrical signals in a 7: 3471:"Heisenberg's uncertainty principle" 3467:See, for example, Figs. 2.8–2.10 in 3335:. John Wiley & Sons. p. 1. 2868:Keqian Zhang & Dejie Li (2007). 2847:. Taylor & Francis. p. 17. 2577:subwavelength-diameter optical fibre 2281:is a non-zero integer, where are at 1847:For multiple slits, the pattern is 1022:, parameterized by position vector 3560:Halliday; Resnick; Walker (2008). 2597:extraordinary optical transmission 2450: 2447: 2413: 2410: 2134: 2131: 2128: 2125: 25: 3591:"§9.8.2 Diffraction by a grating" 3308:(2 ed.). Wiley. p. 77. 2990:Raymond T. Pierrehumbert (2010). 2022:The effect of interference is to 3475:Quantum Physics: An Introduction 3127:Introduction to lattice dynamics 3106:Introduction to mineral sciences 2307:of optical instruments, such as 1652:Heisenberg uncertainty principle 494:(in the x direction), frequency 103:of the wavelength is called the 3047:Bishwanath Chakraborty (2007). 2993:Principles of Planetary Climate 2968:. Nelson Thornes. p. 460. 1669:Interference (wave propagation) 1026:. In that case, the wavenumber 199:. The name originated with the 3050:Principles of Plasma Mechanics 2289:Diffraction-limited resolution 2150: 2144: 2117: 2111: 1811: 1791: 1690:where light is passed through 1306: 1293: 1216: 1203: 1006:, by replacing the wavenumber 795: 780: 720: 705: 637: 622: 530: 515: 1: 3708:Introduction to Modern Optics 3477:. CRC Press. pp. 53–56. 3275:. Academic Press. pp. 3 2787:Brian Hilton Flowers (2000). 2331:and the sine is replaced by 2 1506:th order, usually denoted as 692:(2π times the frequency) as: 124:waves, and to the sinusoidal 3302:"Waves and their properties" 3300:Alexander McPherson (2009). 3205:Valery N. Pilipchuk (2010). 2001:is the number of slits, and 1658:Interference and diffraction 3934:Ultra-high-energy gamma ray 3080:. Birkhäuser. p. 348. 2937:. Birkhäuser. pp. 339 486:Mathematical representation 166:wave is a variation in air 32:Wavelength (disambiguation) 4355: 3929:Very-high-energy gamma ray 3628:. Wiley/IEEE. p. 64. 3622:Douglas B. Murphy (2002). 3589:Kordt Griepenkerl (2002). 2789:"§21.2 Periodic functions" 2299:Diffraction-limited system 2292: 2033: 1666: 1555: 29: 3848: 3765:. Springer. p. 302. 3684:. CRC Press. p. 57. 3597:. Springer. pp. 307 3389:. Springer. p. 272. 3356:Peter R. Holland (1995). 3236:"§18.3 Special functions" 3213:. Springer. p. 127. 2874:. Springer. p. 533. 2641:), usually symbolized by 2084:small-angle approximation 1552:A propagating wave packet 364:, the phase speed is the 358:electromagnetic radiation 190:, atomic positions vary. 176:electromagnetic radiation 3842:Electromagnetic spectrum 3732:James B. Pawley (1995). 3705:Grant R. Fowles (1989). 3678:"Diffraction limitation" 3151:Manijeh Razeghi (2006). 2899:In Quest of the Universe 1663:Double-slit interference 1500:Jacobi elliptic function 990:is often generalized to 402:electromagnetic spectrum 205:electromagnetic spectrum 3649:John C. Stover (1995). 3566:Fundamentals of Physics 3500:"Electron Interference" 3498:Ming Chiang Li (1980). 3431:"Wave packet solutions" 3429:A. T. Fromhold (1991). 3383:Jeffery Cooper (1998). 3267:Alfred Osborne (2010). 3192:Encyclopædia Britannica 3124:Martin T. Dove (1993). 2678:reduced Planck constant 2603:, among other areas of 2090:is related to position 2086:, the intensity spread 2030:Single-slit diffraction 1457:at discrete intervals. 3890: 3759:Ray N. Wilson (2004). 3682:The science of imaging 2762:Hecht, Eugene (1987). 