Knowledge (XXG)

Hypercomputation

Source đź“ť

457:
recursive; otherwise, the correctness is established only by running the machine forever and noting that it never revises its answer. Putnam identified this new interpretation as the class of "empirical" predicates, stating: "if we always 'posit' that the most recently generated answer is correct, we will make a finite number of mistakes, but we will eventually get the correct answer. (Note, however, that even if we have gotten to the correct answer (the end of the finite sequence) we are never
260:(a number with an infinite sequence of digits that encode the solution to the halting problem) as an input can solve a large number of useful undecidable problems; a system granted an uncomputable random-number generator as an input can create random uncomputable functions, but is generally not believed to be able to meaningfully solve "useful" uncomputable functions such as the halting problem. There are an unlimited number of different types of conceivable hypercomputers, including: 380:(CTCs)) makes hypercomputation possible by itself. However, this is not so since a CTC does not provide (by itself) the unbounded amount of storage that an infinite computation would require. Nevertheless, there are spacetimes in which the CTC region can be used for relativistic hypercomputation. According to a 1992 paper, a computer operating in a 211: 493:, can. He defines the constructively describable symbol sequences as those that have a finite, non-halting program running on a generalized Turing machine, such that any output symbol eventually converges; that is, it does not change any more after some finite initial time interval. Due to limitations first exhibited by 321:
model of traditionally non-finitistic branches of analysis, built around a Turing machine equipped with a rapidly increasing function as its oracle. By this and more complicated models he was able to give an interpretation of second-order arithmetic. These models require an uncomputable input, such
456:
sets of languages) to be "learned in the limit"; whereas, by definition, only recursive sets of numbers or languages could be identified by a Turing machine. While the machine will stabilize to the correct answer on any learnable set in some finite time, it can only identify it as correct if it is
341:
In order to work correctly, certain computations by the machines below literally require infinite, rather than merely unlimited but finite, physical space and resources; in contrast, with a Turing machine, any given computation that halts will require only finite physical space and resources.
1133:, in his writings on hypercomputation, refers to this subject as "a myth" and offers counter-arguments to the physical realizability of hypercomputation. As for its theory, he argues against the claims that this is a new field founded in the 1990s. This point of view relies on the history of 1210:"Let us suppose that we are supplied with some unspecified means of solving number-theoretic problems; a kind of oracle as it were. We shall not go any further into the nature of this oracle apart from saying that it cannot be a machine" (Undecidable p. 167, a reprint of Turing's paper 436:
Some physically realizable systems will always eventually converge to the correct answer, but have the defect that they will often output an incorrect answer and stick with the incorrect answer for an uncomputably large period of time before eventually going back and correcting the mistake.
304:-based "fuzzy Turing machines" can, by definition, accidentally solve the halting problem, but only because their ability to solve the halting problem is indirectly assumed in the specification of the machine; this tends to be viewed as a "bug" in the original specification of the machines. 294:
Similarly, a neural net that somehow had Chaitin's constant exactly embedded in its weight function would be able to solve the halting problem, but is subject to the same physical difficulties as other models of hypercomputation based on real
469:
predicate to be computed. Schubert wrote, "Intuitively, iterated limiting identification might be regarded as higher-order inductive inference performed collectively by an ever-growing community of lower order inductive inference machines."
2981: 751: 311:
can accidentally allow the oracular computation of noncomputable functions, because some such systems, by definition, have the oracular ability to identify reject inputs that would "unfairly" cause a subsystem to run
64:
states that any "computable" function that can be computed by a mathematician with a pen and paper using a finite set of simple algorithms, can be computed by a Turing machine. Hypercomputers compute functions that a
329:
posits, by definition, that the length of time required for an "Actor" to settle is fundamentally unknowable, and therefore it cannot be proven, within the model, that it does not take an uncomputably long period of
193:
Hypercomputer models range from useful but probably unrealizable (such as Turing's original oracle machines), to less-useful random-function generators that are more plausibly "realizable" (such as a
2801: 373:, Zeno machines introduce physical paradoxes and its state is logically undefined outside of one-side open period of [0, 2), thus undefined exactly at 2 minutes after beginning of the computation. 1137:(degrees of unsolvability, computability over functions, real numbers and ordinals), as also mentioned above. In his argument, he makes a remark that all of hypercomputation is little more than: " 291:), and would require the ability to measure the real-valued physical value to arbitrary precision, though standard physics makes such arbitrary-precision measurements theoretically infeasible. 1035: 3004: 846: 1081: 934: 794: 663: 631: 563: 183: 1528:
Hewitt, Carl. "What Is Commitment." Physical, Organizational, and Social (Revised), Coordination, Organizations, Institutions, and Norms in Agent Systems II: AAMAS (2006).
1115: 595: 144: 452:(the "limiting recursive functionals" and "trial-and-error predicates", respectively). These models enable some nonrecursive sets of numbers or languages (including all 2395: 283:), and these are in some way "harnessable" for useful (rather than random) computation. This might require quite bizarre laws of physics (for example, a measurable 974: 2025:
Warren D. Smith (2006). "Three counterexamples refuting Kieu's plan for "quantum adiabatic hypercomputation"; and some uncomputable quantum mechanical tasks".
1979: 2832: 1446:
Their (ability to solve the halting problem) is due to their acceptance criterion in which the ability to solve the halting problem is indirectly assumed.
465:'s 1974 paper "Iterated Limiting Recursion and the Program Minimization Problem" studied the effects of iterating the limiting procedure; this allows any 361:). The Zeno machine performs its first computation step in (say) 1 minute, the second step in ½ minute, the third step in ¼ minute, etc. By summing 1762:
Logical Approaches to Computational Barriers, Second Conference on Computability in Europe, CiE 2006, Swansea, UK, June 30-July 5, 2006. Proceedings
501:
could be solved. Schmidhuber () uses this approach to define the set of formally describable or constructively computable universes or constructive
690: 2879:
Ord, Toby (2002). "Hypercomputation: Computing more than the Turing machine can compute: A survey article on various forms of hypercomputation".
