Knowledge (XXG)

Sulfate-reducing microorganism

Source đź“ť

722: 31: 518: 321:; however, there are examples of sulfate-reducing microorganisms that are tolerant of oxygen, and some of them can even perform aerobic respiration. No growth is observed when oxygen is used as the electron acceptor. In addition, there are sulfate-reducing microorganisms that can also reduce other electron acceptors, such as 871:
in Canada discovered sulfate-reducing microorganisms living 7,900 feet (2,400 m) below the surface. The sulfate reducers discovered in Kidd Mine are lithotrophs, obtaining their energy by oxidizing minerals such as pyrite rather than organic compounds. Kidd Mine is also the site of the oldest
529:
is a waste product of sulfate-reducing microorganisms; its rotten egg odor is often a marker for the presence of sulfate-reducing microorganisms in nature. Sulfate-reducing microorganisms are responsible for the sulfurous odors of salt marshes and mud flats. Much of the hydrogen sulfide will react
591:
In engineering, sulfate-reducing microorganisms can create problems when metal structures are exposed to sulfate-containing water: Interaction of water and metal creates a layer of molecular hydrogen on the metal surface; sulfate-reducing microorganisms then oxidize the hydrogen while creating
282:
of sulfur compounds. Depending on the context, "sulfate-reducing microorganisms" can be used in a broader sense (including all species that can reduce any of these sulfur compounds) or in a narrower sense (including only species that reduce sulfate, and excluding strict thiosulfate and
1442:
Lollar, Garnet S.; Warr, Oliver; Telling, Jon; Osburn, Magdalena R.; Lollar, Barbara Sherwood (18 July 2019). "'Follow the Water': Hydrogeochemical Constraints on Microbial Investigations 2.4 km Below Surface at the Kidd Creek Deep Fluid and Deep Life Observatory".
649:
below the seabed is oxidized by sulfate-reducing microorganisms in the transition zone separating the methanogenesis from the sulfate reduction activity in the sediments. This process is also considered a major sink for sulfate in marine sediments.
1793:, by L. Li, B. A. Wing, T. H. Bui, J. M. McDermott, G. F. Slater, S. Wei, G. Lacrampe-Couloume & B. Sherwood Lollar October 27, 2016. Nature Communications volume 7, Article number: 13252 (2016.) 753:(EC 1.8.99.5), that catalyzes the last step of dissimilatory sulfate reduction, is the functional gene most used as a molecular marker to detect the presence of sulfate-reducing microorganisms. 680:
compounds are often added to water to inhibit the microbial activity of sulfate-reducing microorganisms, in order to but not limited to, avoid anaerobic methane oxidation and the generation of
305:. By contrast, the sulfate-reducing microorganisms considered here reduce sulfate in large amounts to obtain energy and expel the resulting sulfide as waste; this is known as 769:, for identification purposes. They are found in several different phylogenetic lines. As of 2009, 60 genera containing 220 species of sulfate-reducing bacteria are known. 1781:, Garnet S. Lollar, Oliver Warr, Jon Telling, Magdalena R. Osburn & Barbara Sherwood Lollar, Received 15 Jan 2019, Accepted 01 Jul 2019, Published online: 18 Jul 2019. 1729:, Garnet S. Lollar, Oliver Warr, Jon Telling, Magdalena R. Osburn & Barbara Sherwood Lollar, Received 15 Jan 2019, Accepted 01 Jul 2019, Published online: 18 Jul 2019. 718:
using another molecule of ATP. The overall process, thus, involves an investment of two molecules of the energy carrier ATP, which must to be regained from the reduction.
907: 486:
Sulfate occurs widely in seawater, sediment, and water rich in decaying organic material. Sulfate is also found in more extreme environments such as hydrothermal vents,
290:
Sulfate-reducing microorganisms can be traced back to 3.5 billion years ago and are considered to be among the oldest forms of microbes, having contributed to the
941: 1796: 1779:'Follow the Water': Hydrogeochemical Constraints on Microbial Investigations 2.4 km Below Surface at the Kidd Creek Deep Fluid and Deep Life Observatory 1727:'Follow the Water': Hydrogeochemical Constraints on Microbial Investigations 2.4 km Below Surface at the Kidd Creek Deep Fluid and Deep Life Observatory 1750: 549:
seems to have occurred where these forms of bacteria became the dominant force in oceanic ecosystems, producing copious amounts of hydrogen sulfide.