2724:Index of wave articles 2630: 2534: 2474: 2430: 2256: 2207: 2066:Fraunhofer diffraction 2053: 1988: 1827: 1753: 1678: 1553: 1533: 1470: 1461:More general waveforms 1426: 1411:conservation of energy 1403:Liouville–Green method 1393:differential equations 1380: 1361: 1319: 1229: 1143: 1135: 1127: 1108: 969: 888: 807: 649: 451: 443: 335: 311: 288: 246: 201:visible light spectrum 132:of several sinusoids. 58: 3889: 3676:Graham Saxby (2002). 3401:The local wavelength 3020:Paul R Pinet (2009). 2934:Understanding physics 2819:Principles of physics 2628: 2615:subwavelength imaging 2535: 2475: 2431: 2257: 2208: 2047: 2040:Diffraction formalism 1989: 1828: 1754: 1676: 1628:de Broglie wavelength 1551: 1531: 1468: 1424: 1378: 1359: 1320: 1230: 1159:electromagnetic waves 1141: 1133: 1125: 1109: 1049:phase instead of the 970: 889: 808: 650: 449: 441: 336: 312: 289: 247: 40: 3469:Joy Manners (2000). 3234:Andrei Ludu (2012). 2965:The World of Physics 2962:John Avison (1999). 2843:A. A. Sonin (1995). 2601:zero-mode waveguides 2502: 2482:microscope objective 2443: 2371: 2217: 2105: 1854: 1773: 1719: 1453:of a signal that is 1268: 1185: 1060: 904: 823: 699: 509: 415:is 343 m/s (at 325: 301: 260: 236: 178:the strength of the 41:The wavelength of a 30:For other uses, see 3975:Extreme ultraviolet 3595:Handbook of physics 3329:Eric Stade (2011). 3100:See Figure 4.20 in 2589:Rayleigh scattering 2269:is the slit width, 2213: with  2070:Fresnel diffraction 1630:. For example, the 1401:(also known as the 1346:dispersion relation 1030:, the magnitude of 472:boundary conditions 392:, roughly 700  3980:Vacuum ultraviolet 3891: 3799:2012-03-13 at the 3531:Digital microscopy 3122:and Figure 2.3 in 3102:A. Putnis (1992). 2729:Length measurement 2663:angular wavenumber 2639:reduced wavelength 2635:angular wavelength 2631: 2621:Angular wavelength 2530: 2470: 2426: 2362:numerical aperture 2358:Rayleigh criterion 2295:Angular resolution 2252: 2203: 2054: 1984: 1823: 1749: 1679: 1602:have a wavelength 1554: 1534: 1521:. Large-amplitude 1471: 1447:lattice vibrations 1427: 1381: 1362: 1329:specified medium. 1315: 1225: 1144: 1136: 1128: 1104: 965: 884: 803: 645: 452: 444: 360:—such as light—in 331: 321:) of the wave and 307: 284: 242: 213:vibration spectrum 59: 4321: 4320: 4025:Visible (optical) 3772:978-3-540-40106-3 3745:978-0-306-44826-3 3718:978-0-486-65957-2 3662:978-0-8194-1934-7 3575:978-81-265-1442-7 3546:978-0-12-374025-0 3484:978-0-7503-0720-8 3369:978-0-521-48543-2 3342:978-1-118-16551-5 3315:978-0-470-18590-2 3286:978-0-12-528629-9 3087:978-0-8176-4276-1 3060:978-81-224-1446-2 3033:978-0-7637-5993-3 3003:978-0-521-86556-2 2975:978-0-17-438733-6 2914:978-0-7637-4387-1 2881:978-3-540-74295-1 2708:Emission spectrum 2686:angular frequency 2684:, h-bar) and the 2645:("lambda-bar" or 2591:). Subwavelength 2526: 2522: 2422: 2418: 2345:is a first order 2248: 2244: 2199: 2185: 2077:Huygens' wavelets 1980: 1972: 1922: 1819: 1745: 1642:. To prevent the 1624:quantum mechanics 1310: 1220: 960: 947: 926: 879: 866: 845: 716: 687:angular frequency 620: 569: 526: 347:dispersive medium 334:{\displaystyle f} 310:{\displaystyle v} 277: 245:{\displaystyle v} 188:lattice vibration 106:spatial frequency 83:periodic function 16:(Redirected from 4346: 3912: 3910: 3903: 3896: 3835: 3828: 3821: 3812: 3777: 3776: 3756: 3750: 3749: 3729: 3723: 3722: 3702: 3696: 3695: 3673: 3667: 3666: 3646: 3640: 3639: 3619: 3613: 3612: 3586: 3580: 3579: 3557: 3551: 3550: 3534: 3524: 3518: 3517: 3495: 3489: 3488: 3465: 3456: 3455: 3426: 3420: 3419: 3380: 3374: 3373: 3353: 3347: 3346: 3332:Fourier Analysis 3326: 3320: 3319: 3297: 3291: 3290: 3264: 3258: 3257: 3231: 3225: 3224: 3202: 3196: 3195: 3179: 3173: 3172: 3148: 3142: 3141: 3121: 3109: 