3024: 2379: 1779: 388:
could theoretically perform non-Turing computations for an observer inside the black hole. Access to a CTC may allow the rapid solution to
362: 94: 2732: 2704: 2552:"Characteristics of discrete transfinite time Turing machine models: Halting times, stabilization times, and Normal Form theorems" 856: 2369: 874: 381: 3048: 2649: 1130: 529:. For example, supertasking Turing machines, under the usual assumptions, would be able to compute any predicate in the 990: 481:
that incrementally outputs every symbol of the sequence. This includes the dyadic expansion of π and of every other
505:. Generalized Turing machines can eventually converge to a correct solution of the halting problem by evaluating a 486: 1840:
Earman, John; Norton, John D. (1993). "Forever is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes".
3043: 2269:"Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit" 880: 392:
problems, a complexity class which, while Turing-decidable, is generally considered computationally intractable.
1666:
Andréka, Hajnal; Németi, István; Székely, Gergely (2012). "Closed Timelike Curves in Relativistic Computation".
1458:
Edith Spaan; Leen Torenvliet; Peter van Emde Boas (1989). "Nondeterminism, Fairness and a Fundamental Analogy".
61: 478: 326: 322:
as a physical event-generating process where the interval between events grows at an uncomputably large rate.
110:
is still present. Turing's oracle machines are mathematical abstractions, and are not physically realizable.
1711:
Hogarth, Mark L. (1992). "Does general relativity allow an observer to view an eternity in a finite time?".
353:. Simply being able to run for an unbounded number of steps does not suffice. One mathematical model is the 2714:
Cockshott, P.; Michaelson, G. (2007). "Are there new Models of Computation? Reply to Wegner and Eberbach".
2770: 1630: 1375: 1240: 453: 1155: 530: 497:(1931), it may be impossible to predict the convergence time itself by a halting program, otherwise the 377: 194: 73: 813: 490: 288: 257: 417: 2465: 2290: 1998: 1720: 1134: 1054: 898: 767: 636: 604: 536: 526: 502: 466: 154: 50: 38: 2916:
Sharma, Ashish (2022). "Nature Inspired Algorithms with Randomized Hypercomputational Perspective".
1635: 1245: 462: 2894: 2775: 1424:"Characterizing the super-Turing computing power and efficiency of classical fuzzy Turing machines" 1283: 1040: 633:. Gold further showed that limiting partial recursion would allow the computation of precisely the 522: 485:, but still excludes all noncomputable reals. The 'Monotone Turing machines' traditionally used in 449: 405: 308: 107: 2742:. New York, Boston, Dordrecht, London, Moscow: Plenum Publishers. pp. 137–160. Archived from 1380: 1088: 568: 2968: 2933: 2898: 2880: 2867: 2824: 2788: 2489: 2421: 2389: 2343: 2325: 2280: 2247: 2228: 2184: 2176: 2112: 2104: 2014: 1988: 1966: 1948: 1902: 1884: 1857: 1822: 1804: 1795:
Etesi, Gabor; Nemeti, Istvan (2002). "Non-Turing computations via Malament-Hogarth space-times".
1736: 1693: 1675: 1648: 1606: 1588: 1401: 1266: 122: 2547: 2409: 2450: 2159:
Hilary Putnam (1965). "Trial and Error Predicates and the Solution to a Problem of Mostowksi".
369:) we see that the machine performs infinitely many steps in a total of 2 minutes. According to 3020: 2700: 2481: 2375: 1775: 1755: 1393: 1258: 597:. Limiting-recursion, by contrast, can compute any predicate or function in the corresponding 525:
embedded into an otherwise classical machine. Others allow access to some higher level of the
401: 358: 284: 280: 42: 1225: 2996: 2958: 2925: 2859: 2816: 2780: 2719: 2592: 2563: 2527: 2473: 2431: 2335: 2298: 2218: 2168: 2136: 2096: 2066: 2034: 2006: 1958: 1936: 1894: 1849: 1814: 1767: 1728: 1685: 1640: 1598: 1566: 1486: 1435: 1385: 1346: 1250: 1191: 1183: 506: 425: 413: 366: 54: 2844: 2507: 1150: 864: 498: 482: 421: 389: 272: 46: 2743: 2625:
Martin Davis (Jan 2003). "The Myth of Hypercomputation". In Alexandra Shlapentokh (ed.).
953: 2469: 2294: 2002: 1724: 2511: 1922:
and J. Watrous. Closed Timelike Curves Make Quantum and Classical Computing Equivalent
1919: 1875:
Brun, Todd A. (2003). "Computers with closed timelike curves can solve hard problems".
1760: 1291: 518: 103: 99: 66: 2626: 2141: 2124: 489:
theory cannot edit their previous outputs; generalized Turing machines, as defined by
3037: 2937: 2828: 2532: 2515: 2365: 1861: 1740: 1351: 1334: 1295: 1196: 598: 494: 445: 268: 2634:. MFO Report. Vol. 3. Mathematisches Forschungsinstitut Oberwolfach. p. 2. 2628:
Miniworkshop: Hilbert's Tenth Problem, Mazur's Conjecture and Divisibility Sequences
2493: 2188: 2116: 1906: 1826: 1697: 1537:
These models have been independently developed by many different authors, including
1405: 106:
to naturals. He used this device to prove that even in those more powerful systems,
102:
was available, which could compute a single arbitrary (non-recursive) function from
2972: 2871: 2792: 2347: 2232: 2018: 1970: 1610: 1550: 1539: 1270: 1139:
if non-computable inputs are permitted, then non-computable outputs are attainable.
370: 354: 236: 2664: 1652: 1508: 404:
system which somehow uses an infinite superposition of states could compute a non-
2477: 1308: 2361: 441: 301: 276: 148: 89: 77: 76:
is uncomputable; however, most hypercomputing literature focuses instead on the
2268: 1187: 3000: 2929: 2820: 2784: 2596: 2568: 2551: 2339: 2302: 2070: 2038: 2010: 1962: 1898: 1818: 1689: 1644: 1602: 1571: 1554: 1490: 1440: 1423: 385: 2583:
Davis, Martin (2006). "Why there is no such discipline as hypercomputation".
2054: 1397: 2723: 1366:
Biacino, L.; Gerla, G. (2002). "Fuzzy logic, continuity and effectiveness".
941:
is an advice function giving connection weights; size is bounded by runtime
746:{\displaystyle \operatorname {tt} \left(\Sigma _{1}^{0},\Pi _{1}^{0}\right)} 350: 225: 17: 2485: 1262: 2435: 2223: 2206: 1977:
M. Ziegler (2005). "Computational Power of Infinite Quantum Parallelism".
1923: 1389: 2285: 2252: 1993: 1953: 1254: 318: 221: 1758:(2006). "Can General Relativistic Computers Break the Turing Barrier?". 69:
cannot and which are, hence, not computable in the Church–Turing sense.