1842: 1787:, G. Holland, B. Sherwood Lollar, L. Li, G. Lacrampe-Couloume, G. F. Slater & C. J. Ballentine, Nature volume 497, pages 357–360 (16 May 2013) 542: 490:
sites, oil fields, and the deep subsurface, including the world's oldest isolated ground water. Sulfate-reducing microorganisms are common in
1162:
Kasper U. Kjeldsen; Catherine Joulian & Kjeld Ingvorsen (2004). "Oxygen Tolerance of Sulfate-Reducing Bacteria in Activated Sludge".
1827: 1544:
G.C. Compeau & R. Bartha (August 1985), "Sulfate-Reducing Bacteria: Principal Methylators of Mercury in Anoxic Estuarine Sediment",
1147: 1052: 1011: 1791:
Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks
693: 306: 1738: 1478: 576:, and they have been used to clean up contaminated soils. Their use has also been proposed for other kinds of contaminations. 1762: 521:
Sludge from a pond; the black color is due to metal sulfides that result from the action of sulfate-reducing microorganisms.
1817: 1210:, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria". 1778: 1726: 1527: 980: 495: 1096:
Rückert, Christian (2016). "Sulfate reduction in microorganisms—recent advances and biotechnological applications".
1001: 600: 1137: 1837: 766: 314: 284: 278:). Other than sulfate reduction, some sulfate-reducing microorganisms are also capable of other reactions like 1651:
MĂĽller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander (2014-10-24).
834: 773: 711: 1712:
Pfennig N.; Biebel H. (1986), "The dissimilatory sulfate-reducing bacteria", in Starr; et al. (eds.),
1822: 703: 35: 822: 882: 715: 123: 71: 1307:
Liamleam, Warounsak; Annachhatre, Ajit P. (2007). "Electron donors for biological sulfate reduction".
494:
environments where they aid in the degradation of organic materials. In these anaerobic environments,
1553: 1171: 897: 698:
Before sulfate can be used as an electron acceptor, it must be activated. This is done by the enzyme
661: 654: 560:
of inorganic mercury present in their surroundings. They are known to be the dominant source of this
253: 107: 1206:
Simone Dannenberg; Michael Kroder; Dilling Waltraud & Heribert Cypionka (1992). "Oxidation of H
785: 725:
Overview of the three key enzymatic steps of the dissimilatory sulfate reduction pathway. Enzymes:
721: 503: 419: 1597: 1460: 1424: 1227: 1070: 972: 781: 580: 487: 431: 365: 318: 279: 1399:
Muyzer G, Stams AJ (June 2008). "The ecology and biotechnology of sulphate-reducing bacteria".
1812: 1694: 1676: 1633: 1579: 1416: 1381: 1363: 1324: 1286: 1268: 1187: 1143: 1113: 1058: 1048: 1007: 964: 839: 809: 777: 310: 133: 91: 39:
is the best-studied sulfate-reducing microorganism species; the bar in the upper right is 0.5
1832: 1684: 1668: 1623: 1613: 1569: 1561: 1452: 1408: 1371: 1355: 1316: 1276: 1258: 1219: 1179: 1105: 1040: 956: 803: 797: 681: 535: 526: 387: 95: 1245:
Plugge, Caroline M.; Zhang, Weiwen; Scholten, Johannes C. M.; Stams, Alfons J. M. (2011).