3098: 3092: 3091: 3071: 3065: 3064: 3044: 3038: 3037: 3017: 3008: 3007: 2986: 2980: 2979: 2959: 2953: 2952: 2928: 2922: 2921: 2902: 2892: 2886: 2885: 2865: 2859: 2858: 2840: 2834: 2833: 2813: 2807: 2806: 2784: 2778: 2777: 2759: 2718:Fraunhofer lines 2713:Envelope (waves) 2697: 2675: 2659: 2539: 2537: 2536: 2531: 2524: 2523: 2515: 2479: 2477: 2476: 2471: 2453: 2435: 2433: 2432: 2427: 2420: 2419: 2417: 2416: 2400: 2392: 2391: 2277:has zeros where 2261: 2259: 2258: 2253: 2246: 2245: 2243: 2235: 2227: 2212: 2210: 2209: 2204: 2197: 2196: 2195: 2190: 2186: 2184: 2176: 2162: 2143: 2142: 2137: 1993: 1991: 1990: 1985: 1978: 1977: 1973: 1968: 1951: 1942: 1941: 1932: 1927: 1923: 1918: 1898: 1889: 1888: 1879: 1878: 1866: 1865: 1832: 1830: 1829: 1824: 1817: 1807: 1758: 1756: 1755: 1750: 1743: 1711: 1641: 1593:Louis de Broglie 1589:or wavelengths. 1583:Fourier analysis 1572:local wavelength 1520: 1391:The analysis of 1352:Nonuniform media 1324: 1322: 1321: 1316: 1311: 1309: 1305: 1304: 1288: 1287: 1278: 1234: 1232: 1231: 1226: 1221: 1219: 1215: 1214: 1195: 1175:refractive index 1113: 1111: 1110: 1105: 1100: 1099: 1098: 1094: 1005: 989: 974: 972: 971: 966: 961: 953: 948: 943: 932: 927: 922: 914: 893: 891: 890: 885: 880: 872: 867: 862: 851: 846: 841: 833: 812: 810: 809: 804: 802: 798: 759: 755: 714: 654: 652: 651: 646: 644: 640: 621: 616: 608: 589: 585: 584: 580: 570: 562: 524: 387: 383: 381: 375: 373: 340: 338: 337: 332: 316: 314: 313: 308: 293: 291: 290: 285: 278: 270: 251: 249: 248: 243: 219:Sinusoidal waves 207:as well as to a 21: 4354: 4353: 4349: 4348: 4347: 4345: 4344: 4343: 4324: 4323: 4322: 4317: 4283: 4210: 4185: 4171: 4139: 4067: 4019: 3961: 3938: 3915: 3908: 3901: 3894: 3892: 3844: 3839: 3801:Wayback Machine 3785: 3780: 3773: 3758: 3757: 3753: 3746: 3731: 3730: 3726: 3719: 3704: 3703: 3699: 3692: 3675: 3674: 3670: 3663: 3648: 3647: 3643: 3636: 3621: 3620: 3616: 3609: 3588: 3587: 3583: 3576: 3559: 3558: 3554: 3547: 3526: 3525: 3521: 3514: 3497: 3496: 3492: 3485: 3468: 3466: 3459: 3449: 3428: 3427: 3423: 3409:are related by 3397: 3382: 3381: 3377: 3370: 3355: 3354: 3350: 3343: 3328: 3327: 3323: 3316: 3299: 3298: 3294: 3287: 3266: 3265: 3261: 3254: 3233: 3232: 3228: 3221: 3204: 3203: 3199: 3182: 3180: 3176: 3169: 3150: 3149: 3145: 3138: 3123: 3118: 3101: 3099: 3095: 3088: 3073: 3072: 3068: 3061: 3046: 3045: 3041: 3034: 3019: 3018: 3011: 3004: 2989: 2987: 2983: 2976: 2961: 2960: 2956: 2949: 2930: 2929: 2925: 2915: 2894: 2893: 2889: 2882: 2867: 2866: 2862: 2855: 2842: 2841: 2837: 2830: 2815: 2814: 2810: 2803: 2786: 2785: 2781: 2774: 2761: 2760: 2756: 2752: 2704: 2689: 2667: 2650: 2637:(also known as 2623: 2568: 2559:is in radians. 2500: 2499: 2441: 2440: 2404: 2374: 2369: 2368: 2352:The resolvable 2347:Bessel function 2344: 2337: 2323:; the distance 2313:radiotelescopes 2305:resolving power 2301: 2293:Main articles: 2291: 2236: 2228: 2215: 2214: 2177: 2163: 2157: 2156: 2123: 2103: 2102: 2042: 2034:Main articles: 2032: 2018: 2011: 1952: 1946: 1933: 1899: 1893: 1880: 1870: 1857: 1852: 1851: 1771: 1770: 1717: 1716: 1703: 1671: 1665: 1660: 1639: 1620:Planck constant 1560: 1546: 1507: 1463: 1419: 1354: 1296: 1289: 1279: 1266: 1265: 1260: 1256: 1206: 1199: 1183: 1182: 1120: 1078: 1074: 1066: 1058: 1057: 991: 979: 933: 915: 902: 901: 852: 834: 821: 820: 776: 772: 739: 735: 697: 696: 609: 606: 602: 560: 556: 549: 545: 507: 506: 498:and wavelength 488: 457: 385: 379: 377: 371: 369: 356:In the case of 323: 322: 299: 298: 258: 257: 234: 233: 221: 137:sinusoidal wave 35: 28: 23: 22: 15: 12: 11: 5: 4352: 4350: 4342: 4341: 4336: 4326: 4325: 4319: 4318: 4316: 4315: 4310: 