2963: 2946: 2316:
Petrus H. Potgieter (July 2006). "Zeno machines and hypercomputation".
2180: 2108: 1732: 1579:
Petrus H. Potgieter (July 2006). "Zeno machines and hypercomputation".
119: 2426: 1889: 1809: 1288:
Proc. Intl. Colloquium on Automata, Languages, and Programming (ICALP)
517:
Many hypercomputation proposals amount to alternative ways to read an
2947:"X-machines and the halting problem: Building a super-Turing machine" 2885: 1771: 88:
A computational model going beyond Turing machines was introduced by
2412:(2008). "The extent of computation in Malament-Hogarth spacetimes". 2172: 2100: 2863: 2761:
Cooper, S. B. (2006). "Definability as hypercomputational effect".
2330: 2246:
Schmidhuber, Juergen (2000). "Algorithmic Theories of Everything".
1853: 1618: 1593: 376:
It seems natural that the possibility of time travel (existence of
2207:"Iterated Limiting Recursion and the Program Minimization Problem" 1680: 1226:"The Computational Power of Interactive Recurrent Neural Networks" 409: 1766:. Lecture Notes in Computer Science. Vol. 3988. Springer. 1555:"Super-tasks, accelerating Turing machines and uncomputability" 204: 80:
of deterministic, rather than random, uncomputable functions.
1174:
Turing, A. M. (1939). "Systems of Logic Based on Ordinals†".
264:
Turing's original oracle machines, defined by Turing in 1939.
3017:
Hypercomputation: Computing Beyond the Church–Turing Barrier
98:. This paper investigated mathematical systems in which an 416:, because it is proven that a regular quantum computer is 275:) can perform hypercomputation if physics admits general 256:
A system granted knowledge of the uncomputable, oracular
2273:
International Journal of Foundations of Computer Science
1477:
Ord, Toby (2006). "The many forms of hypercomputation".
477:
if there is a finite, possibly non-halting program on a
349:
infinitely many steps in finite time, a feat known as a
325:
Similarly, one unorthodox interpretation of a model of
232: 118:
In a sense, most functions are uncomputable: there are
2610:
Davis, Martin (2004). "The Myth of Hypercomputation".
49:
would be a hypercomputer; so too would one that could
1091: 1057: 993: 956: 901: 816: 770: 693: 639: 607: 571: 539: 157: 125: 2740:
Computability and Models: Perspectives East and West
424:
can be simulated by a classical computer running in
2682:Burgin, M. S. (1983). "Inductive Turing Machines". 1937:"Quantum Algorithm for the Hilbert's Tenth Problem" 1619:"On the possibilities of hypercomputing supertasks" 1759: 1109: 1075: 1029: 968: 928: 840: 788: 745: 657: 625: 589: 557: 177: 138: 2845:"Quantum Hypercomputation—Hype or Computation?*" 1933:There have been some claims to this effect; see 1544:Philosophie der Mathematik und Naturwissenschaft 1417: 1415: 1030:{\displaystyle \Sigma _{1}^{0}\cup \Pi _{1}^{0}} 2612:Alan Turing: Life and Legacy of a Great Thinker 1286:, "On the power of random access machines", in 2684:Notices of the Academy of Sciences of the USSR 2023:and the ensuing literature. For a retort see 1176:Proceedings of the London Mathematical Society 45:. For example, a machine that could solve the 2738:. In Cooper, S. B.; Goncharov, S. S. (eds.). 2414:British Journal for the Philosophy of Science 2200: 2198: 2154: 2152: 1502: 1500: 1294:, "NP-complete Problems and Physical Reality" 363:1 + Â˝ + ÂĽ + ... 8: 2699:. Monographs in computer science. Springer. 2394:: CS1 maint: multiple names: authors list ( 2082: 2080: 1980:International Journal of Theoretical Physics 1797:International Journal of Theoretical Physics 1290:, pages 520–529, 1979. Source of citation: 2650:"Advances in Three Hypercomputation Models" 201:Uncomputable inputs or black-box components 2053:Bernstein, Ethan; Vazirani, Umesh (1997). 667: 408:. This is not possible using the standard 2962: 2884: 2774: 2657:Electronic Journal of Theoretical Physics 2567: 2531: 2425: 2329: 2284: 2251: 2222: 2140: 2087:E. M. Gold (1965). "Limiting Recursion". 1992: 1952: 1888: 1808: 1679: 1634: 1592: 1570: 1439: 1379: 1350: 1244: 1195: 1101: 1096: 1090: 1067: 1062: 1056: 1021: 1016: 1003: 998: 992: 955: 911: 906: 900: 832: 821: 815: 780: 775: 769: 732: 727: 714: 709: 692: 649: 644: 638: 617: 612: 606: 581: 576: 570: 549: 544: 538: 167: 162: 156: 130: 124: 2516:"Analog Computation via Neural Networks" 1335:"Analog Computation via Neural Networks" 1224:J. Cabessa; H.T. Siegelmann (Apr 2012). 1166: 147:computable functions, but there are an 2387: 2125:"Language identification in the limit" 185:) of possible super-Turing functions. 