1082: 699: 561: 475: 1602:"Sulfate-Reducing Bacteria as an Effective Tool for Sustainable Acid Mine Bioremediation" 17: 1799:, By Brandon Specktor, Live Science, December 11, 2018, published online at nbcnews.com. 1557: 1175: 706:
and sulfate to create adenosine 5′-phosphosulfate (APS). APS is subsequently reduced to
470:
in anaerobic conditions. Some sulfate-reducing microorganisms can directly use metallic
1689: 1652: 1628: 1601: 1509: 1376: 1343: 1281: 1246: 887: 608: 384: 372: 1574: 1044: 1806: 1464: 1320: 902: 854: 848: 788:. This accounts for the largest group of sulfate-reducing bacteria, about 23 genera. 733:
respectively stand for sulfate adenylyltransferase and ATP sulfurylase (EC 2.7.7.4);
553: 498:
extract energy from large organic molecules; the resulting smaller compounds such as
228: 103: 1428: 1231: 976: 538:(FeS), are insoluble and often black or brown, leading to the dark color of sludge. 30: 912: 892: 830: 817: 673: 546: 499: 447: 395: 391: 291: 129:
Most sulfate-reducing microorganisms can also reduce some other oxidized inorganic
1565: 1456: 1714:
The Prokaryotes: a handbook on habitats, isolation and identification of bacteria
631: 573: 557: 403: 376: 261: 203: 178: 1797:
Earth's mysterious 'deep biosphere' may harbor millions of undiscovered species
1344:"Microbial extracellular electron transfer and its relevance to iron corrosion" 614:
Some sulfate-reducing microorganisms play a role in the anaerobic oxidation of
599:
Hydrogen sulfide from sulfate-reducing microorganisms also plays a role in the
1790: 1784: 1109: 860: 646: 511: 491: 463: 411: 380: 153: 40: 1751:
Strange life-forms found deep in a mine point to vast 'underground Galapagos'
1680: 1618: 1367: 1272: 1263: 1359: 868: 792: 762: 669: 593: 1698: 1672: 1637: 1583: 1420: 1385: 1328: 1290: 1191: 1117: 1062: 968: 579:
Sulfate-reducing microorganisms are considered a possible way to deal with
517: 791:
The second largest group of sulfate-reducing bacteria is found among the
741:
are both used to adenosine-5'-phosphosulfate reductase (EC 1.8.4.8); and
604: 507: 467: 455: 423: 415: 322: 63: 1412: 960: 1479:"World's Oldest Groundwater Supports Life Through Water-Rock Chemistry" 1223: 1037:
Biochemistry, Physiology and Biotechnology of Sulfate-Reducing Bacteria
864:. They are found in hydrothermal vents, oil deposits, and hot springs. 714:. Sulfite is then further reduced to sulfide, while AMP is turned into 707: 677: 665: 615: 531: 443: 439: 435: 427: 407: 399: 342: 326: 297:
Many organisms reduce small amounts of sulfates in order to synthesize
137: 75: 67: 1183: 1739:
World's Oldest Groundwater Supports Life Through Water-Rock Chemistry
451: 358: 298: 130: 1785:
Deep fracture fluids isolated in the crust since the Precambrian era
478:, or ZVI) as an electron donor, oxidizing it to ferrous iron (Fe). 720: 658: 516: 115: 29: 684:, ultimately resulting in minimizing potential production loss. 471: 361: 846:
There are also three known genera of sulfate-reducing archaea:
942:"The ecology and biotechnology of sulphate-reducing bacteria" 1763:
Oldest Water on Earth Found Deep Within the Canadian Shield
761:
The sulfate-reducing microorganisms have been treated as a
1515:. Comstock Publishing Associates/Cornell University Press. 833:
sulfate-reducing bacteria are given their own phyla, the
745:
is the dissimilatory (bi)sulfite reductase (EC 1.8.99.5);
114:), which is the terminal electron acceptor reduced to 1247:"Metabolic Flexibility of Sulfate-Reducing Bacteria" 1596:Ayangbenro, Ayansina S.; Olanrewaju, Oluwaseyi S.; 552:Sulfate-reducing bacteria also generate neurotoxic 514:and the competing sulfate-reducing microorganisms. 1508: 587:Problems caused by sulfate-reducing microorganisms 1753:, By Corey S. Powell, Sept. 7, 2019, nbcnews.com. 908:Quinone-interacting membrane-bound oxidoreductase 776:the orders of sulfate-reducing bacteria include 749:The enzyme dissimilatory (bi)sulfite reductase, 572:Some sulfate-reducing microorganisms can reduce 1000:Ernst-Detlef Schulze; Harold A. Mooney (1993), 645:An important fraction of the methane formed by 1035:Barton, Larry L. & Fauque, Guy D. (2009). 301:-containing cell components; this is known as 1653:"Phylogenetic and environmental diversity of 8: 556:as a byproduct of their metabolism, through 1657:-type dissimilatory (bi)sulfite reductases" 583:that are produced by other microorganisms. 62:) are a group composed of sulfate-reducing 1688: 1627: 1617: 1573: 1375: 1280: 1262: 995: 993: 1131: 1129: 1127: 530:with metal ions in the water to produce 1502: 1500: 925: 592:hydrogen sulfide, which contributes to 1546:Applied and Environmental Microbiology 1078: 1068: 940:Muyzer, G.; Stams, A. J. (June 2008). 27:Microorganisms that "breathe" sulfates 7: 1302: 1300: 1164:Environmental Science and Technology 1030: 1028: 1026: 1024: 1022: 935: 933: 931: 929: 867:In July 2019, a scientific study of 564:form of mercury in aquatic systems. 1006:, Springer-Verlag, pp. 88–90, 1003:Biodiversity and ecosystem function 309:. They use sulfate as the terminal 1765:, December 14, 2016, Maggie Romuld 294:soon after life emerged on Earth. 102:S). Therefore, these sulfidogenic 25: 545:(250 million years ago) a severe 543:Permian–Triassic extinction event 482:Ecological importance and markers 70:(SRA), both of which can perform 1741:, July 29, 2019, deepcarbon.net. 1321:10.1016/j.biotechadv.2007.05.002 1039:. Vol. 68. pp. 41–98. 820:phylum we find sulfate-reducing 534:. These metal sulfides, such as 1098:Current Opinion in Microbiology 694:Dissimilatory sulfate reduction 462:), for which they compete with 307:dissimilatory sulfate reduction 48:Sulfate-reducing microorganisms 1843:Microbial growth and nutrition 1526:Peter D. Ward (October 2006), 1342:Kato, Souichiro (2016-03-01). 438:), and aromatic hydrocarbons ( 303:assimilatory sulfate reduction 106:"breathe" sulfate rather than 1: 1566:10.1128/AEM.50.2.498-502.1985 1457:10.1080/01490451.2019.1641770 1045:10.1016/s0065-2164(09)01202-7 829:Two more groups that include 1507:Dexter Dyer, Betsey (2003). 