4305: 4300: 4294: 4292: 4285: 4284: 4282: 4281: 4276: 4271: 4266: 4261: 4256: 4251: 4246: 4241: 4236: 4231: 4226: 4220: 4218: 4212: 4211: 4209: 4208: 4203: 4198: 4193: 4188: 4183: 4179: 4174: 4169: 4165: 4160: 4155: 4149: 4147: 4141: 4140: 4138: 4137: 4132: 4127: 4105: 4100: 4077: 4075: 4069: 4068: 4066: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4029: 4027: 4021: 4020: 4018: 4017: 4012: 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3971: 3969: 3963: 3962: 3960: 3959: 3954: 3948: 3946: 3940: 3939: 3937: 3936: 3931: 3925: 3923: 3917: 3916: 3914: 3913: 3880: 3875: 3870: 3865: 3860: 3855: 3849: 3846: 3845: 3840: 3838: 3837: 3830: 3823: 3815: 3809: 3808: 3803: 3791: 3784: 3783:External links 3781: 3779: 3778: 3771: 3751: 3744: 3724: 3717: 3697: 3690: 3668: 3661: 3641: 3634: 3614: 3607: 3581: 3574: 3552: 3545: 3519: 3512: 3490: 3483: 3457: 3447: 3421: 3395: 3375: 3368: 3348: 3341: 3321: 3314: 3292: 3285: 3259: 3253:978-3642228940 3252: 3226: 3220:978-3642127984 3219: 3197: 3174: 3167: 3143: 3136: 3116: 3093: 3086: 3066: 3059: 3039: 3032: 3009: 3002: 2981: 2974: 2954: 2947: 2923: 2913: 2887: 2880: 2860: 2853: 2835: 2828: 2808: 2801: 2779: 2772: 2753: 2751: 2748: 2747: 2746: 2741: 2736: 2731: 2726: 2721: 2715: 2710: 2703: 2700: 2622: 2619: 2567: 2564: 2553:entrance pupil 2541: 2540: 2529: 2521: 2518: 2513: 2510: 2507: 2468: 2465: 2462: 2459: 2456: 2452: 2449: 2437: 2436: 2425: 2415: 2412: 2407: 2403: 2398: 2395: 2390: 2387: 2384: 2381: 2377: 2342: 2335: 2290: 2287: 2263: 2262: 2251: 2242: 2239: 2234: 2231: 2225: 2222: 2202: 2194: 2189: 2183: 2180: 2175: 2172: 2169: 2166: 2160: 2155: 2152: 2149: 2146: 2141: 2136: 2133: 2130: 2127: 2122: 2119: 2116: 2113: 2110: 2094:via a squared 2031: 2028: 2016: 2009: 1995: 1994: 1983: 1976: 1971: 1967: 1964: 1961: 1958: 1955: 1949: 1945: 1940: 1936: 1931: 1926: 1921: 1917: 1914: 1911: 1908: 1905: 1902: 1896: 1892: 1887: 1883: 1877: 1873: 1869: 1864: 1860: 1834: 1833: 1822: 1816: 1813: 1810: 1806: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1781: 1778: 1760: 1759: 1748: 1742: 1739: 1736: 1733: 1730: 1727: 1724: 1684:interferometer 1667:Main article: 1664: 1661: 1659: 1656: 1556:Main article: 1545: 1542: 1484:traveling wave 1462: 1459: 1436:Brillouin zone 1418: 1415: 1353: 1350: 1326: 1325: 1314: 1308: 1303: 1299: 1295: 1292: 1286: 1282: 1276: 1273: 1258: 1254: 1246:in vacuum and 1244:speed of light 1236: 1235: 1224: 1218: 1213: 1209: 1205: 1202: 1198: 1193: 1190: 1119: 1116: 1115: 1114: 1103: 1097: 1093: 1090: 1087: 1084: 1081: 1077: 1073: 1069: 1065: 976: 975: 964: 959: 956: 951: 946: 942: 939: 936: 930: 925: 921: 918: 912: 909: 895: 894: 883: 878: 875: 870: 865: 861: 858: 855: 849: 844: 840: 837: 831: 828: 814: 813: 801: 797: 794: 791: 788: 785: 782: 779: 775: 771: 768: 765: 762: 758: 754: 751: 748: 745: 742: 738: 734: 731: 728: 725: 722: 719: 713: 710: 707: 704: 656: 655: 643: 639: 636: 633: 630: 627: 624: 619: 615: 612: 605: 601: 598: 595: 592: 588: 583: 579: 576: 573: 568: 565: 559: 555: 552: 548: 544: 541: 538: 535: 532: 529: 523: 520: 517: 514: 487: 484: 480:speed of light 456: 455:Standing waves 453: 413:speed of sound 366:speed of light 341:is the wave's 330: 319:phase velocity 306: 295: 294: 283: 276: 273: 268: 265: 241: 220: 217: 209:sound spectrum 184:magnetic field 97:standing waves 93:zero crossings 75:spatial period 55:zero crossings 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4351: 4340: 4337: 4335: 4332: 4331: 4329: 4314: 4311: 4309: 4306: 4304: 4301: 4299: 4296: 4295: 4293: 4290: 4286: 4280: 4277: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4255: 4252: 4250: 