41:that can provide outputs that are not 2731:Cooper, S. B.; Odifreddi, P. (2003). 2451:"Computation Beyond the Turing Limit" 1333:H.T. Siegelmann; E.D. Sontag (1994). 337:"Infinite computational steps" models 307:Similarly, a proposed model known as 7: 1309:"The Professors and the Brainstorms" 2989:Applied Mathematics and Computation 2903:Stanford Encyclopedia of Philosophy 2763:Applied Mathematics and Computation 2585:Applied Mathematics and Computation 2364:, Felipe Cucker, Michael Shub, and 2027:Applied Mathematics and Computation 1507:Dmytro Taranovsky (July 17, 2005). 1479:Applied Mathematics and Computation 461:that we have the correct answer.)" 1212:Systems of Logic Based On Ordinals 1093: 1059: 1013: 995: 978:Arithmetical Quasi-Inductive sets 903: 818: 772: 724: 706: 641: 609: 573: 541: 164: 127: 95:Systems of Logic Based on Ordinals 51:correctly evaluate every statement 25: 2899:"Computation in Physical Systems" 886:dependent on spacetime structure 841:{\displaystyle \Delta _{k+1}^{0}} 448:independently proposed models of 317:Dmytro Taranovsky has proposed a 893:analog recurrent neural network 400:Some scholars conjecture that a 287:with an oracular value, such as 209: 2982:"The case for hypercomputation" 2843:Hagar, A.; Korolev, A. (2007). 2371:Complexity and Real Computation 1509:"Finitism and Hypercomputation" 1076:{\displaystyle \Delta _{1}^{1}} 985:classical fuzzy Turing machine 929:{\displaystyle \Delta _{1}^{0}} 789:{\displaystyle \Delta _{2}^{0}} 658:{\displaystyle \Sigma _{2}^{0}} 626:{\displaystyle \Delta _{2}^{0}} 558:{\displaystyle \Sigma _{1}^{0}} 420:(a quantum computer running in 178:{\displaystyle 2^{\aleph _{0}}} 3015:Syropoulos, Apostolos (2008). 1713:Foundations of Physics Letters 1368:Archive for Mathematical Logic 923: 917: 863:incomparable with traditional 755:dependent on outside observer 384:or in orbit around a rotating 224:format but may read better as 1: 2663:(36): 169–182. Archived from 2142:10.1016/S0019-9958(67)91165-5 948:infinite time Turing machine 92:in his 1938 PhD dissertation 72:Technically, the output of a 2648:Aoun, Mario Antoine (2016). 2556:Theoretical Computer Science 2533:10.1016/0304-3975(94)90178-3 2520:Theoretical Computer Science 2478:10.1126/science.268.5210.545 2449:H.T. Siegelmann (Apr 1995). 2318:Theoretical Computer Science 2205:L. K. Schubert (July 1974). 1581:Theoretical Computer Science 1559:Theoretical Computer Science 1548:; the model is discussed in 1428:Theoretical Computer Science 1352:10.1016/0304-3975(94)90178-3 1339:Theoretical Computer Science 1110:{\displaystyle \Pi _{1}^{1}} 1085:for the one-sequence model; 590:{\displaystyle \Pi _{1}^{0}} 432:"Eventually correct" systems 2951:Formal Aspects of Computing 2733:"Incomputability in Nature" 2055:"Quantum Complexity Theory" 1668:Parallel Processing Letters 1049:increasing function oracle 139:{\displaystyle \aleph _{0}} 3065: 2697:Super-recursive algorithms 1617:Vincent C. MĂĽller (2011). 875:Malament–Hogarth spacetime 382:Malament–Hogarth spacetime 345:A Turing machine that can 3001:10.1016/j.amc.2005.09.067 2930:10.1016/j.ins.2022.05.020 2785:10.1016/j.amc.2005.09.072 2597:10.1016/j.amc.2005.09.066 2569:10.1016/j.tcs.2008.09.050 2340:10.1016/j.tcs.2005.11.040 2303:10.1142/S0129054102001291 2161:Journal of Symbolic Logic 2089:Journal of Symbolic Logic 2071:10.1137/S0097539796300921 2059:SIAM Journal on Computing 2039:10.1016/j.amc.2005.09.078 2011:10.1007/s10773-005-8984-0 1690:10.1142/S0129626412400105 1645:10.1007/s11023-011-9222-6 1603:10.1016/j.tcs.2005.11.040 1572:10.1016/j.tcs.2003.12.007 1491:10.1016/j.amc.2005.09.076 1441:10.1016/j.tcs.2003.12.004 1422:Wiedermann, Jiří (2004). 1313:The Alan Turing Home Page 1197:21.11116/0000-0001-91CE-3 762:limiting/trial-and-error 37:is a set of hypothetical 1188:10.1112/plms/s2-45.1.161 513:Analysis of capabilities 479:universal Turing machine 327:unbounded nondeterminism 35:super-Turing computation 2980:Stannett, Mike (2006). 2945:Stannett, Mike (1990). 2821:10.1023/A:1021105915386 2267:J. Schmidhuber (2002). 2129:Information and Control 1963:10.1023/A:1025780028846 1899:10.1023/A:1025967225931 1819:10.1023/A:1014019225365 857:Blum–Shub–Smale machine 601:, which is known to be 475:computable in the limit 233:converting this section 1111: 1077: 1031: 970: 930: 842: 790: 747: 674:Computable predicates 659: 627: 591: 559: 503:theories of everything 454:recursively enumerable 378:closed timelike curves 179: 140: 3049:Theory of computation 2852:Philosophy of Science 2800:Copeland, J. (2002). 