1401:Nature Reviews. Microbiology 56:sulfate-reducing prokaryotes 949:Nature Reviews Microbiology 657:, fluids are used to frack 454:). The lithotrophs oxidize 375:, this group contains both 66:(SRB) and sulfate-reducing 1859: 1828:Environmental microbiology 1136:Larry Barton, ed. (1995), 765:, together with the other 691: 601:biogenic sulfide corrosion 1606:Frontiers in Microbiology 1511:A Field Guide to Bacteria 1251:Frontiers in Microbiology 1139:Sulfate-reducing bacteria 1110:10.1016/j.mib.2016.07.007 18:Sulfate-reducing bacteria 1619:10.3389/fmicb.2018.01986 1264:10.3389/fmicb.2011.00081 1212:Archives of Microbiology 767:sulfur-reducing bacteria 506:are further oxidized by 315:electron transport chain 1483:Deep Carbon Observatory 1445:Geomicrobiology Journal 1360:10.1111/1751-7915.12340 1348:Microbial Biotechnology 835:Thermodesulfobacteriota 795:, including the genera 774:Thermodesulfobacteriota 1673:10.1038/ismej.2014.208 1598:Babalola, Olubukola O. 1528:"Impact from the Deep" 1309:Biotechnology Advances 872:known water on Earth. 746: 522: 432:aliphatic hydrocarbons 44: 36:Desulfovibrio vulgaris 883:Anaerobic respiration 724: 520: 72:anaerobic respiration 33: 898:Microbial metabolism 655:hydraulic fracturing 607:. It also occurs in 1818:Martinus Beijerinck 1558:1985ApEnM..50..498C 1532:Scientific American 1413:10.1038/nrmicro1892 1176:2004EnST...38.2038K 961:10.1038/nrmicro1892 823:Thermodesulfovibrio 786:Syntrophobacterales 496:fermenting bacteria 474:(Fe, also known as 383:. The organotrophs 317:. Most of them are 124:aerobic respiration 1600:(22 August 2018). 1224:10.1007/BF00245211 782:Desulfovibrionales 747: 523: 488:acid mine drainage 456:molecular hydrogen 366:dimethyl sulfoxide 280:disproportionation 45: 1184:10.1021/es034777e 840:Thermodesulfobium 810:Desulfosporosinus 778:Desulfobacterales 388:organic compounds 311:electron acceptor 94:, reducing it to 92:electron acceptor 16:(Redirected from 1850: 1766: 1760: 1754: 1748: 1742: 1736: 1730: 1724: 1718: 1717: 1709: 1703: 1702: 1692: 1667:(5): 1152–1165. 1661:The ISME Journal 1648: 1642: 1641: 1631: 1621: 1593: 1587: 1586: 1577: 1541: 1535: 1534: 1523: 1517: 1516: 1514: 1504: 1495: 1494: 1492: 1490: 1475: 1469: 1468: 1439: 1433: 1432: 1396: 1390: 1389: 1379: 1339: 1333: 1332: 1304: 1295: 1294: 1284: 1266: 1242: 1236: 1235: 1202: 1196: 1195: 1170:(7): 2038–2043. 1159: 1153: 1152: 1133: 1122: 1121: 1093: 1087: 1086: 1080: 1076: 1074: 1066: 1032: 1017: 1016: 997: 988: 987: 985: 979:. Archived from 946: 937: 804:Desulfosporomusa 798:Desulfotomaculum 763:phenotypic group 682:hydrogen sulfide 581:acid mine waters 527:hydrogen sulfide 356: 355: 354: 340: 339: 338: 287:, for example). 277: 276: 275: 254:elemental sulfur 251: 250: 249: 241: 240: 226: 225: 224: 216: 215: 201: 200: 199: 191: 190: 176: 175: 174: 166: 165: 151: 150: 149: 108:molecular oxygen 96:hydrogen sulfide 89: 88: 87: 21: 1858: 1857: 1853: 1852: 1851: 1849: 1848: 1847: 1838:Geomicrobiology 1803: 1802: 1775: 1770: 1769: 1761: 1757: 1749: 1745: 1737: 1733: 1725: 1721: 1711: 1710: 1706: 1650: 1649: 1645: 1595: 1594: 1590: 1543: 1542: 1538: 1525: 1524: 1520: 1506: 1505: 1498: 1488: 1486: 1477: 1476: 1472: 1451:(10): 859–872. 