4247: 4245: 4242: 4240: 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4221: 4219: 4217: 4213: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4189: 4187: 4180: 4178: 4175: 4173: 4166: 4164: 4161: 4159: 4156: 4154: 4151: 4150: 4148: 4146: 4142: 4136: 4133: 4131: 4128: 4125: 4121: 4117: 4113: 4109: 4106: 4104: 4101: 4098: 4094: 4090: 4086: 4082: 4079: 4078: 4076: 4074: 4070: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4030: 4028: 4026: 4022: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3981: 3978: 3976: 3973: 3972: 3970: 3968: 3964: 3958: 3955: 3953: 3950: 3949: 3947: 3945: 3941: 3935: 3932: 3930: 3927: 3926: 3924: 3922: 3918: 3911: 3907: 3900: 3888: 3884: 3881: 3879: 3876: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3854: 3851: 3850: 3847: 3843: 3836: 3831: 3829: 3824: 3822: 3817: 3816: 3813: 3807: 3804: 3802: 3798: 3795: 3792: 3790: 3787: 3786: 3782: 3774: 3768: 3764: 3763: 3755: 3752: 3747: 3741: 3737: 3736: 3728: 3725: 3720: 3714: 3710: 3709: 3701: 3698: 3693: 3691:0-7503-0734-X 3687: 3683: 3679: 3672: 3669: 3664: 3658: 3654: 3653: 3645: 3642: 3637: 3635:0-471-23429-X 3631: 3627: 3626: 3618: 3615: 3610: 3608:0-387-95269-1 3604: 3600: 3596: 3592: 3585: 3582: 3577: 3571: 3567: 3563: 3556: 3553: 3548: 3542: 3538: 3533: 3532: 3523: 3520: 3515: 3513:0-12-014653-3 3509: 3505: 3501: 3494: 3491: 3486: 3480: 3476: 3472: 3464: 3462: 3458: 3454: 3450: 3448:0-486-66741-3 3444: 3440: 3436: 3432: 3425: 3422: 3418: 3416: 3412: 3408: 3404: 3398: 3396:0-8176-3967-5 3392: 3388: 3387: 3379: 3376: 3371: 3365: 3361: 3360: 3352: 3349: 3344: 3338: 3334: 3333: 3325: 3322: 3317: 3311: 3307: 3303: 3296: 3293: 3288: 3282: 3278: 3274: 3270: 3263: 3260: 3255: 3249: 3245: 3241: 3237: 3230: 3227: 3222: 3216: 3212: 3208: 3201: 3198: 3193: 3189: 3188:"Wave theory" 3185: 3184:Lord Rayleigh 3178: 3175: 3170: 3168:0-387-28152-5 3164: 3160: 3156: 3155: 3147: 3144: 3139: 3137:0-521-39293-4 3133: 3129: 3128: 3119: 3117:0-521-42947-1 3113: 3108: 3107: 3097: 3094: 3089: 3083: 3079: 3078: 3070: 3067: 3062: 3056: 3052: 3051: 3043: 3040: 3035: 3029: 3025: 3024: 3016: 3014: 3010: 3005: 2999: 2995: 2994: 2985: 2982: 2977: 2971: 2967: 2966: 2958: 2955: 2950: 2948:0-387-98756-8 2944: 2940: 2936: 2935: 2927: 2924: 2920: 2916: 2910: 2906: 2901: 2900: 2891: 2888: 2883: 2877: 2873: 2872: 2864: 2861: 2856: 2854:2-88124-995-7 2850: 2846: 2839: 2836: 2831: 2829:0-534-49143-X 2825: 2821: 2820: 2812: 2809: 2804: 2802:0-19-850693-7 2798: 2794: 2790: 2783: 2780: 2775: 2773:0-201-11609-X 2769: 2765: 2758: 2755: 2749: 2745: 2742: 2740: 2737: 2735: 2734:Spectral line 2732: 2730: 2727: 2725: 2722: 2719: 2716: 2714: 2711: 2709: 2706: 2705: 2701: 2699: 2696: 2692: 2688:(symbol  2687: 2683: 2680:(symbol  2679: 2674: 2670: 2665: 2664: 2657: 2653: 2648: 2647:barred lambda 2644: 2640: 2636: 2627: 2620: 2618: 2616: 2612: 2611:Subwavelength 2608: 2606: 2602: 2598: 2594: 2590: 2585: 2583: 2582:optical fibre 2579: 2578: 2573: 2572:subwavelength 2566:Subwavelength 2565: 2563: 2560: 2558: 2554: 2550: 2546: 2527: 2519: 2516: 2511: 2508: 2505: 2498: 2497: 2496: 2494: 2490: 2485: 2483: 2466: 2463: 2460: 2457: 2454: 2423: 2405: 2401: 2396: 2393: 2388: 2385: 2382: 2379: 2375: 2367: 2366: 2365: 2363: 2359: 2355: 2350: 2348: 2341: 2334: 2330: 2326: 2322: 2318: 2314: 2310: 2306: 2300: 2296: 2288: 2286: 2284: 2280: 2276: 2272: 2268: 2249: 2240: 2237: 2232: 2229: 2223: 2220: 2200: 2192: 2187: 2181: 2178: 2173: 2170: 2167: 2164: 2158: 2153: 2147: 2139: 2120: 2114: 2108: 2101: 2100: 2099: 2097: 2096:sinc function 2093: 2089: 2085: 2080: 2078: 2073: 2071: 2067: 2062: 2060: 2051: 2046: 2041: 2037: 