2724:10.1093/comjnl/bxl062 2695:Burgin, Mark (2005). 2224:10.1145/321832.321841 2123:E. Mark Gold (1967). 1842:Philosophy of Science 1390:10.1007/s001530100128 1156:Limits of computation 1112: 1078: 1032: 971: 931: 843: 791: 748: 660: 628: 592: 560: 473:A symbol sequence is 271:(a sort of idealized 195:random Turing machine 180: 141: 74:random Turing machine 39:models of computation 27:Models of computation 2918:Information Sciences 2895:Piccinini, Gualtiero 2716:The Computer Journal 1255:10.1162/neco_a_00263 1135:computability theory 1089: 1055: 991: 954: 899: 814: 768: 691: 637: 605: 569: 537: 527:arithmetic hierarchy 279:variables (not just 155: 123: 62:Church–Turing thesis 2470:1995Sci...268..545S 2436:10.1093/bjps/axn031 2295:2000quant.ph.11122S 2003:2005IJTP...44.2059Z 1941:Int. J. Theor. Phys 1725:1992FoPhL...5..173H 1106: 1072: 1039:for any computable 1026: 1008: 969:{\displaystyle AQI} 916: 837: 804:iterated limiting ( 785: 737: 719: 654: 622: 586: 554: 450:inductive inference 406:computable function 309:fair nondeterminism 2964:10.1007/BF01888233 2809:Minds and Machines 2802:"Hypercomputation" 2211:Journal of the ACM 1935:Tien Kieu (2003). 1733:10.1007/BF00682813 1623:Minds and Machines 1233:Neural Computation 1107: 1092: 1073: 1058: 1027: 1012: 994: 966: 926: 902: 838: 817: 786: 771: 743: 723: 705: 655: 640: 623: 608: 587: 572: 555: 540: 531:truth-table degree 491:JĂĽrgen Schmidhuber 402:quantum mechanical 289:Chaitin's constant 258:Chaitin's constant 235:, if appropriate. 175: 136: 3026:978-0-387-30886-9 2897:(June 16, 2021). 2464:(5210): 545–548. 2381:978-0-387-98281-6 1987:(11): 2059–2071. 1877:Found. Phys. Lett 1781:978-3-540-35466-6 1123: 1122: 285:physical constant 254: 253: 43:Turing-computable 16:(Redirected from 3056: 3044:Hypercomputation 3030: 3011: 3009: 3003:. Archived from 2986: 2976: 2966: 2941: 2912: 2910: 2909: 2890: 2888: 2875: 2849: 2839: 2837: 2831:. Archived from 2806: 2796: 2778: 2757: 2755: 2754: 2748: 2737: 2727: 2710: 2691: 2678: 2676: 2675: 2669: 2654: 2636: 2635: 2633: 2622: 2616: 2615: 2607: 2601: 2600: 2580: 2574: 2573: 2571: 2562:(4–5): 426–442. 2544: 2538: 2537: 2535: 2504: 2498: 2497: 2455: 2446: 2440: 2439: 2429: 2406: 2400: 2399: 2393: 2385: 2358: 2352: 2351: 2333: 2313: 2307: 2306: 2288: 2286:quant-ph/0011122 2264: 2258: 2257: 2255: 2253:quant-ph/0011122 2243: 2237: 2236: 2226: 2202: 2193: 2192: 2156: 2147: 2146: 2144: 2120: 2084: 2075: 2074: 2065:(5): 1411–1473. 2050: 2044: 2042: 2022: 1996: 1994:quant-ph/0410141 1974: 1956: 1954:quant-ph/0110136 1947:(7): 1461–1478. 1931: 1925: 1917: 1911: 1910: 1892: 1872: 1866: 1865: 1837: 1831: 1830: 1812: 1792: 1786: 1785: 1772:10.1007/11780342 1765: 1751: 1745: 1744: 1708: 1702: 1701: 1683: 1663: 1657: 1656: 1638: 1614: 1596: 1576: 1574: 1565:(1–3): 105–114. 1547: 1535: 1529: 1526: 1520: 1519: 1517: 1515: 1504: 1495: 1494: 1474: 1468: 1467: 1455: 1449: 1448: 1443: 1419: 1410: 1409: 1383: 1363: 1357: 1356: 1354: 1330: 1324: 1323: 1321: 1319: 1304: 1298: 1284:Arnold Schönhage 1281: 1275: 1274: 1248: 1230: 1221: 1215: 1208: 1202: 1201: 1199: 1171: 1116: 1114: 1113: 1108: 1105: 1100: 1082: 1080: 1079: 1074: 1071: 1066: 1036: 1034: 1033: 1028: 1025: 1020: 1007: 1002: 975: 973: 972: 967: 935: 933: 932: 927: 915: 910: 847: 845: 844: 839: 836: 831: 795: 793: 792: 787: 784: 779: 752: 750: 749: 744: 742: 738: 736: 731: 718: 713: 668: 664: 662: 661: 656: 653: 648: 632: 630: 629: 624: 621: 616: 596: 594: 593: 588: 585: 580: 564: 562: 561: 556: 553: 548: 507:Specker sequence 487:description size 426:polynomial space 418:PSPACE-reducible 414:quantum computer 367:geometric series 281:computable reals 249: 246: 240: 231:You can help by 213: 212: 205: 184: 182: 181: 176: 174: 173: 172: 171: 145: 143: 142: 137: 135: 134: 55:Peano arithmetic 31:Hypercomputation 21: 3064: 3063: 3059: 3058: 3057: 3055: 3054: 3053: 3034: 3033: 3027: 3014: 3007: 2984: 2979: 2944: 2915: 2907: 2905: 2893: 2878: 2847: 2842: 2835: 2804: 2799: 2760: 2752: 2750: 2746: 2735: 2730: 2713: 2707: 2694: 2690:(6): 1289–1293. 2681: 2673: 2671: 2667: 2652: 2647: 2644: 2642:Further reading 2639: 2631: 2624: 2623: 2619: 2609: 2608: 2604: 2582: 2581: 2577: 2546: 2545: 2541: 2508:Hava Siegelmann 2506: 2505: 2501: 2453: 2448: 2447: 2443: 2408: 2407: 2403: 2386: 2382: 2360: 2359: 2355: 2315: 2314: 2310: 2266: 2265: 2261: 2245: 2244: 2240: 2204: 2203: 2196: 2173:10.2307/2270581 2158: 2157: 2150: 2122: 2101:10.2307/2270580 2086: 2085: 2078: 2052: 2051: 2047: 2024: 1976: 1934: 1932: 1928: 1918: 1914: 1874: 1873: 1869: 1839: 1838: 1834: 1794: 1793: 1789: 1782: 1754:István NemĂ©ti; 1753: 1752: 1748: 1710: 1709: 1705: 1665: 1664: 1660: 1636:10.1.1.225.3696 1616: 1578: 1549: 1538: 1536: 1532: 1527: 1523: 1513: 1511: 1506: 1505: 1498: 1476: 1475: 1471: 1457: 1456: 1452: 1421: 1420: 1413: 1365: 1364: 1360: 1332: 1331: 1327: 1317: 1315: 1307:Andrew Hodges. 