1441: 1440: 1436: 1398: 1397: 1393: 1341: 1340: 1336: 1306: 1305: 1298: 1244: 1243: 1239: 1209: 1205: 1203: 1199: 1161: 1160: 1156: 1150: 1135: 1134: 1125: 1095: 1094: 1090: 1077: 1067: 1055: 1034: 1033: 1020: 1014: 999: 998: 991: 983: 944: 939: 938: 927: 922: 917: 878: 759: 700:ATP-sulfurylase 696: 690: 640: 635: 629: 625: 589: 570: 562:bioaccumulative 536:ferrous sulfide 484: 476:zerovalent iron 461: 353: 350: 349: 348: 346: 337: 334: 333: 332: 330: 285:sulfur reducers 274: 269: 268: 267: 265: 259: 248: 245: 244: 243: 239: 236: 235: 234: 232: 223: 220: 219: 218: 214: 211: 210: 209: 207: 198: 195: 194: 193: 189: 186: 185: 184: 182: 173: 170: 169: 168: 164: 161: 160: 159: 157: 148: 145: 144: 143: 141: 121: 113: 101: 86: 83: 82: 81: 79: 28: 23: 22: 15: 12: 11: 5: 1856: 1854: 1846: 1845: 1840: 1835: 1830: 1825: 1820: 1815: 1805: 1804: 1801: 1800: 1794: 1788: 1782: 1774: 1773:External links 1771: 1768: 1767: 1755: 1743: 1731: 1719: 1704: 1643: 1588: 1552:(2): 498–502, 1536: 1518: 1496: 1485:. 29 July 2019 1470: 1434: 1391: 1354:(2): 141–148. 1334: 1315:(5): 452–463. 1296: 1237: 1207: 1197: 1154: 1148: 1123: 1088: 1079:|journal= 1053: 1018: 1012: 989: 986:on 2012-04-25. 955:(6): 441–454. 924: 923: 921: 918: 916: 915: 910: 905: 900: 895: 890: 888:Deep biosphere 885: 879: 877: 874: 758: 755: 692:Main article: 689: 686: 643: 642: 638: 633: 627: 623: 609:sour crude oil 588: 585: 569: 566: 532:metal sulfides 483: 480: 459: 373:electron donor 351: 335: 270: 257: 246: 237: 221: 212: 196: 187: 171: 162: 146: 119: 111: 104:microorganisms 99: 90:) as terminal 84: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1855: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1823:Extremophiles 1821: 1819: 1816: 1814: 1811: 1810: 1808: 1798: 1795: 1792: 1789: 1786: 1783: 1780: 1777: 1776: 1772: 1764: 1759: 1756: 1752: 1747: 1744: 1740: 1735: 1732: 1728: 1723: 1720: 1715: 1708: 1705: 1700: 1696: 1691: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1656: 1647: 1644: 1639: 1635: 1630: 1625: 1620: 1615: 1611: 1607: 1603: 1599: 1592: 1589: 1585: 1581: 1576: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1537: 1533: 1529: 1522: 1519: 1513: 1512: 1503: 1501: 1497: 1484: 1480: 1474: 1471: 1466: 1462: 1458: 1454: 1450: 1446: 1438: 1435: 1430: 1426: 1422: 1418: 1414: 1410: 1407:(6): 441–54. 1406: 1402: 1395: 1392: 1387: 1383: 1378: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1338: 1335: 1330: 1326: 1322: 1318: 1314: 1310: 1303: 1301: 1297: 1292: 1288: 1283: 1278: 1274: 1270: 1265: 1260: 1256: 1252: 1248: 1241: 1238: 1233: 1229: 1225: 1221: 1217: 1213: 1201: 1198: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1158: 1155: 1151: 1149:9780306448577 1145: 1141: 1140: 1132: 1130: 1128: 1124: 1119: 1115: 1111: 1107: 1103: 1099: 1092: 1089: 1084: 1072: 1064: 1060: 1056: 1054:9780123748034 1050: 1046: 1042: 1038: 1031: 1029: 1027: 1025: 