2029: 2027: 2025: 2020: 2015: 2008: 2004: 2000: 1981: 1974: 1969: 1965: 1962: 1959: 1956: 1953: 1947: 1943: 1938: 1934: 1929: 1924: 1919: 1915: 1912: 1909: 1906: 1903: 1900: 1894: 1890: 1885: 1881: 1875: 1871: 1867: 1862: 1858: 1850: 1849: 1848: 1845: 1843: 1839: 1820: 1814: 1808: 1804: 1800: 1797: 1794: 1788: 1785: 1782: 1779: 1776: 1769: 1768: 1767: 1765: 1746: 1740: 1737: 1734: 1731: 1728: 1725: 1722: 1715: 1714: 1713: 1710: 1706: 1701: 1697: 1693: 1689: 1685: 1675: 1670: 1662: 1657: 1655: 1653: 1649: 1645: 1644:wave function 1637: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1601: 1598: 1594: 1590: 1588: 1584: 1579: 1577: 1573: 1569: 1565: 1559: 1550: 1543: 1541: 1539: 1538:periodic wave 1530: 1526: 1524: 1518: 1514: 1510: 1505: 1501: 1497: 1491: 1489: 1488:superposition 1485: 1481: 1477: 1467: 1460: 1458: 1456: 1452: 1448: 1444: 1439: 1437: 1432: 1423: 1416: 1414: 1413:in the wave. 1412: 1408: 1404: 1400: 1399: 1394: 1389: 1386: 1385:inhomogeneous 1377: 1373: 1371: 1367: 1358: 1351: 1349: 1347: 1343: 1339: 1335: 1330: 1312: 1301: 1297: 1290: 1284: 1280: 1274: 1271: 1264: 1263: 1262: 1253: 1249: 1245: 1241: 1222: 1211: 1207: 1200: 1196: 1191: 1188: 1181: 1180: 1179: 1178:according to 1177: 1176: 1170: 1166: 1164: 1160: 1156: 1151: 1149: 1140: 1132: 1124: 1118:General media 1117: 1101: 1095: 1091: 1088: 1085: 1082: 1079: 1075: 1071: 1067: 1063: 1056: 1055: 1054: 1052: 1048: 1044: 1039: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1003: 999: 995: 987: 983: 962: 957: 954: 949: 944: 940: 937: 934: 928: 923: 919: 916: 910: 907: 900: 899: 898: 881: 876: 873: 868: 863: 859: 856: 853: 847: 842: 838: 835: 829: 826: 819: 818: 817: 799: 792: 789: 786: 783: 777: 773: 769: 766: 763: 760: 756: 752: 749: 746: 743: 740: 736: 732: 729: 726: 723: 717: 711: 708: 702: 695: 694: 693: 691: 688: 684: 681: 677: 673: 669: 665: 661: 641: 634: 631: 628: 625: 617: 613: 610: 603: 599: 596: 593: 590: 586: 581: 577: 574: 571: 566: 563: 557: 553: 550: 546: 542: 539: 536: 533: 527: 521: 518: 512: 505: 504: 503: 501: 497: 493: 485: 483: 481: 475: 473: 468: 466: 462: 461:standing wave 454: 448: 440: 436: 434: 430: 426: 422: 418: 414: 410: 405: 403: 399: 395: 391: 367: 363: 359: 354: 352: 348: 344: 328: 320: 304: 281: 274: 271: 266: 263: 256: 255: 254: 252: 239: 230: 226: 218: 216: 214: 210: 206: 202: 198: 197: 191: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 149: 144: 142: 138: 133: 131: 127: 123: 119: 115: 112: 108: 107: 102: 98: 94: 90: 89: 84: 80: 76: 72: 68: 64: 56: 52: 48: 44: 39: 33: 19: 18:Subwavelength 4288: 3905: 3893: 3761: 3754: 3734: 3727: 3707: 3700: 3681: 3671: 3651: 3644: 3624: 3617: 3598: 3594: 3584: 3565: 3555: 3530: 3522: 3503: 3493: 3474: 3452: 3438: 3434: 3424: 3414: 3410: 3406: 3402: 3400: 3385: 3378: 3358: 3351: 3331: 3324: 3305: 3295: 3276: 3272: 3262: 3243: 3239: 3229: 3210: 3200: 3191: 3177: 3158: 3153: 3146: 3126: 3105: 3096: 3076: 3069: 3049: 3042: 3022: 2992: 2984: 2964: 2957: 2938: 2933: 2926: 2918: 2898: 2890: 2870: 2863: 2844: 2838: 2818: 2811: 2792: 2782: 2763: 2757: 2739:Spectroscopy 2694: 2690: 2681: 2672: 2668: 2661: 2655: 2651: 2642: 2638: 2634: 2632: 2610: 2609: 2586: 2575: 2571: 2569: 2561: 2556: 2548: 2544: 2542: 2488: 2486: 2438: 2353: 2351: 2339: 2332: 2328: 2324: 2302: 2282: 2278: 2274: 2270: 2266: 2264: 2091: 2087: 2081: 2076: 2074: 2063: 2055: 2024:redistribute 2023: 2021: 2013: 2006: 2002: 1998: 1996: 1846: 1841: 1837: 1835: 1763: 1761: 1708: 1704: 1699: 1695: 1680: 1615: 1611: 1607: 1603: 1599: 1591: 1580: 1575: 1571: 1567: 1564:wave packets 1561: 1544:Wave packets 1537: 1535: 1516: 1512: 1508: 1503: 1496:cnoidal