1306: 1305: 1301: 1282: 1278: 1246:10.1.1.411.7540 1239:(4): 996–1019. 1228: 1223: 1222: 1218: 1209: 1205: 1173: 1172: 1168: 1164: 1151:Digital physics 1147: 1128: 1087: 1086: 1053: 1052: 989: 988: 952: 951: 897: 896: 865:computable real 812: 811: 766: 765: 704: 700: 689: 688: 635: 634: 603: 602: 567: 566: 535: 534: 523:advice function 515: 499:halting problem 483:computable real 434: 422:polynomial time 398: 390:PSPACE-complete 339: 273:analog computer 250: 244: 241: 230: 214: 210: 203: 191: 163: 158: 153: 152: 126: 121: 120: 116: 86: 47:halting problem 28: 23: 22: 15: 12: 11: 5: 3062: 3060: 3052: 3051: 3046: 3036: 3035: 3032: 3031: 3025: 3012: 3010:on 2016-03-04. 2977: 2957:(1): 331–341. 2942: 2913: 2891: 2876: 2864:10.1086/521969 2858:(3): 347–363. 2840: 2838:on 2016-03-14. 2815:(4): 461–502. 2797: 2776:10.1.1.65.4088 2758: 2728: 2711: 2705: 2692: 2679: 2643: 2640: 2638: 2637: 2617: 2602: 2575: 2539: 2526:(2): 331–360. 2512:Eduardo Sontag 2499: 2441: 2420:(4): 659–674. 2401: 2380: 2353: 2308: 2279:(4): 587–612. 2259: 2238: 2217:(3): 436–445. 2194: 2148: 2135:(5): 447–474. 2076: 2045: 2033:(1): 184–193. 1926: 1912: 1883:(3): 245–253. 1867: 1854:10.1086/289716 1832: 1803:(2): 341–370. 1787: 1780: 1756:Hajnal AndrĂ©ka 1746: 1719:(2): 173–181. 1703: 1658: 1530: 1521: 1496: 1469: 1460:EATCS Bulletin 1450: 1434:(1–3): 61–69. 1411: 1374:(7): 643–667. 1358: 1345:(2): 331–360. 1325: 1299: 1292:Scott Aaronson 1276: 1216: 1203: 1165: 1163: 1160: 1159: 1158: 1153: 1146: 1143: 1127: 1124: 1121: 1120: 1118: 1104: 1099: 1095: 1083: 1070: 1065: 1061: 1050: 1046: 1045: 1043: 1037: 1024: 1019: 1015: 1011: 1006: 1001: 997: 986: 982: 981: 979: 976: 965: 962: 959: 949: 945: 944: 942: 936: 925: 922: 919: 914: 909: 905: 894: 890: 889: 887: 884: 877: 871: 870: 868: 861: 859: 853: 852: 850: 848: 835: 830: 827: 824: 820: 809: 801: 800: 798: 796: 783: 778: 774: 763: 759: 758: 756: 753: 741: 735: 730: 726: 722: 717: 712: 708: 703: 699: 696: 686: 682: 681: 678: 675: 672: 652: 647: 643: 620: 615: 611: 584: 579: 575: 552: 547: 543: 514: 511: 463:L. K. Schubert 440:In mid 1960s, 433: 430: 397: 396:Quantum models 394: 359:Zeno's paradox 338: 335: 334: 333: 332: 331: 315: 314: 313: 298: 297: 296: 265: 252: 251: 217: 215: 208: 202: 199: 190: 187: 170: 166: 161: 133: 129: 115: 112: 108:undecidability 85: 82: 67:Turing machine 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3061: 3050: 3047: 3045: 3042: 3041: 3039: 3028: 3022: 3018: 3013: 3006: 3002: 2998: 2994: 2990: 2983: 2978: 2974: 2970: 2965: 2960: 2956: 2952: 2948: 2943: 2939: 2935: 2931: 2927: 2923: 2919: 2914: 2904: 2900: 2896: 2892: 2887: 2882: 2877: 2873: 2869: 2865: 2861: 2857: 2853: 2846: 2841: 2834: 2830: 2826: 2822: 2818: 2814: 2810: 2803: 2798: 2794: 2790: 2786: 2782: 2777: 2772: 2768: 2764: 2759: 2749:on 2011-07-24 2745: 2741: 2734: 2729: 2725: 2721: 2717: 2712: 2708: 2706:0-387-95569-0 2702: 2698: 2693: 2689: 2685: 2680: 2670:on 2017-02-06 2666: 2662: 2658: 2651: 2646: 2645: 2641: 2630: 2629: 2621: 2618: 2613: 2606: 2603: 2598: 2594: 2590: 2586: 2579: 2576: 2570: 2565: 2561: 2557: 2553: 2549: 2543: 2540: 2534: 2529: 2525: 2521: 2517: 2513: 2509: 2503: 2500: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2452: 2445: 2442: 2437: 2433: 2428: 2427:gr-qc/0609035 2423: 2419: 2415: 2411: 2405: 2402: 2397: 2391: 2383: 2377: 2373: 2372: 2367: 2366:Stephen Smale 2363: 2357: 2354: 2349: 2345: 2341: 2337: 2332: 2327: 2323: 2319: 2312: 2309: 2304: 2300: 2296: 2292: 2287: 2282: 2278: 2274: 2270: 2263: 2260: 2254: 2249: 2242: 2239: 2234: 2230: 2225: 2220: 2216: 2212: 2208: 2201: 2199: 2195: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2155: 2153: 2149: 2143: 2138: 2134: 2130: 2126: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2090: 2083: 2081: 2077: 2072: 2068: 2064: 2060: 2056: 2049: 2046: 2040: 2036: 2032: 2028: 2020: 2016: 2012: 2008: 2004: 2000: 1995: 1990: 1986: 1982: 1981: 1972: 1968: 1964: 1960: 1955: 1950: 1946: 1942: 1938: 1930: 1927: 1924: 1921: 1916: 1913: 1908: 1904: 1900: 1896: 1891: 1890:gr-qc/0209061 1886: 1882: 1878: 1871: 1868: 1863: 1859: 1855: 1851: 1847: 1843: 1836: 1833: 1828: 1824: 1820: 1816: 1811: 1810:gr-qc/0104023 1806: 1802: 1798: 1791: 1788: 1783: 1777: 1773: 1769: 1764: 1763: 1757: 1750: 1747: 1742: 1738: 1734: 1730: 1726: 1722: 1718: 1714: 1707: 1704: 1699: 1695: 1691: 1687: 1682: 1677: 1673: 1669: 1662: 1659: 1654: 1650: 1646: 1642: 1637: 1632: 1628: 1624: 1620: 1612: 1608: 1604: 1600: 1595: 1590: 1586: 1582: 1573: 1568: 1564: 1560: 1556: 1553:(June 2004). 