1023: 1019: 1015: 1013:9783540581031 1009: 1005: 1004: 996: 994: 990: 982: 978: 974: 970: 966: 962: 958: 954: 950: 943: 936: 934: 932: 930: 926: 919: 914: 911: 909: 906: 904: 903:Microorganism 901: 899: 896: 894: 891: 889: 886: 884: 881: 880: 875: 873: 870: 865: 863: 862: 857: 856: 855:Thermocladium 851: 850: 849:Archaeoglobus 844: 842: 841: 836: 832: 827: 825: 824: 819: 814: 812: 811: 806: 805: 800: 799: 794: 789: 787: 783: 779: 775: 770: 768: 764: 756: 754: 752: 744: 740: 736: 732: 728: 723: 719: 717: 713: 709: 705: 702:, which uses 701: 695: 687: 685: 683: 679: 675: 671: 667: 663: 660: 656: 651: 648: 636: 621: 620: 619: 617: 612: 610: 606: 602: 597: 595: 586: 584: 582: 577: 575: 567: 565: 563: 559: 555: 554:methylmercury 550: 548: 544: 539: 537: 533: 528: 519: 515: 513: 509: 505: 501: 500:organic acids 497: 493: 489: 481: 479: 477: 473: 469: 465: 457: 453: 449: 445: 441: 437: 433: 429: 425: 421: 417: 413: 409: 405: 401: 397: 396:organic acids 393: 392:carbohydrates 389: 386: 382: 378: 374: 369: 367: 363: 360: 344: 328: 324: 320: 316: 312: 308: 304: 300: 295: 293: 288: 286: 281: 273: 263: 255: 230: 229:tetrathionate 205: 180: 155: 139: 135: 132: 127: 125: 117: 109: 105: 97: 93: 77: 73: 69: 65: 61: 57: 53: 49: 42: 38: 37: 32: 19: 1758: 1746: 1734: 1722: 1713: 1707: 1664: 1660: 1654: 1646: 1609: 1605: 1591: 1549: 1545: 1539: 1531: 1521: 1510: 1489:13 September 1487:. Retrieved 1482: 1473: 1448: 1444: 1437: 1404: 1400: 1394: 1351: 1347: 1337: 1312: 1308: 1254: 1250: 1240: 1218:(2): 93–99. 1215: 1211: 1200: 1167: 1163: 1157: 1142:, Springer, 1138: 1101: 1097: 1091: 1036: 1002: 981:the original 952: 948: 913:Sulfur cycle 893:Extremophile 866: 859: 853: 847: 845: 838: 831:thermophilic 828: 821: 818:Nitrospirota 815: 808: 802: 796: 790: 771: 760: 750: 748: 742: 738: 734: 730: 726: 697: 688:Biochemistry 674:hydrocarbons 652: 644: 613: 598: 590: 578: 574:hydrocarbons 571: 551: 547:anoxic event 540: 524: 485: 448:ethylbenzene 377:organotrophs 371:In terms of 370: 302: 296: 292:sulfur cycle 289: 271: 262:polysulfides 128: 59: 55: 51: 47: 46: 34: 1104:: 140–146. 664:to recover 647:methanogens 558:methylation 541:During the 512:methanogens 464:methanogens 434:(including 381:lithotrophs 204:trithionate 179:thiosulfate 1807:Categories 1716:, Springer 920:References 861:Caldivirga 772:Among the 662:formations 525:The toxic 412:propionate 390:, such as 364:(Fe), and 154:dithionite 136:, such as 74:utilizing 41:micrometre 1681:1751-7370 1465:199636268 1368:1751-7915 1273:1664-302X 1081:ignored ( 1071:cite book 869:Kidd Mine 826:species. 793:Bacillota 757:Phylogeny 670:shale gas 594:corrosion 508:acetogens 492:anaerobic 468:acetogens 398:(such as 319:anaerobes 313:of their 134:compounds 1813:Bacteria 1699:25343514 1638:30186280 1612:: 1986. 1584:16346866 1429:22775967 1421:18461075 1386:26863985 1329:17572039 1291:21734907 1232:36923153 1192:15112804 1118:27461928 1063:19426853 977:22775967 969:18461075 876:See also 637:+ HS + H 605:concrete 504:alcohols 424:methanol 420:alcohols 416:butyrate 368:(DMSO). 