wave 1492: 1472: 1443:energy bands 1440: 1428: 1402: 1396: 1390: 1384: 1382: 1369: 1363: 1331: 1327: 1251: 1247: 1239: 1237: 1173: 1171: 1167: 1152: 1145: 1040: 1035: 1031: 1027: 1023: 1007: 1001: 997: 993: 985: 981: 977: 896: 815: 689: 682: 671: 667: 663: 659: 657: 499: 495: 491: 489: 476: 469: 458: 427:and 17  411:in air, the 406: 355: 296: 253:is given by 232: 228: 222: 194: 192: 145: 134: 130:interference 117: 111:Greek letter 104: 86: 74: 70: 60: 46: 4308:Medium wave 3985:Lyman-alpha 3967:Ultraviolet 3906:wavelengths 3899:frequencies 3863:Ultraviolet 2317:microscopes 2311:(including 2059:diffraction 2036:Diffraction 1648:wavenumbers 1587:wavenumbers 1558:Wave packet 1523:ocean waves 1480:wave vector 1163:Snell's law 1012:wave vector 409:sound waves 384:divided by 382:10 m/s 374:10 m/s 353:nonlinear. 170:, while in 156:water waves 148:sound waves 135:Assuming a 67:mathematics 4328:Categories 4289:Wavelength 4145:Microwaves 3957:Hard X-ray 3952:Soft X-ray 3921:Gamma rays 3853:Gamma rays 2750:References 2309:telescopes 1842:vice versa 1562:Localized 1476:wavenumber 1407:wavenumber 1398:WKB method 1334:dispersion 1155:refraction 1043:plane wave 1016:plane wave 680:wavenumber 386:10 Hz 362:free space 174:and other 71:wavelength 4303:Shortwave 4298:Microwave 3878:Microwave 2605:photonics 2593:apertures 2580:means an 2570:The term 2517:λ 2506:δ 2493:Airy disk 2467:θ 2464:⁡ 2402:λ 2321:Airy disk 2238:λ 2179:π 2171:π 2168:⁡ 1970:λ 1966:α 1963:⁡ 1954:π 1944:⁡ 1920:λ 1916:α 1913:⁡ 1904:π 1891:⁡ 1815:λ 1786:θ 1783:⁡ 1741:λ 1732:θ 1729:⁡ 1692:two slits 1640:10 m 1632:electrons 1298:λ 1281:λ 1272:λ 1208:λ 1089:ω 1086:− 945:ω 938:π 920:π 908:λ 874:ω 857:π 843:λ 839:π 787:− 770:⁡ 750:ω 747:− 733:⁡ 676:amplitude 666:and time 629:− 618:λ 614:π 600:⁡ 572:− 567:λ 554:π 543:⁡ 343:frequency 264:λ 160:conductor 141:frequency 126:envelopes 122:modulated 57:as shown. 43:sine wave 4313:Longwave 4073:Infrared 3873:Infrared 3797:Archived 3186:(1890). 2744:Spectrum 2702:See also 2338:, where 2050:envelope 1614:, where 1597:momentum 1576:envelope 1568:envelope 1451:aliasing 1431:aliasing 1417:Crystals 1366:periodic 368:, about 196:spectrum 182:and the 180:electric 168:pressure 3904:longer 3897:higher 3868:Visible 3413:= 2π / 3023:op. cit 2489:angular 2354:spatial 1838:fringes 1618:is the 1455:sampled 1342:refract 1242:is the 1020:3-space 1010:with a 674:is the 345:. In a 101:inverse 63:physics 4339:Length 4206:L band 4201:S band 4196:C band 4191:X band 4177:K band 4163:Q band 4158:V band 4153:W band 4058:Orange 4053:Yellow 4033:Violet 3944:X-rays 3858:X-rays 3769:  3742:  3715:  3688:  3659:  3632:  3605:  3572:  3543:  3510:  3481:  3445:  3393:  3366:  3339:  3312:  3283:  3250:  3217:  3165:  3134:  3114:  3084:  3057:  3030:  3000:  2972:  2945:  2911:  2878:  2851:  2826:  2799:  2770:  2764:Optics 2599:, and 2543:where 2525:  2421:  2315:) and 2265:where 2247:  2198:  1997:where 1979:  1840:, and 1818:  1762:where 1744:  1581:Using 1238:where 1148:vacuum 1047:cosine 715:  670:, and 658:where 525:  398:violet 297:where 225:linear 114:lambda 4334:Waves 4291:types 4216:Radio 4112:Bands 4085:Bands 4048:Green 3883:Radio 2671:= 2π/ 1688:Young 1634:in a 1370:local 1338:prism 465:nodes 396:, to 172:light 164:sound 152:light 88:phase 77:of a 51:phase 4186:band 4172:band 4130:LWIR 4108:MWIR 4103:SWIR 4043:Cyan 4038:Blue 3767:ISBN 3740:ISBN 3713:ISBN 3686:ISBN 3657:ISBN 3630:ISBN 3603:ISBN 3570:ISBN 3541:ISBN 3508:ISBN 3479:ISBN 3443:ISBN 3391:ISBN 3364:ISBN 3337:ISBN 3310:ISBN 3281:ISBN 3248:ISBN 3215:ISBN 3181:See 3163:ISBN 3132:ISBN 3112:ISBN 3082:ISBN 3055:ISBN 3028:ISBN 2998:ISBN 2970:ISBN 2943:ISBN 2909:ISBN 2876:ISBN 2849:ISBN 2824:ISBN 2797:ISBN 2768:ISBN 2693:= 2π 2551:the 2512:1.22 2487:The 2397:1.22 2297:and 2038:and 1707:sin 1445:and 1051:sine 502:as: 433:bats 407:For 162:. A 79:wave 65:and 4279:ELF 4274:SLF 4269:ULF 4264:VLF 4244:VHF 4239:UHF 4234:SHF 4229:EHF 4224:THF 4135:FIR 4081:NIR 4063:Red 4015:UVA 4010:UVB 4005:UVC 4000:NUV 3995:MUV 3990:FUV 2905:102 2698:). 