1552: 1545: 1541: 1534: 1531: 1525: 1522: 1510: 1503: 1501: 1497: 1492: 1488: 1484: 1480: 1473: 1470: 1465: 1461: 1454: 1451: 1447: 1442: 1437: 1433: 1429: 1425: 1418: 1416: 1412: 1407: 1403: 1399: 1395: 1391: 1387: 1382: 1381:10.1.1.2.8029 1377: 1373: 1369: 1362: 1359: 1353: 1348: 1344: 1340: 1336: 1329: 1326: 1314: 1310: 1303: 1300: 1296: 1293: 1289: 1285: 1280: 1277: 1272: 1268: 1264: 1260: 1256: 1252: 1247: 1242: 1238: 1234: 1227: 1220: 1217: 1213: 1207: 1204: 1198: 1193: 1189: 1185: 1181: 1177: 1170: 1167: 1161: 1157: 1154: 1152: 1149: 1148: 1144: 1142: 1140: 1136: 1132: 1125: 1119: 1102: 1097: 1084: 1068: 1063: 1051: 1048: 1047: 1044: 1042: 1038: 1022: 1017: 1009: 1004: 999: 987: 984: 983: 980: 977: 963: 960: 957: 950: 947: 946: 943: 940: 937: 920: 912: 907: 895: 892: 891: 888: 885: 883: 882: 878: 876: 873: 872: 869: 866: 862: 860: 858: 855: 854: 851: 849: 833: 828: 825: 822: 810: 807: 803: 802: 799: 797: 781: 776: 764: 761: 760: 757: 754: 739: 733: 728: 720: 715: 710: 701: 697: 694: 687: 685:supertasking 684: 683: 679: 676: 673: 670: 669: 666: 650: 645: 618: 613: 600: 599:Turing degree 582: 577: 550: 545: 532: 528: 524: 520: 512: 510: 508: 504: 500: 496: 492: 488: 484: 480: 476: 471: 468: 464: 460: 455: 451: 447: 446:Hilary Putnam 443: 438: 431: 429: 427: 423: 419: 415: 411: 407: 403: 395: 393: 391: 387: 383: 379: 374: 372: 368: 364: 360: 357:(inspired by 356: 352: 348: 343: 336: 328: 324: 323: 320: 316: 310: 306: 305: 303: 299: 293: 292: 290: 286: 282: 278: 274: 270: 269:real computer 266: 263: 262: 261: 259: 248: 239:is available. 238: 234: 228: 227: 223: 218:This section 216: 207: 206: 200: 198: 196: 188: 186: 168: 159: 150: 146: 131: 113: 111: 109: 105: 101: 97: 96: 91: 83: 81: 79: 75: 70: 68: 63: 58: 56: 52: 48: 44: 40: 36: 32: 19: 3019:. Springer. 3016: 3005:the original 2992: 2988: 2954: 2950: 2921: 2917: 2906:. Retrieved 2902: 2886:math/0209332 2855: 2851: 2833:the original 2812: 2808: 2766: 2762: 2751:. Retrieved 2744:the original 2739: 2715: 2696: 2687: 2683: 2672:. Retrieved 2665:the original 2660: 2656: 2627: 2620: 2611: 2605: 2588: 2584: 2578: 2559: 2555: 2542: 2523: 2519: 2502: 2461: 2457: 2444: 2417: 2413: 2404: 2374:. Springer. 2370: 2356: 2324:(1): 23–33. 2321: 2317: 2311: 2276: 2272: 2262: 2241: 2214: 2210: 2167:(1): 49–57. 2164: 2160: 2132: 2128: 2095:(1): 28–48. 2092: 2088: 2062: 2058: 2048: 2030: 2026: 1984: 1978: 1944: 1940: 1929: 1915: 1880: 1876: 1870: 1845: 1841: 1835: 1800: 1796: 1790: 1761: 1749: 1716: 1712: 1706: 1671: 1667: 1661: 1629:(1): 83–96. 1626: 1622: 1587:(1): 23–33. 1584: 1580: 1562: 1558: 1543: 1540:Hermann Weyl 1533: 1524: 1512:. Retrieved 1482: 1478: 1472: 1463: 1459: 1453: 1445: 1431: 1427: 1371: 1367: 1361: 1342: 1338: 1328: 1318:23 September 1316:. Retrieved 1312: 1302: 1287: 1279: 1236: 1232: 1219: 1211: 1206: 1179: 1175: 1169: 1138: 1131:Martin Davis 1129: 938: 879: 805: 665:predicates. 516: 474: 472: 458: 439: 435: 399: 375: 371:Oron Shagrir 355:Zeno machine 346: 344: 340: 295:computation. 255: 242: 237:Editing help 219: 192: 117: 93: 87: 71: 59: 34: 30: 29: 18:Super Turing 2995:(1): 8–24. 2924:: 670–695. 2614:. Springer. 2362:Lenore Blum 1920:S. Aaronson 1551:Shagrir, O. 1485:: 143–153. 1182:: 161–228. 533:containing 442:E Mark Gold 302:fuzzy logic 149:uncountable 114:State space 90:Alan Turing 78:computation 3038:Categories 2908:2023-07-31 2753:2011-06-16 2674:2023-07-28 2591:(1): 4–7. 2548:P.D. Welch 2410:P.D. Welch 2331:cs/0412022 1594:cs/0412022 1466:: 186–193. 1297:p. 12 1162:References 867:functions 495:Kurt Gödel 467:arithmetic 386:black hole 319:finitistic 2938:248881264 2829:218585685 2771:CiteSeerX 2769:: 72–82. 2390:cite book 1862:122764068 1848:: 22–42. 1741:120917288 1681:1105.0047 1631:CiteSeerX 1398:0933-5846 1376:CiteSeerX 1241:CiteSeerX 1126:Criticism 1117:are r.e. 1094:Π 1060:Δ 1014:Π 1010:∪ 996:Σ 904:Δ 819:Δ 773:Δ 725:Π 707:Σ 698:⁡ 642:Σ 610:Δ 574:Π 542:Σ 351:supertask 245:July 2023 165:ℵ 128:ℵ 2550:(2009). 2514:(1994). 2494:17495161 2486:17756722 2368:(1998). 2189:44655062 2117:33811657 1907:16136314 1827:17081866 1698:16816151 1542:(1927). 