Knowledge (XXG)

Swashplate

Source 📝

90:) effect. But instead the disk is mounted at an oblique angle, which causes its edge to appear to describe a path that oscillates along the shaft's length as observed from a non-rotating point of view away from the shaft. The greater the disk's angle to the shaft, the more pronounced is this apparent linear motion. The apparent linear motion can be turned into an actual linear motion by means of a follower that does not turn with the swashplate but presses against one of the disk's two surfaces near its circumference. The device has many similarities to the 153:(AESA) radars are flat plates that can scan up to sixty degrees in any direction from directly ahead of them. By mounting an AESA radar on a swashplate, the swashplate angle is added to the electronic scan angle. The typical swashplate angle chosen for this application is 40 degrees, enabling the radar to scan a total angle of 200 degrees out of 360. 141:
reciprocal motion of the rotor blade linkages. This type of differential pitch control, known as cyclic pitch, allows the helicopter rotor to provide selective lift in any direction. The swashplate can also transfer a combined static pitch increase to all rotor blades, which is known as collective pitch.
140:
is a pair of plates, one rotating and one fixed, that are centered on the main rotor shaft. The rotating plate is linked to the rotor head, and the fixed plate is linked to the operator controls. Displacement of the alignment of the fixed plate is transferred to the rotating plate, where it becomes
41:
Swashplate animation. The rotating shaft and plate are shown in silver. The fixed plate is shown in gold and six shafts each take a reciprocating motion from points on the gold plate. The shafts might be connected to pistons in cylinders. Note the power may be coming from the shaft to drive the
175: 74:, or wobble, nutator, and Z-crank drives in engine designs. It was originally invented to replace a crankshaft, and is one of the most popular concepts used in crankless engines. It was invented by 86:
A swashplate consists of a disk attached to a shaft. If the disk were aligned perpendicular to the shaft, then rotating the shaft would merely turn the disk with no reciprocating (or
305: 125:
drives a series of pistons aligned parallel with a shaft through a swashplate to pump a fluid. A common example of a swashplate application in a fluid pump is the
298: 190: 133:
system. By varying the angle of the swashplate, the pistons' stroke (and, therefore, the compressor's cooling capacity) can be dynamically adjusted.
147:
and pumps have similar motions to the wobble of a swashplate, but do not necessarily transform the motion to a reciprocating motion at any time.
38: 291: 256: 150: 416: 845: 59: 106:
in place of a crankshaft to translate the motion of a piston into rotary motion. Such engines are the only variation of the
509: 436: 332: 130: 277: 111: 586: 426: 31: 137: 197: 581: 536: 446: 379: 170: 55: 571: 566: 546: 471: 431: 421: 374: 369: 576: 556: 551: 541: 519: 461: 352: 347: 314: 63: 118:
have been built using this mechanism. Duke Engines has been working on such a platform since 1993.
810: 634: 561: 456: 406: 629: 499: 494: 451: 389: 619: 504: 489: 466: 122: 609: 604: 144: 283: 624: 614: 528: 481: 384: 115: 91: 75: 394: 37: 839: 805: 795: 652: 441: 359: 318: 42:
pistons as in a pump, or from the pistons to drive the shaft rotation as in an engine
337: 103: 214: 596: 401: 342: 71: 769: 764: 759: 726: 721: 716: 711: 706: 701: 696: 684: 672: 411: 364: 271: 243:
Predicting the behaviour of slipper pads in swashplate-type axial piston pumps
126: 107: 67: 754: 691: 679: 667: 662: 657: 17: 820: 815: 800: 779: 774: 749: 744: 736: 644: 191:"The "Michell" Crankless Engine – Why was it not a commercial success?" 246:. ASME WAM. New Orleans: University of Bath Repository. pp. 1–9. 36: 287: 241: 27:
Mechanism to convert between reciprocating and rotary motion
173:, Michell, Anthony George Maldon, published 1917 66:, or vice versa. The working principle is similar to 788: 735: 643: 595: 527: 518: 480: 325: 240:Harris, R. M.; Edge, K. A.; Tilley, D. G. (1993). 58:device used to translate the motion of a rotating 299: 8: 524: 306: 292: 284: 162: 7: 151:Active electronically scanned array 25: 280:– Video of a swashplate in action 273:Belt CP Swash Plate mechs action 102:Swashplates can be used in an 1: 131:automobile air conditioning 112:Internal combustion engines 862: 29: 30:For aeronautics use, see 32:swashplate (aeronautics) 447:Single-acting cylinder 380:Double-acting cylinder 215:"Development Timeline" 56:mechanical engineering 43: 846:Linkages (mechanical) 315:Engine configurations 138:helicopter swashplate 110:to have any success. 