2658:/2π 2461:sin 2165:sin 1960:sin 1935:sin 1910:sin 1882:sin 1780:sin 1726:sin 1636:CRT 1502:of 1478:or 1018:in 897:or 767:cos 730:cos 597:cos 540:cos 404:). 390:red 223:In 211:or 81:or 73:or 61:In 4330:: 4259:LF 4254:MF 4249:HF 4122:, 4118:, 4114:: 4095:, 4091:, 4087:: 3680:. 3601:. 3599:ff 3564:. 3539:. 3537:15 3473:. 3460:^ 3451:. 3441:. 3439:ff 3433:. 3399:. 3304:. 3279:. 3277:ff 3271:. 3246:. 3244:ff 3238:. 3209:. 3190:. 3161:. 3159:ff 3012:^ 2941:. 2939:ff 2917:. 2907:. 2791:. 2654:= 2617:. 2607:. 2484:. 2364:: 2349:. 2098:: 2061:. 1844:. 1654:. 1606:= 1515:; 1509:cn 1490:. 1438:. 1348:. 1165:. 1002:ωt 1000:− 996:⋅ 986:ωt 984:− 982:kx 459:A 429:mm 421:Hz 394:nm 215:. 154:, 150:, 69:, 45:, 4184:u 4182:K 4170:a 4168:K 4126:) 4124:N 4120:M 4116:L 4110:( 4099:) 4097:H 4093:K 4089:J 4083:( 3909:→ 3895:← 3834:e 3827:t 3820:v 3775:. 3748:. 3721:. 3694:. 3665:. 3638:. 3611:. 3578:. 3549:. 3516:. 3487:. 3417:. 3415:λ 3411:k 3407:k 3403:λ 3372:. 3345:. 3318:. 3289:. 3256:. 3223:. 3171:. 3140:. 3120:. 3090:. 3063:. 3036:. 3006:. 2978:. 2951:. 2884:. 2857:. 2832:. 2805:. 2776:. 2695:f 2691:ω 2682:ħ 2673:λ 2669:k 2666:( 2656:λ 2652:ƛ 2643:ƛ 2557:δ 2549:D 2545:λ 2528:, 2520:D 2509:= 2458:n 2455:= 2451:A 2448:N 2424:, 2414:A 2411:N 2406:2 2394:= 2389:y 2386:r 2383:i 2380:A 2376:r 2343:1 2340:J 2336:1 2333:J 2329:r 2325:x 2283:x 2279:u 2275:S 2271:R 2267:L 2250:, 2241:R 2233:L 2230:x 2224:= 2221:u 2201:; 2193:2 2188:) 2182:u 2174:u 2159:( 2154:= 2151:) 2148:u 2145:( 2140:2 2135:c 2132:n 2129:i 2126:s 2121:= 2118:) 2115:u 2112:( 2109:S 2092:x 2088:S 2052:. 2017:1 2014:I 2010:1 2007:I 2003:g 1999:q 1982:, 1975:) 1957:g 1948:( 1939:2 1930:/ 1925:) 1907:g 1901:q 1895:( 1886:2 1876:1 1872:I 1868:= 1863:q 1859:I 1821:. 1812:) 1809:2 1805:/ 1801:1 1798:+ 1795:m 1792:( 1789:= 1777:d 1764:m 1747:, 1738:m 1735:= 1723:d 1709:θ 1705:d 1700:d 1696:s 1616:h 1612:p 1610:/ 1608:h 1604:λ 1600:p 1519:) 1517:m 1513:x 1511:( 1504:m 1313:. 1307:) 1302:0 1294:( 1291:n 1285:0 1275:= 1259:0 1255:0 1252:λ 1250:( 1248:n 1240:c 1223:, 1217:) 1212:0 1204:( 1201:n 1197:c 1192:= 1189:v 1102:. 1096:) 1092:t 1083:x 1080:k 1076:( 1072:i 1068:e 1064:A 1036:v 1032:k 1028:k 1024:r 1008:k 1004:) 998:r 994:k 992:( 988:) 980:( 963:. 958:f 955:v 950:= 941:v 935:2 929:= 924:k 917:2 911:= 882:, 877:v 869:= 864:v 860:f 854:2 848:= 836:2 830:= 827:k 800:) 796:) 793:t 790:v 784:x 781:( 778:k 774:( 764:A 761:= 757:) 753:t 744:x 741:k 737:( 727:A 724:= 721:) 718:t 712:, 709:x 706:( 703:y 690:ω 683:k 672:A 668:t 664:x 660:y 642:) 638:) 635:t 632:v 626:x 623:( 611:2 604:( 594:A 591:= 587:) 582:) 578:t 575:f 564:x 558:( 551:2 547:( 537:A 534:= 531:) 528:t 522:, 519:x 516:( 513:y 500:λ 496:f 492:v 425:m 380:× 378:3 372:× 370:3 329:f 305:v 282:, 275:f 272:v 267:= 240:v 229:λ 118:λ 116:( 47:λ 34:. 20:)

Index

Subwavelength
Wavelength (disambiguation)

sine wave
phase
zero crossings
physics
mathematics
wave
periodic function
phase
zero crossings
standing waves
inverse
spatial frequency
Greek letter
lambda
modulated
envelopes
interference
sinusoidal wave
frequency
sound waves
light
water waves
conductor
sound
pressure
light
electromagnetic radiation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.