1406:12513452 1263:22295978 1145:See also 347:complete 312:forever. 300:Certain 151:number ( 104:naturals 2973:7406983 2872:9857468 2793:1487739 2466:Bibcode 2458:Science 2348:6749770 2291:Bibcode 2233:2071951 2181:2270581 2109:2270580 2019:9879859 1999:Bibcode 1971:6634980 1721:Bibcode 1611:6749770 1514:Apr 26, 1271:5826757 808:times) 412:-model 84:History 3023:  2971:  2936:  2870:  2827:  2791:  2773:  2703:  2492:  2484:  2378:  2346:  2231:  2187:  2179:  2115:  2107:  2017:  1969:  1905:  1860:  1825:  1778:  1739:  1696:  1653:253434 1651:  1633:  1609:  1404:  1396:  1378:  1269:  1261:  1243:  1041:t-norm 677:Notes 671:Model 519:oracle 220:is in 189:Models 100:oracle 3008:(PDF) 2985:(PDF) 2969:S2CID 2934:S2CID 2881:arXiv 2868:S2CID 2848:(PDF) 2836:(PDF) 2825:S2CID 2805:(PDF) 2789:S2CID 2747:(PDF) 2736:(PDF) 2668:(PDF) 2653:(PDF) 2632:(PDF) 2490:S2CID 2454:(PDF) 2422:arXiv 2344:S2CID 2326:arXiv 2281:arXiv 2248:arXiv 2229:S2CID 2185:S2CID 2177:JSTOR 2113:S2CID 2105:JSTOR 2015:S2CID 1989:arXiv 1967:S2CID 1949:arXiv 1903:S2CID 1885:arXiv 1858:S2CID 1823:S2CID 1805:arXiv 1737:S2CID 1694:S2CID 1676:arXiv 1674:(3). 1649:S2CID 1607:S2CID 1589:arXiv 1402:S2CID 1267:S2CID 1229:(PDF) 680:Refs 410:qubit 330:time. 226:prose 3021:ISBN 2701:ISBN 2482:PMID 2396:link 2376:ISBN 1776:ISBN 1615:and 1516:2011 1394:ISSN 1320:2011 1259:PMID 459:sure 444:and 277:real 222:list 60:The 2997:doi 2993:178 2959:doi 2926:doi 2922:608 2860:doi 2817:doi 2781:doi 2767:178 2720:doi 2688:270 2593:doi 2589:178 2564:doi 2560:410 2528:doi 2524:131 2474:doi 2462:268 2432:doi 2336:doi 2322:358 2299:doi 2219:doi 2169:doi 2137:doi 2097:doi 2067:doi 2035:doi 2031:178 2007:doi 1975:or 1959:doi 1895:doi 1850:doi 1815:doi 1768:doi 1729:doi 1686:doi 1641:doi 1599:doi 1585:358 1567:doi 1563:317 1487:doi 1483:178 1436:doi 1432:317 1386:doi 1347:doi 1343:131 1251:doi 1192:hdl 1184:doi 881:HYP 565:or 521:or 428:). 365:(a 197:). 53:in 33:or 3040:: 2991:. 2987:. 2967:. 2953:. 2949:. 2932:. 2920:. 2901:. 2866:. 2856:74 2854:. 2850:. 2823:. 2813:12 2811:. 2807:. 2787:. 2779:. 2765:. 2718:. 2686:. 2661:13 2659:. 2655:. 2587:. 2558:. 2554:. 2522:. 2518:. 2510:; 2488:. 2480:. 2472:. 2460:. 2456:. 2430:. 2418:59 2416:. 2392:}} 2388:{{ 2342:. 2334:. 2320:. 2297:. 2289:. 2277:13 2275:. 2271:. 2227:. 2215:21 2213:. 2209:. 2197:^ 2183:. 2175:. 2165:30 2163:. 2151:^ 2133:10 2131:. 2127:. 2121:, 2111:. 2103:. 2093:30 2091:. 2079:^ 2063:26 2061:. 2057:. 2029:. 2013:. 2005:. 1997:. 1985:44 1983:. 1965:. 1957:. 1945:42 1943:. 1939:. 1901:. 1893:. 1881:16 1879:. 1856:. 1846:60 1844:. 1821:. 1813:. 1801:41 1799:. 1774:. 1735:. 1727:. 1715:. 1692:. 1684:. 1672:22 1670:. 1647:. 1639:. 1627:21 1625:. 1621:. 1605:. 1597:. 1583:. 1577:, 1561:. 1557:. 1499:^ 1481:. 1464:37 1462:. 1444:. 1430:. 1426:. 1414:^ 1400:. 1392:. 1384:. 1372:41 1370:. 1341:. 1337:. 1311:. 1265:. 1257:. 1249:. 1237:24 1235:. 1231:. 1190:. 1180:45 1178:. 1141:" 695:tt 509:. 267:A 57:. 3029:. 2999:: 2975:. 2961:: 2955:2 2940:. 2928:: 2911:. 2889:. 2883:: 2874:. 2862:: 2819:: 2795:. 2783:: 2756:. 2726:. 2722:: 2709:. 2677:. 2599:. 2595:: 2572:. 2566:: 2536:. 2530:: 2496:. 2476:: 2468:: 2438:. 2434:: 2424:: 2398:) 2384:. 2350:. 2338:: 2328:: 2305:. 2301:: 2293:: 2283:: 2256:. 2250:: 2235:. 2221:: 2191:. 2171:: 2145:. 2139:: 2119:. 2099:: 2073:. 2069:: 2043:. 2041:. 2037:: 2021:. 2009:: 2001:: 1991:: 1973:. 1961:: 1951:: 1909:. 1897:: 1887:: 1864:. 1852:: 1829:. 1817:: 1807:: 1784:. 1770:: 1743:. 1731:: 1723:: 1717:5 1700:. 1688:: 1678:: 1655:. 1643:: 1613:. 1601:: 1591:: 1575:. 1569:: 1546:. 1518:. 1493:. 1489:: 1438:: 1408:. 1388:: 1355:. 1349:: 1322:. 1273:. 1253:: 1214:) 1200:. 1194:: 1186:: 1103:1 1098:1 1069:1 1064:1 1023:0 1018:1 1005:0 1000:1 964:I 961:Q 958:A 939:f 924:] 921:f 918:[ 913:0 908:1 834:0 829:1 826:+ 823:k 806:k 782:0 777:2 740:) 734:0 729:1 721:, 716:0 711:1 702:( 651:0 646:2 619:0 614:2 583:0 578:1 551:0 546:1 247:) 243:( 229:. 169:0 160:2 132:0 20:)

Index

Super Turing
models of computation
Turing-computable
halting problem
correctly evaluate every statement
Peano arithmetic
Church–Turing thesis
Turing machine
random Turing machine
computation
Alan Turing
Systems of Logic Based on Ordinals
oracle
naturals
undecidability
0 {\displaystyle \aleph _{0}}
uncountable
random Turing machine
list
prose
converting this section
Editing help
Chaitin's constant
real computer
analog computer
real
computable reals
physical constant
Chaitin's constant
fuzzy logic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