40: 417:Oscillating cylinder 257:Gripen NG AESA Radar 64:reciprocating motion 510:Two-and four-stroke 412:Intake over exhaust 145:Nutating flowmeters 44: 833: 832: 829: 828: 529:Inline / straight 427:Overhead camshaft 221:. Touch Marketing 129:of a present-day 123:axial piston pump 16:(Redirected from 853: 525: 520:Cylinder layouts 308: 301: 294: 285: 274: 259: 254: 248: 247: 237: 231: 230: 228: 226: 211: 205: 204: 202: 196:. Archived from 195: 189:Anning, John A. 186: 180: 179: 178: 174: 167: 116:Stirling engines 50:, also known as 21: 861: 860: 856: 855: 854: 852: 851: 850: 836: 835: 834: 825: 784: 731: 639: 591: 514: 476: 321: 312: 272: 268: 263: 262: 255: 251: 239: 238: 234: 224: 222: 213: 212: 208: 200: 193: 188: 187: 183: 176: 169: 168: 164: 159: 100: 84: 76:Anthony Michell 35: 28: 23: 22: 15: 12: 11: 5: 859: 857: 849: 848: 838: 837: 831: 830: 827: 826: 824: 823: 818: 813: 808: 803: 798: 792: 790: 786: 785: 783: 782: 777: 772: 767: 762: 757: 752: 747: 741: 739: 733: 732: 730: 729: 724: 719: 714: 709: 704: 699: 694: 689: 688: 687: 677: 676: 675: 665: 660: 655: 649: 647: 641: 640: 638: 637: 632: 627: 622: 617: 612: 607: 601: 599: 593: 592: 590: 589: 584: 579: 574: 569: 564: 559: 554: 549: 544: 539: 533: 531: 522: 516: 515: 513: 512: 507: 502: 497: 492: 486: 484: 478: 477: 475: 474: 469: 464: 459: 454: 449: 444: 439: 434: 432:Overhead valve 429: 424: 422:Opposed-piston 419: 414: 409: 404: 399: 398: 397: 387: 382: 377: 372: 367: 362: 357: 356: 355: 350: 340: 335: 329: 327: 323: 322: 319:piston engines 313: 311: 310: 303: 296: 288: 282: 281: 267: 266:External links 264: 261: 260: 249: 232: 206: 203:on 2017-12-01. 181: 171:Australia 4627 161: 160: 158: 155: 99: 96: 83: 80: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 858: 847: 844: 843: 841: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 793: 791: 787: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 742: 740: 738: 734: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 693: 690: 686: 683: 682: 681: 678: 674: 671: 670: 669: 666: 664: 661: 659: 656: 654: 651: 650: 648: 646: 642: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 602: 600: 598: 594: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 534: 532: 530: 526: 523: 521: 517: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 487: 485: 483: 482:Stroke cycles 479: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 415: 413: 410: 408: 405: 403: 400: 396: 393: 392: 391: 388: 386: 383: 381: 378: 376: 373: 371: 368: 366: 363: 361: 358: 354: 351: 349: 346: 345: 344: 341: 339: 336: 334: 331: 330: 328: 324: 320: 316: 309: 304: 302: 297: 295: 290: 289: 286: 279: 275: 270: 269: 265: 258: 253: 250: 245: 244: 236: 233: 220: 216: 210: 207: 199: 192: 185: 182: 172: 166: 163: 156: 154: 152: 148: 146: 142: 139: 134: 132: 128: 124: 119: 117: 113: 109: 105: 97: 95: 93: 89: 81: 79: 77: 73: 69: 65: 61: 57: 53: 49: 39: 33: 19: 811:Split-single 597:Flat / boxer 457:Swing-piston 252: 242: 235: 223:. Retrieved 219:Duke Engines 218: 209: 198:the original 184: 165: 149: 143: 135: 120: 104:axial engine 101: 87: 85: 82:Construction 51: 47: 45: 500:Five-stroke 495:Four-stroke 452:Split cycle 390:Free-piston 333:Atmospheric 72:Scotch yoke 18:Swash plate 505:Six-stroke 490:Two-stroke 407:Heron head 365:Cam engine 225:5 November 157:References 127:compressor 108:cam engine 88:swashplate 68:crankshaft 52:slant disk 48:swashplate 78:in 1917. 840:Category 437:Pentroof 385:Flathead 375:Compound 353:Rotative 645:V / Vee 462:Uniflow 395:Stelzer 370:Camless 348:Cornish 278:YouTube 54:, is a 806:Radial 796:Deltic 442:Rotary 360:Bourke 177:  789:Other 472:Wedge 338:Axial 201:(PDF) 194:(PDF) 62:into 60:shaft 467:Watt 402:Hemi 343:Beam 326:Type 317:for 227:2017 121:The 114:and 98:Uses 780:W30 775:W24 770:W18 765:W16 760:W12 727:V24 722:V20 717:V18 712:V16 707:V14 702:V12 697:V10 685:VR6 673:VR5 635:F16 630:F12 625:F10 587:I14 582:I12 276:on 92:cam 842:: 755:W8 750:W6 745:W3 692:V8 680:V6 668:V5 663:V4 658:V3 653:V2 620:F8 615:F6 610:F4 605:F2 577:I9 572:I8 567:I7 562:I6 557:I5 552:I4 547:I3 542:I2 537:I1 217:. 136:A 94:. 70:, 46:A 821:X 816:U 801:H 737:W 307:e 300:t 293:v 229:. 34:. 20:)

Index

Swash plate
swashplate (aeronautics)

mechanical engineering
shaft
reciprocating motion
crankshaft
Scotch yoke
Anthony Michell
cam
axial engine
cam engine
Internal combustion engines
Stirling engines
axial piston pump
compressor
automobile air conditioning
helicopter swashplate
Nutating flowmeters
Active electronically scanned array
Australia 4627
"The "Michell" Crankless Engine – Why was it not a commercial success?"
the original
"Development Timeline"
Predicting the behaviour of slipper pads in swashplate-type axial piston pumps
Gripen NG AESA Radar
Belt CP Swash Plate mechs action
YouTube
v
t

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.