323:fumarate 64:bacteria 1833:Ecology 1690:4351914 1629:6113391 1554:Bibcode 1377:4767289 1282:3119409 1172:Bibcode 816:In the 708:sulfite 678:Biocide 666:methane 616:methane 444:toluene 440:benzene 436:methane 428:ethanol 408:acetate 404:lactate 400:formate 385:oxidize 343:nitrite 327:nitrate 260:), and 138:sulfite 76:sulfate 68:archaea 1697:  1687:  1679:  1636:  1626:  1582:  1575:238649 1572:  1463:  1427:  1419:  1384:  1374:  1366:  1327:  1289:  1279:  1271:  1257:: 81. 1230:  1190:  1146:  1116:  1061:  1051:  1010:  975:  967:  807:, and 784:, and 672:) and 452:xylene 450:, and 414:, and 359:ferric 299:sulfur 131:sulfur 122:O) in 1655:DsrAB 1461:S2CID 1425:S2CID 1228:S2CID 984:(PDF) 973:S2CID 945:(PDF) 751:dsrAB 659:shale 116:water 54:) or 43:long. 1695:PMID 1677:ISSN 1634:PMID 1580:PMID 1491:2019 1417:PMID 1382:PMID 1364:ISSN 1325:PMID 1287:PMID 1269:ISSN 1188:PMID 1144:ISBN 1114:PMID 1083:help 1059:PMID 1049:ISBN 1008:ISBN 965:PMID 858:and 837:and 737:and 731:atps 729:and 710:and 626:+ SO 568:Uses 510:and 502:and 472:iron 466:and 426:and 379:and 362:iron 1685:PMC 1669:doi 1624:PMC 1614:doi 1570:PMC 1562:doi 1453:doi 1409:doi 1372:PMC 1356:doi 1317:doi 1277:PMC 1259:doi 1220:doi 1216:158 1180:doi 1106:doi 1041:doi 957:doi 743:dsr 739:aps 735:apr 727:sat 716:ADP 712:AMP 704:ATP 653:In 632:HCO 603:of 430:), 418:), 357:), 341:), 252:), 227:), 202:), 177:), 152:), 60:SRP 52:SRM 1809:: 1693:. 1683:. 1675:. 1663:. 1659:. 1632:. 1622:. 1608:. 1604:. 1578:, 1568:, 1560:, 1550:50 1548:, 1530:, 1499:^ 1481:. 1459:. 1449:36 1447:. 1423:. 1415:. 1403:. 1380:. 1370:. 1362:. 1350:. 1346:. 1323:. 1313:25 1311:. 1299:^ 1285:. 1275:. 1267:. 1253:. 1249:. 1226:. 1214:. 1186:. 1178:. 1168:38 1166:. 1126:^ 1112:. 1102:33 1100:. 1075:: 1073:}} 1069:{{ 1057:. 1047:. 1021:^ 992:^ 971:. 963:. 951:. 947:. 928:^ 852:, 843:. 813:. 801:, 780:, 676:. 630:→ 622:CH 618:: 611:. 596:. 458:(H 446:, 442:, 410:, 406:, 402:, 394:, 347:NO 331:NO 325:, 256:(S 142:SO 126:. 118:(H 110:(O 98:(H 80:SO 1701:. 1671:: 1665:9 1640:. 1616:: 1610:9 1564:: 1556:: 1493:. 1467:. 1455:: 1431:. 1411:: 1405:6 1388:. 1358:: 1352:9 1331:. 1319:: 1293:. 1261:: 1255:2 1234:. 1222:: 1208:2 1204:" 1194:. 1182:: 1174:: 1120:. 1108:: 1085:) 1065:. 1043:: 959:: 953:6 668:( 641:O 639:2 634:3 628:4 624:4 460:2 422:( 352:2 345:( 336:3 329:( 272:n 266:S 264:( 258:8 247:6 242:O 238:4 233:S 231:( 222:6 217:O 213:3 208:S 206:( 197:3 192:O 188:2 183:S 181:( 172:4 167:O 163:2 158:S 156:( 147:3 140:( 120:2 112:2 100:2 85:4 78:( 58:( 50:( 20:)

Index

Sulfate-reducing bacteria

Desulfovibrio vulgaris
micrometre
bacteria
archaea
anaerobic respiration
sulfate
electron acceptor
hydrogen sulfide
microorganisms
molecular oxygen
water
aerobic respiration
sulfur
compounds
sulfite
dithionite
thiosulfate
trithionate
tetrathionate
elemental sulfur
polysulfides
disproportionation
sulfur reducers
sulfur cycle
sulfur
dissimilatory sulfate reduction
electron acceptor
electron transport chain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